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The creation of multiple photon-dressed discrete states in the continuum by coupling N levels to a
single resonance {atomic or molecular) is discussed. The conditions for the appearance of suck states
are established along with the experimental consequences that would reveal their presence. These
include time-resolved ionization measurements as well as analysis of ionization yield as a function of
frequencies.

I. INTRODUCTION

This paper concerns coupling of a single resonance to N
levels of an atomic (or molecular) system by external elec-
trornagnetic fields and is to be considered as an extension
and completion of our previous communication. Previ-
ously, a two-level system with a resonance was considered.
Here we generalize the analysis to a system with N bound
states and a resonance and show that under proper condi-
tions there exists S photon-dressed discrete states embed-
ded in the dressed continuum. We also discuss the signifi-
cance of these states, their measurability, and effects that
they produce under normal spectroscopic conditions.

Before proceeding on to the subject matter, a short
preamble to this problem will not be out of context. In
quantum mechanics the subject of creating a bound state
in the continuum part of a spectrum has a long histo-
ry. It has been shown how model Hamiltonians may
be constructed which support a discrete state in the con-
tinuum. While apparently of mathematical interest, their
utility for physical systems has been speculated for some
time. Also, mathematical literature has been replete with
the problem of the existence of bound states in the contin-
uurn. Our aim in this paper is not to address this issue
directly. We simply show that under very general condi-
tions dressing of isolated systems by photons may result
in generation (to a very good approximation) of such
discrete states. The key issue is to find these conditions,
since as is well known from any consideration of the
theory of photoionization or photodissociation, we have
usually only irreversible processes, If one takes a single
bound state coupled to a continuum by a matrix element
which slowly varies in energy {the usual condition for real
systems), it is hard to produce anything other than the al-
most Lorentzian dissolution of the bound state in the di-
agonalized (dressed) continuum. In the time domain, this
means that the population of the initial bound state de-
cays exponentially. However, if the continuum contains a
resonance (due to autoionization or predissociation) the

diagonalization produces new structures, which could be
in principle detected looking at the energy distribution of
electrons or fragments, for fixed photon energy (the distri-
bution is expected to be non-Lorentzian), or at the time
dependence of the depletion of the initial state.

In the next section, we treat the general problem of N
levels interacting with the continuum containing a reso-
nance with N different frequencies. We show that, in

general, it is possible to create X distinct photon-dressed
discrete states for such a system. The conditions under
which this happens will be discussed along with the gen-
eral demonstration.

We go on to consider some special cases. Firstly, we
consider the radiative coupling of a bound state to a reso-
nance; secondly, the coupling by two electromagnetic
(e.m. ) fields of a pair of bound states to a flat (i.e., struc-
tureless) continuum; and finally, a resonance coupled to
two bound states by two e.m. fields.

Thus our treatment unifies and generalizes all these
above-mentioned particular examples which have been
subject to previous investigations by various authors.
The characteristic which unifies all these processes is the
interaction of overlapping resonances created by the e.m.
fields and/or pre-existing ones.

In the succeeding section we consider coupling of two
bound states with a resonance. There have been few
works along these lines. ' We systematize the previous
findings here, pointing out in essence two major ones.
Firstly, we determine the loci of the curves in the plane of
the two detunings on which at least one discrete state lies.
Secondly, we show that, ~here these curves intersect, one
finds the maximal number (namely two here) of discrete
states. The energies of these states are explicitly obtained
in terms of the atomic parameters. The consequences that
follow are analyzed, namely, the possibility of quantum
beat spectroscopy. While a single discrete state leads to
partial freezing of the flow into the continuum, the gen-
eration of more than one of these states leads to the oscil-
lation of this persistence, i.e., we have an ionization (or
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dissociation) yield which will show beat structure as a
function of the pulse length of the external fields. The
case of a three-level scheme, since it allows one to have an

analytic expression for the beat frequency, permits one
also to investigate how this beat frequency depends on
both internal (atomic or Ilioleclllai') as well as external
(field strengths and frequencies) parameters. We give
some numerical examples of these beats and discuss their
significance. The last section is reserved for some con-
cluding remarks.

II. N LEVELS COUPLED TO A RESONANCE

I2&

In this section we consider the problem of N bound
states

I
1},I 2},. . . , I

N& coupled by N lasers
col, . . . , coN to the same resonance

I
a & (see Fig. 1). We

treat the fields in a second quantized form and perform a
resonant approximation„which consists in reducing the
full space, i.e., the tensorial product of atomic (molecular)
and photon states, to a resonant subspace in which the
dynamics takes place predominantly. This is done as fol-
lows. Suppose our system is at time t =0 in the product
state

I I;nlcoi, . . . , nNcoN & (the notation is contracted for
simplicity). When the field-matter interaction is switched
on only the energy-conserved one-photon transitions to
Ij;nial, . . . , (n, 1)alj, .—. . , nNcoN&=

—
I j} are allowed.

The Hamiltonian can then be written in the following
spectral way (neglecting also continuum-continuum tran-
sitions and spontaneous emission):

0 =Hp+ V,

FIG. 1. N bound levels coupled to a resonance by X frequen-
cies.

The continuum states have been labeled by the energy and
a further quantum number (or set of quantum numbers)
0!.

Here VJ' is the radiation coupling due to the field coj.

whereas V' is the internal coupling responsible for the de-

cay of state
I
a } (autoionization, predissociation). The

next step consists in projecting out the continuum. This is
done by using the projection operators

P= X I
j&&j I

g=l P= gg—,

and

HO= g,. EJ
~ j)(j + g f dEE F.,a)(Ea~, ,

V= V'+ V',

The effective Hamiltonian in the P subspace is then

H' =PHP+PHQ(E —QHQ) 'QHP .

Taking into account Eqs. (2)—(7), Eq. (4) can be rewrit-
ten as

V'= g I
a }(E,a I V,'E +H.c. ,

H' "=PHoP+PHog(E —QHQ) 'QHoP . (9)

V"= g VJ, VJ'——I a}(jI(VJ),q+H. c.
The above effective Hamiltonian has the following repre-
sentation in the basis of the N bound states plus

I
a }:

if 1+~1 lrVlEVE2('Viz+i) —KVlE VEN(g lN+1) —
%VIE VEo(pl +i )

—~VzE VEN(ezN+l ) —ir VzE VE.(ez+i)

~VNE VE (qN + l )

—lg

(10)

Let us explain the notation used after noting that assum-
ing that the Hamiltonian in Eq. (1) has real matrix ele-
ments (which may be done without loss of generality) the
above effective Hamiltonian is a complex symmetric ma-
trix. In writing Eq. (10) the zero of energy has been
chosen to be E, +(n, —1)col+nzcoz+ +nNcoN

Furthermore, the field-dependent widths yj- are defined as
usual

2= 2
yj mVJE m. g VJE—— ——

The corresponding shifts are
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oj P——Pg jI,dE'.
a

(12) I G(E+)e -"dE
—ao +Ig

5J ej—+—oj+toj —e, (j =1, . . . , N) . (13)

The width y, is field independent being due to the inter-
nal perturbation

2 ~ 2
y, =m V,E ——m~ V,E

The corresponding shift is contained in the energy e, .
The off-diagonal matrix elements of H' coming from

the second term in the right-hand side (rhs) of Eq. (8) play
a crucial role in what follows. From Eq. (8) one has

yP' yf
(Heft) y f JE I E ck

nVJE—VEt, (qp, +i),
Vl' yl

(Hett) g f jEa Eaa dE~

0

nVJE VE, (—qj +i), (16)

where

The latter do not appear explicitly in Eq. (8) being incor-
porated in the generalized detunings

E+=E+iq, i} 0+ . (22}

Utilizing well-known results one has

PGP =[Z —PHP PH—Q {Z QH—Q) 'QHP), (23)

PGQ =PGPPHQ (Z QH—Q) (24)

QGP =(Z —QHQ) 'QHPPGP,

QGQ =[Z —QHQ QHP—(Z —PHP) 'PHQ) . (26)

The first term in the rhs of Eq. (21) is needed for com-

puting transition amplitudes between states which are
bound in the absence of the fields.

The second term is needed for calculating the energy-
resolved continuum spectrum starting from some bound
state. Notice that the total flow of the population into the
continuum can be calculated as 1 minus the sum of the
population of states in the P subspace and this does not
require evaluation of QGP.

The third and fourth terms in Eq. (21) are needed if one
is interested in scattering situations (initial state in the
continuum}. In the present paper we only consider transi-
tions between bound states and evaluate only PGP.

From Eqs. (21) and (23) it is clear that in order to com-
pute the transition amplitudes starting from state

~
1) one

must build up the matrix PGP=(E —H't) ' and per-
form the integral in Eq. (22) (which can be done easily
through the residue theorem). For example,

qjk
—— PP— , dE'(trVJE VEk)

VJ'E VEk = QVJE VEak—

V,"EV~=—QV,",.V' (J,k=1, . . . ,z).

(17)

(18)

(19)

(20)

(27)Gt i —g, i(E)If(E—),
where f(E) and g»(E) are respectively the determinant
and the cofactor of the j, 1 matrix element of the same
matrix (E H'~). This —means that f(E)=0 is the secu-
lar equation for H' so

%+1
f(E)—ff (E E ) (28)

v=1

where E„are the complex eigenvalues. From Eq. (22):

%+1
UJ i(t) = g gj i(E„)exp( iE„t) —g (E„E„)—

The effective Hamiltonian in Eq. (7) is, in principle, en-

ergy dependent. Here, however, we suppose that the
bound-continuum matrix elements VJE~, V,'E~ are nearly
constant in the energy range of interest and consider the
effective Hamiltonian as fixed {this is a generalized pole
approximation).

We have now at our disposal a compact way of han-
dling our problem of N levels radiatively coupled to a
continuum supporting a resonance. I.et us study the evo-
lution operator for such a system. It can be partitioned as

U(t}=PUP+PUQ+QUP+QUQ .

Each term of the above decomposition can be calculated
from the corresponding term of the resolvent:

G =(Z H)—
and

v=1 P, V

P/V

(29)

The above expression has been used for the calculations.
Let us come to the investigation on the nature of the
dressed resonances ~hose energies and widths are given
respectively by the real and imaginary parts of E„
(v=1,2, . . . , N +1). We are going to demonstrate that
under certain conditions, discussed in the following, it is
possible to vary the control parameters in order to pro-
duce X dressed resonances with zero widths, i.e., N true
bound states embedded in the dressed continuum (in the
following the intensities are kept fixed and the frequencies
are considered as the variable parameters). To do this let
us first reexamine the off-diagonal matrix elements of
H' . From Eqs. {15)and {19)one has (assuming matrix
elements of the full Hamiltonian to be real)
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Im(Hj'k )=—m g Vjk~vE~k (j,k =1, . . . , N) (30) imaginary part of H' commute, i.e.,

RI —I 8 =0. (41)
(Im stands for the imaginary part). So from Cauchy in-

equality:

~
Im(Hjk }

~
( m g Vjk~ng VkE (31)

Im(Hj'k )=vrvjEVEk,
2

f& =7T'VjE,

Im(Hj', )=m VjEvk, ,
2y, =mVE, .

(32)

(33)

(34)

(35)

The effective Hamiltonian for the maximum interfer-
ence case we are considering can be written as0' =R —it, where R and I are now real symmetric
matrices:

The same is true for Im(Hj', ). The sign in Eqs. (31}holds
wheil

~ j},
~

k }(or
( j ), (

a }) are coupled only to one coil-
tinuum, the same for both, i.e., when the sum over a in
Eq. (31) reduces to only one term. This is true, for exam-

ple, if
~ j) and

~

k }are S states of an atom and the radia-
tion fields involved are linearly polarized. In fact, in this
case, identifying a with the angular momentum quantum
number I and m one has that only l =1, m =0 contri-
bute. The requirements for creating N dressed bound
states is that

~
a ) and all the

~ j}are coupled to the same
continuum. Let us now consider that this the case (max-
imum interference case). Taking into account that now

In fact, in such case the eigenvalues of R and I give
respectively the real and imaginary part of the eigenvalues
of H' (I has N null eigenvalues). In order to show that
Eq. (41) can be satisfi& let us first rewrite it as

R VV —VVR =0. (42)

Instead of tackling directly Eq. (41) we note that if V is
an eigenvector of R, i.e.,

RV=A, V (43)

(or VR = VR =A, v) then Eq. (41) is verified. Equation
(43) gives rise to

5i 5j+ y Ilkrk y qjkrk+(el Ij)ra
k (~1) k (+j)

(j =2, . . . , N), (44)

g Vikrk+9ira —+Ark .
k (~1) k

Hence we have N equations in the N unknown 5;,
which can always be solved. This completes the demon-
stration.

Equations (44) and (45) show also that the critical
values of detunings at which N dressed bound states ap-
pear do not depend on the sign of the bound-continuum
matrix elements.

For the case N =1, i.e., one bound state coupled to a
resonance, Eq. (45) gives the following condition for 5i.

R —=Re(H ),
I.—= —Im(H") = VV,

where

(37)

5'i=iji(ra ri) .— (46)

For N =2 (i.e., two bound states coupled to a resonance
by two lasers) one has, after a small amount of algebra,
the following critical detunings occur:

V2E

v=~'"
~WE

Vas

(3&)

and V is the transpose of V (row vector).
~e are now able to demonstrate the following theorem:

for each given set of intensities of the N fields, it is al-
ways possible to find N generahzed detunings 5i, . . . , 5&
[Eq. (13)] in order to have N real eigenvalues of H' .

Proof. First note that, due to Eq. (37), one has

where P is a real number

(40)

Hence (1/p)l is a projection matrix and as such it has
one eigenvalue equal to 1 and the remaining N eigenvalues
equal to 0. In order to prove the above theorem we have
only to show that the N control parameters (i.e., the N
frequencies) can be chosen in such a way that the real and

5i =e i(r. —r i }—r2(e2 —ei2 },
52 92(r. —r» —r 1(91 'f12 } .

(47)

(48)

The above condition was given in Ref. 1 with a dif-
ferent notation (the change necessary to recover the previ-
ous notation are the following: a~1, 2~3, 5i~5„
52~5,').

A. One bound state coupled to a resonance

The possibility of modifying a resonance through the
photon coupling to a bound state has been discussed pre-
viously in the literature' so we discuss here only brief-
ly this case. Let us first recall that, as mentioned in the
Introduction, the 2)&2 effective Hamiltonian has exactly
the same form as that of two bound states coupled to a
flat continuum by two fields.

It is easy to show that the photon-dressed bound state
in which part of the population remains trapped is not
merely a linear combination of the states which are bound
in absence of the field, but involves the continuum as an
important part. This is perhaps obvious for the one-
field —one-resonance case, but establishes a significant
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(49)

4
~ ~

r

/s I \ I
s s

SI f
1 I lv

p

g $ s 1 gI
~ I

s
I t I l~t

I

5

of population of sstate
~
1)(P~),G. . dpe ce o

of th olid li i F
Dashed line shows I'] w en

t scillatcons creahe ersisten o
are as for t ephoton- resh -dressed discrete states. e

solid line of Fig. 2.

1

I
~ I

I
~ I

I"I
I

(50)
E,Eq are complex eigenvalues o

of 5, d5 (fo f
'

) For almost a i, 2115 5 h h E'~ ~

iven qs.
oes to al st ansient regime,omplex and

1 11to 0. This means that in a mos
tion after a sufficient time.

-5
/ 0

/

/

o.s

curves in the plane of 5&, 5& [see

line: q]2 —$.0 y] —0.
For further explanation see text.

in Fi . 3 for the set of parammeters whichFIG. 4. Same as in Fig. 3 or
refer to t e ah dashed line in Fig. 2.



34 3913TH&ORETICAI„ASPECTS A~ ERIMENTAQ . .

Now ~uPpose we cho(lse 5
thc curve sh(lwn F

2 tllat tlley are on

eigenvalues E E E
1Q ig. 2. In such a case one of the three

3 is real so that asas t~ce PI and P
Q . cncc, 1n th1s case a, a~ter the transient

e at P, goes toa
ferent from 1.' The nonsaturation effect

Pea 1on o a true hoton-
11 p p atlofl I'cIIlaills tl appedpa o the o ula'

The third possibility is that we fixThe thir a we tx 5i and 52 so that
n t is case two term

and P2 giving rise to
erms surv1vc 1Q Pi

sc 0 persistent osclllatlons Pqin, as well

as in P~ and P .2. This typical quantumq um beat structure (see
is t c sign that Qow

discrete states are
two photon-dressed

Hamiltonian, and tha b
'

in
are present in the s ect

at oth are contained ina
'

in the nonsta-

, d, . Th ~
ve prepared b the

p ds gye at requency corres o
ween such states. From

we see that und hn er t e conditions 5 = '
discrete states are f ed

'

ence of external 1

e orm in the contintinuum in the pres-
a e ectromagnetic fields.ds. These two real

4
F. + ——+———(52 —251)[5'&+ =+

2
—

~ 2
— » yi+F2) —(52—51)(yi+y. ) —21 1 ya ylyagi 2yly2$12 2F2yag2]

—4[51(51—52)——
2 F2—ya92 'Yi—yÃil 'Yi—yafi]

3
1 vi+ F2)+(51 52)( Yi+ya)2 1 F Fly '91 2yly2912 2F2F 92]

1/2

1
i yi+y2)+(51 —52)(yi+y. ) —22 J f 2717,q i

—2y ty2q )2 —2%12—'Y2'Y 92] (I =Fi+F2+F )a9

where the + and the —subscri ts on
eigen alu s. Evidentl„ th t o r

arameters that have
iscrete levels and th e structured in-

t (th f
um a ong with the f

extern .. j.ields. Even th
equencies and the fieldie strengths) of the

ven t ough the formulas aboa ve are expli-

cit, their content is far from bein trg P

ters enter in a n 1

is is due to the faact that the parame-
non inear manner in the ex r

examples are shown
' F'n in igs. 5 and 6. In Fig. 5, y, and y2

$0

60

—10
I

10
(

20

FIG. 5. Beat fr uenIequency as a function of the
ca cu ated at yl ——

e atomic parametered, =y2 ——y, =1. Curve 1 cor-

q2
——4.

I
——, q2 ———9, while= —9, curve 2 refers to —2,0

FIG. 6. Best frrequency as a function of
of values of the at

o y2 (see text) for a set
a omic parameters. Curves

o dt =3 12
while curves 8 8

3

peCtively (ql =1 q2=4)
2, and 8~ refer to q» ———4

q2= —9}. All six curves have y&
——0. 1 9



ALESSANDRO LANI AND NASEEM K. RAHMAN 34

have been fixed and the beat frequency has been plotted as
a function of qi2 with two sets of values for the pair
( q&, qz). It is easy to see that in this case

~E:—E+ —E—=o'o+&iqi2++29'&2 ~

2 (52)

where ao, o.~, and a2 are constants. The results are para-
bolas with minima at qiz ———2ai/ai and

(b E);„=ao+2a2(2a2/ai —1), (53)

where such minima might lie is sho~n in the two curves
with q &

——2.0,q2
——4.0 and q ~

——1.0,qa ———9.0. The
reason that

I g2 I ) I qi I
have been chosen as examples is

due to the fact that the same resonance probed from the
excited states in many cases tends to be more symmetric
than from the ground states, for the atoms. From the
shapes of these two curves, we see that the minimum of
the beat frequency can be either for positive or negative
values of q i2. These theoretical curves are of course noth-

ing more than that. The experimental beat frequency
(given qi and q2, which are determined for independent

measurements) would reveal the value of qi2 which while
theoretically calculable has, to our knowledge, no other
experimental method of measurement. These universal
parabolas show how the potential values of q&2 restrict the
values of the beat frequencies.

Once q~, q2, and q]2 are known, one may vary the beat
frequency as a function of two external field strengths.
These are quite nonlinear functions of Y~ and Y2. We
have plotted a few examples in Fig. 6, where Y, =0.1, a
rather low value compared to the width scale of the reso-
nance (Y, =1.0) for a range of Y2 which goes from arbi-
trary small values to y2

——4.0 thus covering a large zone in
the field strength. The six curves correspond to the two
sets, which in turn arise from the two curves of Fig. 5.
The parameters that are used are all listed in the figure
captions. Again these curves are shown as some possibly
typical cases. Once q, 2 is fixed from measurement of the
beat frequency at a given set of intensities, with the aid of
curves as in Fig. 5 one can experimentally explore an
analogous curve of Fig. 6. From the expression of b,E
which is

(~2 2~l)[~1(3 i+Y2) (52 5l )(Yl +Y ) 2Y1Y 91 2Ylf 2912 2Y2Y V2]'I

4[51(~1 ~2) Y23 'V2 YIY2912 Yl Y ~I i ]
' 1/2

[51(Y1+Y2)+(51 '52)(YI+3 ) 2Y1Y Cl 2Y1Y2912 2Y2r.ei] (54)

we expect strong nonlinearity in Y2. How this translates
into an experimental situation should be quite clear from
these six curves. In a few cases, we see that the nonlinear-
ity in the expression (54) is not in the zone of experimen-
tal interest, while for others this is the case. It is to be
emphasized that given qi, q2, and q&z, one can experi-
mentally verify the dependence of the beat frequency on
the field strength by following a curve analogous to one of
those depicted in Fig. 6.

There is another way of looking at the presence of
bound states in the continuum. This consists in fixing one
of the frequencies, say cuz, i.e., 52, vary the other, i.e., co,

and measuring the ionization probability as a function of
5& for a given pulse length. For almost all 5i one has that
the whole population flows into the continuum, since the
three eigenvalues of H' are all complex. When one
crosses the curves of Fig. 2, population fiows into the con-
tinuum, since the three eigenvalues of H' are all com-
plex. When one crosses the curves of Fig. 2, one bound
state appears and some trapping occurs. This is clearly
seen in Figs. 7 and 8 where the trapped population is plot-
ted as a function of 5i for several values of 5z. Every
peak corresponds to the crossing of one of the branches of
the curve in Fig. 2. When two peaks coalesce we have two

2.1

15 O 5 0 -~o -~5 ~9
6,

FIG. '7. Population trapped after a pulse ~hose length is 100 times the lifetime of the unperturbed resonance as a function of 6& for
several values of 52 (see Fig. 1). Parameters are those of Fig. 2 (solid line). Note the merging of two peaks at the values of detunings
which correspond to the point of intersection of solid lines in Fig. 2.
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-2.8

FIG. 8. Same as in Fig. 7 for the parameters of Fig. 2 (dashed line).

bound states simultaneously present and the trapped pop-
ulation increases. So, measuring the ionization yield one
can experimentally test the structure of the 5i,52 plane (see
Fig. 2).

In the numerical examples provided above on the conse-
quences of multiple photon-dressed states in the atomic
(molecular) continuum, the purely atomic parameters are

q; and qtiv. From perusal of the published results of au-
toionizing states from the ground states of atoms, qi is
not difficult to obtain. The other q s are less well known.
However, there has been notable experimental progress in
this direction. On the other hand, qtz's are to be deduced
from experimental results of double resonance through the
continuum or from ab initio calculations. There are, to
our knowledge, no accurate values of q;iv's in the litera-
ture. The range of qi2 that we have utilized to illustrate
the theory has been based on our own estimate.

tensities required can be maintained in the spectroscopic
domain. One may note that a few affine experiments
have already produced extremely interesting results. '

We have calculated time-resolved ionization (dissocia-
tion) probability and frequency-resolved ionization (disso-
ciation) yields, bringing out the features due to creation of
photon-dressed bound states. Various ancillary questions
may still be examined but almost all of these follow in a
straightforward manner from our treatment. Future work
in this regard should perhaps be directed to specific atom-
ic or molecular systems. Some effort in this direction
with ab initio calculations is now in progress

Note added. After this paper was written, we received a
copy of a work by E. Kyrola where N levels are coupled
to a resonance. In that paper the technique of Laplace
transform has been utilized to derive the photoelectron
spectrum, an observable not considered by us.

III. CONCLUSION

We have shown that coupling bound levels to a continu-
um may generate dressed discrete states. This result,
while obtained after simplifying the problem through
some approximations (neglecting of spontaneous emission,
free-free transitions, and resonant approximation), has
sufficient generality to produce a variety of experimental
consequences, some of which have been investigated in
this paper. It is particularly encouraging that the field in-
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