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Experiments have shown the novel combination of laser optical pumping and velocity-changing

collisions (between active- and buffer-gas atoms) to be very effective in producing vapors with high
atomic or nuclear polarizations. This paper presents a theory which has proven successful in

analyzing these experiments. The theory predicts the amount of polarization attainable for particu-
lar experimental conditions and establishes the general criteria for optimum polarization. The
theory is based on sets of coupled rate equations, which contain terms describing the pumping pro-
cess (i.e., stimulated absorption or emission}, radiative branching, relaxation, and velocity-changing
collisions. The collision terms are written in the strong-collision approximation, which assumes that
a single colhsion, on average, thermalizes the velocity distribution. Expressions are derived for the
polarization and level populations.

I. INTRODUCTION

There is considerable current interest in laser optical
pumping as a technique for producing large atomic or nu-
clear polarization in atomic vapors. Potential applica-
tions include the production of intense polarized-light ion
beams by charge exchange, 2 polarized targets for nuclear
physics scattering studies, ' 5 laser-induced nuclear
orientation (I.INO) (Ref. 6) studies, and for the proposed
production of polarized fuels for nuclear fusion.

Lasers provide intense, monochromatic collimated
beams of polarized radiation, and are therefore superior to
conventional optical-pumping sources. They span the
spectral range from milhmeter wave lengths to the uv re-
gion„and dye lasers are continuously tunable over the en-
tire visible spectrum. Average powers of several watts are
readily available. Since 1 W corresponds to a photon
current of about 1 A, dense vapors can be fully polarized.

The main disadvantage of cw laser radiation is its spec-
tral purity. When an intense monochromatic field
resonantly interacts with a Doppler-broadened optical
transition it selectively saturates only those atoms which
are distributed over a homogeneous linewidth, —10 MHz
for radiative broadening. Since Doppler linewidths are
—1—2 6Hz, the fraction of atoms which can be optically
pumped is typically 1/o. Hence the velocity selectivity of
the laser, which causes poor Doppler (velocity) coverage,
results in incomplete polarization.

Some current techniques designed to overcome this dif-
ficulty include the use of broadband or multimode laser
radiation, power broadening, pressure broadening, '
and buffer-gas-induced velocity-changing collisions
(VCC's). "The first three methods require, respectively,
stabilizing sets of randomly fluctuating modes, high laser
intensities (approximately tens of W/cm ), and high
buffer-gas pressures.

Although laser optical pumping and VCC's are well
known, it has only been recently demonstrated that their
novel combination could produce vapors with large atom-
ic or nuclear polarization. This paper investigates
single-mode laser optical pumping with VCC's as a tech-
nique for producing fully polarized vapors. This tech-
nique enables large polarizations to be produced using rel-
atively modest laser intensities (approximately several
hundred mW/cm ). In experiments up to now the VCC's
are induced by adding to the vapor small amounts of
buffer-gas "perturbers" (a few tenths of a torr). In some
applications this may cause unwanted background effects.
However, recent laser-optical-pumping studies of low-
density rubidium vapor have also shown that nondepolar-
izing wall-induced VCC's can also increase Doppler cover-
age. ' These VCC's may eliminate the need for perturbers
but are generally best suited for cases involving long relax-
ation times (a few milliseconds). Previously, VCC pro-
cesses have been studied in both laser saturation spectros-
copy' and in laser optical pumping. '

This paper presents a theory of laser optical pumping
with VCC's. The results, in addition to establishing the
conditions required to achieve optimum polarization, can
be used to determine the amount of polarization produced
in a given experiment. In order to accomplish this, the
theory must adequately describe the laser optical pumping
and VCC processes. The theory has been successfully ap-
plied to optical-pumping studies involving sodium, ""
lithium, ' ytterbium, " and, more recently, LINO studies
of the 1-ps Rb isomer. '

II. LASER OPTICAL PUMPING AND VCC's

The optical-pumping process alters the populations of
the various MF Zeeman sublevels by transferring angular
momentum from the applied field to the active atoms.
For example, for a right-hand circularly polarized field
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resonant with an atomic transition, photons are absorbed
according to the selection rule ~F——1, whereas in the re-
sulting spontaneous emission AMF ——0 and + 1 transitions
are all allowed. Consequently, each pumping cycle tends
to shift population toward higher M~ states, resulting in
ground-state orientation. Both the nucleus and atomic
electrons are polarized in this process, and the sample ac-
quires a net magnetization.

As mentioned above, in the absence of VCC's, optical
pumping with a single-mode laser field polarizes only a
small portion of the thermal velocity distribution. A
VCC is an elastic coBision which changes the velocity of
an active atom without changing its orientation. Due to
the spherically symmetric ground states of the active
atoms and perturbers, depolarization cross sections are
typically many orders of magnitude smaller than VCC
cross sections. Of particular interest here are strong
(thermalizing) VCC s, in which the rms velocity change,
b,u, is much larger than the width of the resonant velocity
"bin" (h,u &&y~/k, with yH the homogeneous linewidth
and k =2ir/A, the wave number of the transition). Strong
collisions are important because they produce velocity
thermalization in only a few collisions. In general, for ac-
tive atom mass m& and perturber mass mz, strong VCC's
require mz/rnP & 1.'

To ensure rapid velocity coverage the number of VCC's
occurring during the ground-state orientation relaxation
time T must be large compared to the total number of
velocity bins,

piiT 2ku

YH

with VCC rate I" and thermal speed u (ku is the 1/e
Doppler width). Condition (la) assumes that there is a
dominant relaxation mechanism, with characteristic time
T. For the active and buffer-gas pressures of interest, the
primary relaxation mechanism is cell-wall collisions. In
this case T is usually the diffusion time through the cell
to the walls, vrhere depolarizing collisions occur.

The effects of VCC's on the laser-interaction process
can be studied by referring to Fig. 1. The VCC's transfer
pumped atoms into nonresonant velocity bins and replen-
ish the resonant velocity bin with atoms not yet pumped.
(In addition to creating velocity diffusion, the VCC's also
produce spatial diffusion, which increases T.) This leads
to two components in the velocity distribution, (i) a nar-

N, (v )

FIG. 1. Effect of VCC's on laser-optical pumping, with

pump laser tuned to resonance. Buffer-gas perturbers cause
VCC's into and out of the resonance velocity bin (broken verti-
cal hnes}.

+3(v)

FIG. 2. (a) Optical pumping of a three-level system. E. is the

pumping rate, I 0& and I 02 are radiative-decay rates, and T is
the 1~2 relaxation time. (b) Effect of VCC's and optical

pumping on the velocity profile of level 2. The broken line is
the zero-field equilibrium distribution of level 2, while the solid

line is the optical-pumping pedestal with laser-induced narrow

saturation dip centered at V= Vo. Here the laser is pumping
the velocity line centered at V = Vo.

row feature ("dip"} due to atoms that are resonant with

the field and have not undergone VCC's, and (ii) a broad
"pedestal" indicative of complete Doppler coverage [e.g. ,
see Fig. 2(b)]. The relative sizes of the two features de-

pend on the effectiveness of the VCC processes. The
larger the pedestal, the more effective the VCC's. For a
fixed laser intensity, the size of the pedestal increases with

pressure, while that of the dip decreases. As described in
detail in Sec. III, the dip can be used to obtain informa-
tion about the VCC processes.

The simplest energy-level scheme for studying the

optical-pumping process in atoms is the coupled three-
level system shown in Fig. 2 (e.g., odd isotopes of Yb for
circular-polarized radiation, see Ref. 11). It is composed
of two ground-state M levels, 1 and 2, both radiatively
coupled to a single excited level of energy fico Consider.
the system to be Doppler broadened and subjected to
single-frequency pump radiation of the appropriate polar-
ization, so that only the 2-0 transition interacts with the
laser field. Atoms dix:ay from level 0 to levels 1 and 2

with partial radiative decay rates I Oi and I'02, respectively
[radiative lifetime ~= 1/(I Oi+ I 02}]. Thus, atoins tend to
accumulate in level 1 and are polarized. The extent of po-
larization is determined by the mean time T required for
the excess atoms in level l to relax back to level 2.

Appreciable polarization requires both rapid thermali-
zation, condition (la), to access the entire velocity profile,
and fast excited-state branching decay,

(lb)
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to ensure many optical pumping cycles in a given velocity

group before polarization relaxation occurs. When condi-

tions (la) and (lb) are satisfied the population of level 0 is

negligible, and the system of Fig. 2 can be approximately
described by

1 1
No ———(N, —N, )R20-

T

+ —I,"No+ I dv'W', (v'~v)NO

(M}—Mj ')
~}——(p9F)M2-

T

M}+~i—M)—'+My ' ——N,o, ,

(2a)

(2b)

N, = —(N, —N, )R„+I„N,—
Nz —Nz

(o}

T

(3)

with og the 2-0 absorption cross section, and laser intensi-

ty I. The steady-state polarization is then given by

p9P T
1+p9PT

' (4a)

which can be rewritten in the form

P= I
I+&Op

'

with optical-pumping saturation intensity

with M& and M2 the population of levels 1 and 2, M} 2

are the respective thermal populations (assumed equal),
and N«, is the total atomic density. The branching ratio
p= I'oir is the probabihty that an atom excited from level

2 to level 0 decays to level 1, and 9F is the laser-pump
rate, given by

&~ =~oi&o—
N) —N)(0}

T

+ —r,"X,+ v'W, v' v X,

with ¹

' the equilibrium (thermal) populations, the terms
in brackets describe the effects of VCC's, and are written
in a simple "rate out minus rate in" form (see Fig. 1).
The total VCC rate is given by

I","(v)=I IV;(v~v')dv', (7)

with the collision kernel 8';(v —v ) the probability per
unit time per unit velocity interval that atoms in level i
experience a collision which changes their velocity from v

to v'. In writing the VCC terms it has been assumed that
levels 1 and 2 belong to the same electronic ground state
with VCC rate I z, while level 0 is an excited electronic
state with VCC rate I,". Since the laser pumping process
selects only the longitudinal component of the velocity,
the problem may be treated as being one dimensional in v,
as measured along the beam axis. The laser pumping rate
is given by

+(zo}HI
~zo=

1 1

p O'D T

with homogenous absorption cross section

I 820 I XN
o~20}H

—— Smk W(x) =cr~20}~W(x),
Za

(9)

This indicates that efficient optical pumping requires
I ~Jr,„, for which most of the population has been
transferred to level 1 and, therefore, produces a fully po-
larized sample. As seen in Sec. III, Eqs. (4) follow from a
more detailed theoretical model in the appropriate limit.

IO. THEORY

A. General results

The basic features of the laser optical pumping process
are exhibited by the three-level system of Fig. 2. The
problem can be formulated in terms of coupled rate equa-
tions' for the population densities N;(v) of atoms in level

i with velocities in an interval d v centered about v,

and

(y /2)'
W(x)=

(b ip —x ) + (yH /2)'
(10)

The homogeneous width is y& ——1/~+2/T+y~, with yp
the contribution due to pressure broadening. The detun-

ing of the laser frequency Q from the atomic-center fre-

quency ~zo is 4zo ——0—~zo I is the laser intensity,
k =2m /A, x =ku (with U, =U, along the beam axis) is the

Doppler frequency shift, and p20 the 2-0 electric dipole
matrix element.

In general, because the kernel is a function of both u

and O', Eqs. (6) are quite complicated and may be solved

using iterative techniques. ' However, for strong col-
lisions the kernel is greatly simplified and can be approxi-
mated by

8'(U'~U)= W(U),
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which means that the probability that an atom has a par-
ticular velocity after a collision is unrelated to its velocity
before the colhsion. Consequently, atoins which have
undergone collisions are assumed to have a thermal distri-
bution.

Fol' stloilg collislo118 Eqs. (6) 1'ed)ice to

1 1
D =2+I p)T — +01

y, =r,'+ —'.
g g T 7

y. +ys —102

yeyg

1 1
N() ———(Np —N2 )R 2()

— —+—N()T, ye= —+I e+—.1T'

+( 1",N—p+ W,~p),

u

N2 ———(N2 —N() )82() +I ()2N()—

+( r,"—N2+ W,~2),

X2 —N2
(0)

T

The optical-pumping saturation intensity is given by

1 %co 1 1I —+—&1+S,
D 0(pp)g w T

with Doppler-broadened absorption cross section

(0) yH ~ -(620/ku)
(T(20)D ~(20)H

&~ =~o~&o—
N) N)—(p)

T +( —1 sN) + Wg~)),
and S=I/Is, with the "usual" saturation intensity given
by

where

~;=f N;(u)du,

is the total population of level i. The VCC kernel is given
by

yeIs= (p) yg
ye +yg ~02 0(pp)H

The last step of the procedure then gives the following
general expressions for the populations:

Ws(, )(u) =1 s(,)G (x),

G (x) e —(ulku)2=1
ku

(14) INo= 1 —Po I +I,p
yg I.(x)

ye+ yg —~p2 I+Ig

the normalized [f G(x)dx =1] Gaussian distribution
function. ' 2 The zero-field equilibrium populations are
N,' '=M 'G(x), with M ' the total background equili-
brium density of atoms in level i For M.j ——M2 ' conser-
vation of number implies that M) '+&2 ——N«„ the total
density of atoms. Wall relaxation is included through the
(Ã( —

¹
')/T terms.

The procedure' for obtaining the steady-state solutions
to Eqs. (12) is straightforward. First, the equation for

N, =O must be solved for the various N;. The resulting
expressions, which are functions of both Ã, and M;, are
then integrated over velocity (x) to obtain coupled equa-
tions for he M; Finally, th. ese equations are substituted
into the expressions in N( and ~; found in the first step
to obtain final expressions for the N s. All of the veloci-
ty integrations are performed in the Doppler-. broadened
limit (yH, ~ 520( ~ (

ku).
The first three steps of this procedure yield the follow-

ing general expressions for the ~;:

I
I+I,p

.&20)G(x),

I
N, = 1 — 1 —P, I+I'

y. —I"o2

y. +y —ro

X L (x)+P2
I I
+ I+I,p

M 'G(x),

N, =M) G(x}+0) ~o~

yg

I
I+Iop

(21)

X yg I I.(x)
y, +yg —I p2 I+Ig

D I+I'
(1+ro)T)~2——I—

D
o)

I+I,p

(16) I I+ OP

M 'G(x),

~)——1+ ~pjT I p)

D I+I'
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Pi ———I "T+
1 g) g

L

(22)

and

=1
(0}

P [2O}H

I 1 Aa) 1—v'1+S,
P +(20}D

(27)

~e ~02

Ve

—(1+1Oi T)I "
g

and the power-broadened Lorentzian factor

(yH/2) (1+S)
L (x)=

(620—x) +(yH/2) (1+S)
(23)

with p= I Oiri and the other quantities as defined earlier.
Conditions (1) mean that Is »I,~, and that both Mo and
No are negligible compared to M, 2 and N, 2.

As a laser field tuned, for example, to the 2-0 transition
i»ig. 2, propagates through a sample (z direction), the
change in its intensity is given by

It is convenient (but not necessary) to add a third condi-
tion,

dI =aI, (29)

Pi I g/I »—
2-—1,

so that Eqs. (21) reduce to

L(x)M, G(x),
I.p ~o 0}

+ Op 01 + S

(24)

1 — L(x) Mi 'G(x),
+ S

N; =M) 'G(x)+ I+I,p I +ID'
L (x)I

+ S

&&M"G(x) .

Now Eqs. (16) reduce to

' r. T I+I.,

+ ~YpI+I,p

1 Q 1

T

to those given earlier in Sec. II. This condition essentially
decouples VCC's from radiative decay (e.g., it means that
an atom pumped into the excited state decays before it ex-
periences a velocity change). This condition greatly sim-
plifies the relevant expressions. Since many experiments
of interest use only small amounts of buffer gas, condition
(1') is usually satisfied. Then, employing condition (1'),

D I 01T,

with velocity-integrated absorption coefficient a, which in
the rate-equation approximation of Eqs. (12) is given by

a = f (No N'i )(T(20)Ir—(x)dx

1
~2&(20}D 'v'1+S (30)

(32)

the velocity selectivity of the single-mode laser has been
effectively removed and the overall effect is the same as
that for a velocity-independent broadband source. This is
easily explained as follows: The laser is depleting a single
velocity bin at a rate R, but since the rate I g at which the
VCC's are replenishing it with atoms from the entire
Doppler distribution is so much faster, the velocity distri-
bution remains thermalized even during the pumping pro-
cess. As a result, Eqs. (6) can be directly integrated over
velocity to yield the following simplified velocity-
independent broadband equations:

If desired, for a sample cell of length L, Eqs. (29) and (30)
can be easily manipulated to obtain I (Z =L), the pump
intensity at the exit face of the cell for a given intensity
I(0), at the input face. As discussed in Sec. III8, the re-
sults can be used to measure the sample polarization.

An interesting and perhaps unexpected result of this
treatment is that I,~, Eq. (28), is itself intensity dependent
through the factor v'1+S. This is the result of the fact
that when VCC's are effective [i.e., conditions (la) and
(lb) are satisfied] the monochromatic field can saturate
the entire velocity distribution. Thus, although the sys-
tem behaves as a Doppler-broadened one for small intensi-
ties, it saturates as a homogeneously broadened system.
Consequently, when I»I,~ Eqs. (29) and (30) yield

dI 1 1 %co
(31)

dZ p 2 T

as expected when the laser field saturates the complete
velocity distribution.

The laser v@11 essentially pump the entire Doppler dis-
tribution each optical-pumping cycle when the number of
VCC's occurring per cycle is much greater than the num-
ber of pump photons. This means that when
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1~()—— —(M() ~2)9P2o T

M2 ———(~V'2 —Mo)9Pzo

+ I oMo—

M) ——I ~o—

(33)

The laser-induced polarization I' can be conveniently de-
fined as the normalized population difference between lev-
els 1 and 2, averaged over the entire sample length I.,

f M)dz —f ~zdzI I (35)f ~)dz+ f ~zdz

Using Eqs. (26), (29), (30), and (5) this expression can be
rewritten in terms of the intensity change of an incident
beam of arbitrary intensity,

with pumping rate [see Eq. (3)]
1 I(0)—I(L).Wo)~~ 2 &(Zo)D ~op

(36)

+(20)D

where rr~zo)D is given by Eq. (19) and all VCC terms in-

tegrate identically to zero. The steady-state solutions are
given by

o)

I o)T I+&,p

Note that Eq. (36), a statement of energy balance, is valid
for samples of arbitrary optical thickness (aL). For an
optically thin sample (aL & 1) It becomes Eq. (4b) of Sec.
II. Hence once Jr,~ is determined (see below), the polari-
zation is easily found from the intensity change. Many
applications of interest require highly polarized optically
dense (aL »1) vapors, ' and Eq. (36) is particularly use-
ful for estimating the polarization in these cases.

I+JI Op

I +Mop

where [see Eq. (5)]

1 1
DP

P (20)a &

(34)

8. Laser-induced polarization

Equations (33) point out the crucial role played by VCC's
in obtaining full velocity coverage in single-mode laser op-
tical pumping. As Eqs. (8) and (27), the condition (32)
show, here Is »I (i.e., S «&1) so that the velocity-
dependent narYow-dip features discussed in Sec. II are ab-
sent [i.e., no narrow dip in Fig. 2(b)]. [Equations (33) are
approximate in that they assume S « 1.]

In view of the above discussion, and for the remainder
of the paper, 8 & Is will be called the velocity-selective
limit of laser optical pumping with VCC, since in this
limit the velocity-dependent resonant features, such as the
narrow dip in Fig. 2(b), are present. On the other hand,
I s »II will be designated the broadband limit, where all
velocity-dependent features have essentially vanished. It
is the latter limit that is the most practical one for pro-
ducing highly polarized atomic vapors, because for most
cases of interest only modest laser powers (approximately
a few hundred mW/cm ) and low buffer-gas pressures
(approximately a few tenths of a torr) are needed.

where W~(x) is given by Eq. (10) and

(0) ~Ho)
ap = —~r 2 0{20)D ~ (38)

is the small signal background (i.e., I =0) probe-
absorption coefficient. Assuming a small misalignment
angle 8 between pump and probe beams, M(b, ) is given by

s ~s ~s
M(h) =

1+5 Hs g'+ g,' * (39)

C. Probe experiments

The experimental parameters I,~ and I g are most con-
veniently obtained by performing diagnostic probe field
experiments on optically thin samples. The simplest such
experiments are done in the Lamb-dip configuration,
where a single laser field is split into counter-propagating
pump and probe fields. Alternatively, a separately tun-
able co- or counterpropagating weak field may be used to
probe the polarized vapor.

As an example, consider a diagnostic experiment using
copropagating pump (frequency 0,) and probe (frequency
Q~) fields resonant with the 2-0 transition of Fig. 2. Us-
ing Eq (25) th. e velocity-integrated probe absorption coef-
ficient is given by

Q& = N0 —X2 0'(20)yg &
X X

pg T 2kQ

70
I 0)T~g1

(la)

(lb)

The quantity of central interest is the total polarization
attainable for a given set of experimental conditions. As
discusscxi in Sec. II, large polarizations require that condi-
tions (la) and (lb) be satisfied,

A=Qq —0, ,

I"s —(yH /2)V'1+S,
8's ——(yH/2)(&1+S +1)+y /2,

y~ =2(8ku) v'ln2,

(40)
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with y the broadening contribution due to the misalign-
ment. For counterpropagating fields (including the
Lamb-dip configuration) simply let x~ —x in W~(x)
(Doppler frequency shift has opposite sign).

The desired experimental quantities are readily obtained
by measuring the change in probe absorption induced, for
example, by chopping the pump beam. Using Eq. (37)
the resulting "change signal, "5:(az—'L a&L—}la& 'L, is
given by

Dv'
—M V My- I Mv

F' ~ I+ J

Fv

I

Fy Sl —J

with

Is S Ip
I+I p

8's 1+S I+I,p

+ ' L(&), (41) F~= I + Jg

L(b, )=
8's

6 +8's
Avg

-Mp -M +I M~-j Mp

Tlie first term in Eq. (41) is the broad (Doppler width)
pedestal shown in Fig. 3 and indicates velocity thermali-
zation by VCC's of level 2, and the second term is the nar-
row residual-tip (resonance) feature caused by those atoms
in level 2 which are in the resonant-velocity bin and, as
such, have not experienced VCC's. As Fig. 3 shows, on
resonance (6=0) the first term in Eq. (41) is the height of
the pedestal-change signal at the position of the narrow
dip, while the second term is the height of the dip-change
signal. Thus, I,~ is readily determined by measuring the
size of the pedestal, and Is, hence I s, is faund from the
size of the dip. Also note that I,~ is best determined at
intensities where S«1 (l»~W, &), and only the first
term is important, while Is is most canveniently obtained
when S & 1, where the second term is easily measurable.

In addition to the above case where pump and probe
fields interact with the same transition, it is possible to
have, for example, the probe field resonant with the cou-
pled 1-0 transition (by using opposite circular polariza-
tion). In this case the probe absorption is given by'

[1—M(h)]a' ',
+ Op

where all quantities are as defined earlier, with
Since levels 1 and 2 are nearly degenerate,

~AO) iA0) ~

the change signal is given by
T

I s S Iop

I+I p
8's 1+S I+I,p

L(h)

C hange

Signal

FIG. 3. Three-level change signal as a function of the pump-
probe detuning A=A~ —Q, . The peak heights of the pedestal
and dip are denoted by H and h, respectively.

FIG. 4. General multilevel system with hf structure, where I
is the nuclear spin, and dv(, ) is the ground (excited) -state hf
splitting between the ith pair of levels.

and has the same interpretation as Eq. (41). It is of oppo-
site sign because of the increase in absorption on the 1-0
transition due to optical pumping.

IV. COMPOSITE MODEL FOR MULTILEVEL
SYSTEMS

Atomic systems of interest in laser optical-pumping ex-
periments often contain hyperfine (hf) and/or Zeeman
levels and are, therefore, more complex than the ideal
three-level system just discussed. In general, exact
closed-form solutions are unwieldly, if at all obtainable.
This section describes a model which significantly reduces
the complexity of the problem.

A. The model

Consider the general multilevel system of Fig. 4, in
which Js (J, ) is the ground (excited) -state electronic an-

gular momentum, I'& (F„) is the total angular momen-
tum (electronic plus nuclear) for a particular ground (ex-
cited) -state hf level, and the M„(M„)are the hf magnet-
ic quantum numbers. Here the discussion will be restrict-
ed to laser optical pumping of ground S states, since only
these states can undergo many VCC's before depolariza-
tion| occurs, also angular momentum will be given in units
of fi

In general, a large number of coupled rate equations
would be needed to describe optical pumping of a mul-
tilevel system. However, the problem can be greatly sim-
plified by assuming that. the populations of the pumped M
states are equal throughout the pumping process. Then
the pumped sublevels (here level and state will be used in-
terchangeably) can be grouped ta form either a compasite
level or levels (see examples below}. Similarly, any an

pumped levels in which population accumulates can also
be combined into a compasite level(s).

To help clarify the above points, consider the examples
given in Fig. 5. For instance, Fig. 5(a) shows an
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Complete Level Structure Composite Livia a
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FIG. 5. (a) Linear pumping scheme. Population accumulates in the I'„=1 level and the M„=+2 sublevels. The wavy lines indi-
cate radiative branching to unpumped levels. (b} Pumping with circularly polarized light. Here hvs&„ is the ground (excited} -state hf
splitting and population is being transferred to the M„=2 sublevel. {e)Same as (b), but with the excited-state sphtting taken into ac-
count. {d)Examples of a situation sphere both the excited- and ground-state hf splittings are neglected.
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I'& ——2~E„=1 transition being optically pumped with
linearly polarized light (quantization axis parallel to direc-
tion of laser electric field). In this example, the pumped
ground-state sublevels M„=O and +1 of the F„=2 level
are assumed equal and grouped together to form compos-
ite level 2, the two unpumped ground-state sublevels
M„=+2 form composite level 1, the three unpumped
I'& ——1 sublevels constitute level 3, and, finally, the three
excitai-state sublevels of the F„=1 level form the third
composite level 0. Groupings for some other cases of in-
terest are shown in Figs. 5(b)—5(d).

Now consider in more detail a single ground-state hf
level of an optically pumped atom that has degenerate hf
sublevels, i.e., degenerate M&'s. The model assumes that
all the sublevels within a particular group have equal pop-
ulations. This means that, if all hf sublevels are pumped
they are assumed to have equal populations and all are in-
cluded in the group, which is then treated as a pumped
composite level [as is the F„=1 level in Fig. 5(b)]. Like-
wise, if none of the hf sublevels are pumped they also are
assumed to have equal populations and are grouped to-
gether to form an unpumped composite level [F„=1 level
in Fig. 5(a)]. For hf levels in which only some of the sub-
levels are pumped, the populations of the pumped and un-

pumped sublevels are separately assumed equal and are
grouped into pumped and unpumped composite levels [as
with the F„=2level of Fig. 5(a)]. The total population of
each composite level can then be defined as

ri(= g—(n( n—„)r,„+g y„(n„—
(n( n—(

(0)

T

+ —I~n(+ Wz I n(du (47)

(48)

where the Lorentzian line-shape factor is now

(yH /2)'
W(„(x)=

(&(„—«)'+(yH /2)'
(49)

with 6(„=Q—co(„ the detuning of the laser field, frequen-
cy 0, from the transition frequency co(„. The homogene-
ous absorption cross section for the l~u transition is
given by

where n„=n„(M„) is the population of a single excited
(upper u) state sublevel. The first term is the laser-

pumping contribution, with the sum covering only those
excited-state sublevels interacting via the laser field with

nl. The second term is the radiative-decay contribution,
where the sum takes into account the branching over all
excited sublevels of interest. The remaining terms
describe the effects of wall collisions and VCC's.

The specific form of the quantities appearing in Eq.
(47) are generalizations of Eqs. (12) of Sec. III. The
laser-pumping rate per atom is given by

E„=gn„(M„)=gqn„
M

(45) Smk
&(u =

I p(u '&
I

N

where n„ is the population of each sublevel in the group
(composite level), with all sublevel populations assumed
equal, and g& is the corresponding number of sublevels.
Note that when all sublevels are either pumped or un-

pumped g& ——2F„+1 [e.g. , in Fig. 5(b) g„=3 for the
F„=1 level]. The overall polarization or orientation de-
pends on the population of the unpumped ground-state hf
level(s) or sublevel(s).

Consider now the excited state of the optically pumped
atom. In most cases of interest the populations of the ex-
cited hf sublevels remain negligible during the pumping
process, due to fast radiative decay. So for the remainder
of the paper very smaB excited-state populations will be
assumed. Since any unpumped excited-state sublevels do
not contribute in any way to the pumping process, they
can be ignored. Then the population for each pumped
excited-state composite level is given by

= (3P(„)6mk2
7H

(50)

where y(v ——1/r, and yH is the homogeneous width. Here
((3(„ is defined as

I p(u ~
I'

lu-
do

(51)

with po the reduced radial dipole moment, p(„ is the opti-
cal electric dipole moment, and e is the unit vector
describing the polarization state of the laser field (circular
or linear). The 6nk factor (i=A, /2m) is the total absorp-
tion cross section (S~P transitions) for light of a definite
polarization, and the extra factor of 3 covers the three
possible polarizations. The spontaneous decay rate is
given by

E„=gn, (M„)=g„n„, —
M„

(46)
4k'

yu(=
3 ~ I Put I

where g„ is the number of pumped sublevels in the
excited-state hf level F„of interest, and n„ is the corre-
sponding sublevel population. For example, only the four
pumped sublevels of the F,=2 level in Fig. 5(c) are con-
sidered and treated equally, so g„=4.

Now before any approximation is made (plus making a
small change in notation, discussed below), consider the
rate equation for a particular ground (lower 1) state sub-
level, n( n((M„), given by——

(52)

Note that the first sum in Eq. (47) is only over those
upper-state sublevels directly coupled by the polarization
selection rule of the laser field. On the other hand, be-
cause of spontaneous-decay 'selection rules, the second
sum can contain levels connected by all possible polariza-
tions.

The composite rate equation for a particular collection
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of pumped ground-state sublevels is found by summing
Eq. (47) over those sublevels. (For unpumped sublevels
rt„——0.) Then the rate equation for a pumped composite
level is given by

with terms as defined earlier, and r„t=rt„. The composite
excited-state rate equation is given by

r(. +g gy. (
gu I u

(Nt —Nt' ')
+( I g—N(+ Wg& (), (53)

gu
L

r

+ I e&u+ ~e~u

E.„I—
gi 7 T

where definitions (45) and (46) have been used to write

g nt =Nt =gtni,
I

&u=&u=gu+u ~

lfI U =MI,
l

(54)

(N( Nt' ')—
T

(55)

Here the total pumping rate is the sum of the individual

pumping rates rt„[see Eq. (48)] over all pairs of pumped
ground and excited-state sublevels and is given by

with gt(g„) the degeneracy of the lower (upper) composite
levels.

Equation (53}can be rewritten more compactly in terms
of a total optical pumping rate R„( and an auerage spon-
taneous decay rate I „I,

RI„+I'„)Tu-
g

As will be seen below Eqs. (55}and (60) can describe both
single as well as groups of hf levels, hence the more gen-
eral notation of 1 and u.

Equations (55) and {60)enable models containing many
coupled rate equations (used in describing complicated
multilevel atomic systems) to be replaced by much simpler
composite models, such as the three- and four-level ones
discussed in Sec. IVB below. Note that, the most con-
venient form for the composite rate equations is that of
average populations multiplying total pumping rates and
total populations multiplying average spontaneous decay
rates. This is because, in some cases (see below), the equa-
tions can be written down by inspection.

It is possible to simphfy the composite rate equations
when the excited-state hf splitting is experimentally un-
resolvable. If, in addition, the pump field connects each
ground-state hf level to all excited-state hf levels, the ex-
cited hf splitting can be neglected. In this case all
excited-state hf levels can be grouped into a single
excited-state composite level [e.g., see Fig. 5(b)]. Then the
sum rules cause Eqs. (57) and (58}to simplify to

tot
W(lg)H gl2&k

3H
tot

+(lu)H~8(„—g g r(„—— wl„(x), (56) (62}

where cr((„'~tt is the total homogeneous absorption cross
section

cr((g'(H =g g cr(g —( 3P)6(rk
I u 7H

(57)

1 1r„,= y„
gu f u

(58)

where ri =(3/g„)g& Q„P„t. (Keep in mind that P and ri

are subject to the laser polarization and spontaneous-
decay selection rules, respectively. )

Similarly, the rate equation for a single excited-state
sublevel n„(M„)can be written as

I

1 1n„=—Q(ng nt )rgt — + — nq

+ —I,"ng+O', J n„du (59)

with p—=gt g„p&„. The average excited-state decay rate
is defined as the sum of the individual spontaneous rates
[see Eq. (52)] contributing to the decay divided by the
number of participating excited-state sublevels, and is
given by

where g„"'=g„(2F„+1)is the tota/ number of excited-
state sublevels (inciudi ng any unpumped ones), and

gt —(2F„+1). N—ote that here euery sublevel (including
those not pumped) of the ground-state hf level contribute
to cr(~„'~tt. For example, four of the five sublevels in the
F& 2 level in Fig——. 5(b) are pumped giving gt

——4 and

gt
——5, whereas for the excited state g„'"=8, so

I'o2 ———,(1/~) and crIiIi~H
——10nk (yz/yH) These res. ults

are entirely due to the properties of the matrix elements.
Equations (61) and (62) can also be used when both the

excited and ground-state hf splittings are experimentally
unresolvable. In this case all ground-state levels can be
treated as degenerate, and, then, pumped and unpumped
sublevels can be separately combined into single pumped
and unpumped composite levels for each group. Here
euery ground-state sublevel contributes to Eq. (61), so
g( +gt'" g„(2F„+1—), whi—le gi is unchanged in Eq. (62)
[e.g., in Fig. 5(d) gt ——6 but gt = 1 and 5, and g„'"=6].

It is important to remember that Eqs. (61) and (62) can
only be used for those transitions in which all excited-
state hf levels are accessible to all ground-state hf levels
(i.e., when ~=0 or +1). This condition is violated, for
example, for alkali D2 transitions where hF =2 would
also be required. Equations (61} and (62) are useful be-
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cause they are independent of the matrix elements, in con-
trast to Eqs. (57) and (58), and so enable the composite
rate equations to be written down by inspection. These
points are further discussed in Sec. IV B. Also, as some of
the examples in Sec. IV 8 will demonstrate, the model can
also be apphed to atomic systems which are pumped by
more than a single laser transition.

The composite model can also be applied to the broad-
band limit (see Sec. III), where highly polarized vapors are
most conveniently produced. Velocity integration of Eqs.
(55) and (60) give

~r. + I .r~u

No ———No 1 1
~zo — —+—&o

6 5 T

+ ( —I,"Xp+ $V,Mp),

ground-state sublevels form level 2, and the single un-
pumped ground-state sublevel [M& ——', ( ——,

'
) for right

(left) circular polarizations] is level 1. Using Eqs. (55) and
(60), the rate equations describing the composite three-
level system in the velocity-selective limit are given by

(63)

ur„—+——~„. (64} +( —I sX2+ Wg~p),

The total broadband pumping rate is given by
tot

+(ls)DI
(65)

where otr„'rn is the total Doppler-broadened absorption
cross section

Ã, =roi&o

where g„=gr ——6, g r
——1 g2

——5, N i 2
——( —,, —,)N„,G (x),tot tot (o)

with N„, the total density of atoms, and G(x) is given by
Eq. (15). The total laser-pumping rate is given by

tot tot ~H -(4/kg )2
~(Eu)D 4 (h)H

2KQ
(66)

tot
0'(2o)HI

~go= Wco(x) (68)

with o'Irttr~ and I „r given by Eqs. (57) and (58), respective-
ly, and ku is the 1/e Doppler width.

8. Examples

where

tot tot 2 ~+ 2 ~+
g(2o)~ =II 2&X = 127TX

YH VH
(69)

In this section some specific examples which employ
the composite model are presented. They have been used
in Refs. 4, ll, and 15. In the experiments only a single
pump laser was used. The more complicated case involv-
ing two or more independently tunable lasers (e.g., see
Ref. 16) is treated in Appendix A.

Consider laser optical pumping of the Li-Dl transition
which lies at A, =670.8 nm, with v=27 nsec. In fact, Fig.
5(d) shows this transition pumped by circularly polarized
light. The electronic and nuclear spins are Js(J, )= —, and
I =1, respectively, giving total atomic angular momen-
tum F„(F„)= —,', —,. The transition consists of two hf lev-

els in both the ground and excited states for a total of 12
Zeeman sublevels (six in each state). The ground (b,vg)
and excited -state (r5,v, ) hf splittings of 228 and 26 MHz,
respectively, are much smaller than the usual Doppler
width of about 4 GHz (temperatures -400—500'C).
Then, providing that they are experimentally unresolved,
both the ground (excluding unpumped sublevels) and ex-
cited -state hf levels can be combined into single ground
and excited pumped (including any excited unpumped
sublevels) composite levels (see Sec. IV A), as depicted in
Fig. 5(d). Thus, the 12-level system is replaced by the
much simpler composite three-level one in the figure. The
six excited-state sublevels form level 0, the five pumped

with the Lorentzian factor

(yH /2)
Wzo(x}=

( b,pp
—x)'+ (yH /2)'

(70)

gz 1 51I tot

(71)

Note that as it should, I or+I pz ——1/r, and as expected
Eqs. (67) are of the same form as Eqs. (12) for the actual
three-level case, but with average populations, total rates,
etc. The composite three-level system is compared to the
complete 12-level one in Appendix B.

As another example, consider laser optical pumping of
the Na-D1 transition with circularly polarized radiation.
The transition lies at X=5S9.6 nm, with ~=16 nsec.
Here Js(J, }=—,, I = —,, F„(F„)=1,2, so, for example, as
shown in Figs. 5(b) and 5(c), the transition contains two
ground and two excited -state hf levels, for a total of six-
teen hf Zeeman sublevels. The excited-state hf splitting of

where x =kv, and hip —0—or2p is the detuning, the laser
frequency 0 from the transition frequency rp2p. The aver-

age decay rates are given by

g& 1 11
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Mo ———Mo M] Mo

8 3 8 4~io — — ~co

1 1—+—~oT

189 MHz is much smaller than the 1772-MHz splitting of
the ground state. Consider for the moment experiments

performed in the broadband limit (see Sec. III), where the
excited-state hf splitting is completely unresolved. How-

ever, the ground-state splitting is partially resolved since it
is comparable to the Doppler width (-2 GHz, for
T-120'C). Therefore, to a 6rst approximation, the 16-
level system of Fig. 5(b) can be replaced by the accom-

panying composite four-level one with effective pumping
and spontaneous-decay rates. In the figure, the four

pumped sublevels belonging to the F& ——2 ground-state

level and the three pumped sublevels of the F„=1 level

form levels 2 and 1, respectively, the eight excited-state
sublevels comprise level 0 and, finally, the single, un-

pumped ground-state sublevel [M& ——2 ( —2) for right
(left) circularly polarized light] is level 3 (population accu-
mulates in this sublevel).

The rate equations are given by

tot
0(~o)DI

lp

tot
+{20)DI

where, using Eqs. (61) and (66)

tot 2 1 H~~ —(a&&/ku)2
cT(ip~D =67Th e

2ku

1~12 7 H —(h2p/ku)
0[co]D= e

2ku

~io(~so) =&—~io(~2o) .

The average decay rates [see Eq. (62)] are given by

3 1~oi= ——Sw'
1 1

~o2= ——2~'
1 1

~03= 8w'

(73)

(75)

(76)

Mo
3 8

A'„+r„m,—

(72)

Mo~i= — — ~2o+ roMo—
4 8

~~=roMo—

where g„'"=8, g, (level l)=3, g2(level 2)=4, g3(level 3)
=1, and Mi2i ——( —', , —,', —,')%to, . Because of the large

ground-state hf splitting there are two laser transitions
with pumping rates given by

witll I o}+I p2+ I p3= 1/1 .
Now consider velocity-selective Na experiments,

where the excited-state hf splitting is resolved. This split-
ting results in nine experimentally observed narrow reso-
nance features (actually there are 16 but nine are degen-
erate). ' In this case, as was done for the ground state, the
excited-state hf levels must be considered separately. This
leads to the five-level system shown in Fig. 5(c). Here lev-

el 4 contains the three excited sublevels for F„=1 and lev-

el 5 the four pumped sublevels for F„=2, the other levels

remain as before. Here equations (57) and (58) must be
used in determining the composite rate equations for the
five-level system. The matrix elements are given in Fig. 6,
where the fractions are just the P's. Then the rate equa-
tions are given by

Ns

4 3
~~s— R2g ——+—N5+( I ,"E5+W,Mg—),

r

Ng

3 3
R]4—

N2 1 1g 24
— —+—N4+ ( —r,"X4+W,M4),

g»+ I.„W,+ I »X,—
W2 —N2

(o)

+( rsvp, + Wgmp), — (77)

N)
3 3

R)4— s ~ &s+ ~w}&4+~st&t—
(0)

T +( I "N, + W ~,), —

X3——I 43%4+1 s3%3—
N3 —X3(o)

T + ( rgNi+ Ws~3), —
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+ I

-f g p 0 p I+i f~ e P (F s 4)) )

where N; =I/X, '~ with

1 fico 1
P

(10)D

1 )tut) I
OP

+(20)D

(82)

F~ I (F~ * I )
The branching ratios and average cross section [see Eq.
(A5)] are given by

5

pi =(I o2+ I o3)&= 8

I(o2=(I"o(+I o3)r= I (83)

FIG. 6. 'Na-Dl matrix elements. The numbers are the p's
defined by Eq. (51).

where g~(level 4)=3, g5(level 5)=4
g i (level I)=3

gz(level 2)=4, g&(level 3)=1, and &I 23 ~) 23lg(x)
The pumping rates for the four laser transitions are given

by
tot gR)„= W(„(x},

where i(u) =1,2 (4,5) and

tot
+(14)H

tot
0(15)H =

tot
O(24&H =

tot
&(25)H —

4.

VH
(79)

and the average spontaneous-decay rates are given by

11151=——2~'
2 1I 42 3 7

11
~43= ——

6 v'

=31~52= ——8''
1 1

~S3=——.
8 t

(80)

.~() r (3/5 )N (+Hi
&tot T 1+%)W+. 25+% )H2

(3/4)N, +3/8
1+%)+N2+(2/5)N )Hp

'
&tot

(81)

The general procedure for solving the composite rate
equations in the steady state is presented in Appendix A.
However, as an example, the solutions to Eqs. (72) are
given below,

and

, rH ~~ (a)0~k. )i
cT(io)D =21rk e

2ku

, rH~~ (a„zk. )2

tr(2o)g) —
4 1TX e

2ku

(84)

V. SUMMARY AND DISCUSSION

As noted elsewhere (e.g., see Refs. 4 and 11) laser opti-
cal pumping with VCC is very effective in producing
highly polarized atomic vapors. The theory presented in
this paper uses coupled rate equations'9 to model the
optical-pumping process. The equations contain laser
pumping (i.e., stimulated absorption or emission), radia-
tive decay, relaxation (e.g., diffusion to the cell walls), and
VCC terms. The collision terms are written in the strong-
(large-angle) collision approximation, where typical VCC
cross sections are a few tens of A . The theory not only
predicts the amount of polarization attainable in a given
experiment but also establishes the criteria that must be
met in order to achieve optimum polarization. Several ex-
periments "' have demonstrated the theory's feasibility.

The treatment of multilevel systems presented in Sce.
IV can also be applied to the no-VCC limit, where the col-
lision terms are absent from Eqs. (55) and (60). A com-
parison of the numerical result for a 40-level system (cor-
responding to the D 1 transition in Rb) (Ref. 16) was
made with that of an analytically solved five-level model,
and reasonable agreement between the two (& 15%%uo} was
found.

It is important to keep in mind that the sodium four- and
five-level models only refer to different experimental situ-
ations. In the first case, the excited-state hf splitting is.
not resolvable, whereas in the second it is.

%hen population accumulates in an unpumped
ground-state hf level(s} hyperfine or F-optical pumping is
taking place. Otherwise, when population accumulates in
an unpumped sublevel(s) MF pumping occurs. In general,
I,~ is significantly larger for the latter case.

(4/5)N i+ 1/2

I+~)+~i+(2/5)~)~i '

(3/5)N)+%2 1=(I iw} +-
N, 1+~)+&2+(2/5)N)&2 8

'

ACKNO%'LEDGMENT

The author is very grateful to Professor Michael S. Feld
for many stimulating discussions and for his enthusiastic
support and encouragement in this work. This work was
performed at the MIT Laser Research Center, which is a



PRODUCTION GF HIGHLY POLARIZED VAPORS USING. . . 3835

National Science Foundation Regional Instrumentation
Facility.

APPENDIX A: STEADY-STATE SQI.UTIONS
FOR MUI.TII.EVEI. SYSTEMS

In this appendix some general procedures for solving
multilevel composite rate equations in the steady-state
limit are presented. The techniques discussed are general-
ization of those given in Sec. IV. Here allowance is made
for more than one laser transition. Also, the general
forms of the solutions will be discussed.

Practically speaking, only those equations containing
laser-pumping terms need to be treated and solved as
simultaneous equations, since their solutions can be
directly substituted into the equation(s) for the unpumped
level(s}. As an example, consider the five-level model for
sodium discussed in Sec. IV. Equations (77) can be solved
in the following manner. (i) Solve the equations for Ni,

&2, N4, and N5 (N3 has no laser term), while temporarily
treating the ~; (i =1,2,4, 5) as constants. (ii) Integrate
the results over velocity to obtain four coupled equations
for M; .(iii) Solve these equations simultaneously for M, ,
Mz, ~4, and ~&. (iv) Substitute these solutions into the
expressions found in step (i) for Ni, Ni, X4, and N~. (v)
Solve the equation for Ni in terms of Mi, M4, and Mi,
and integrate over velocity to find ~~. (vi) Finally, sub-
stitute the solution for ~& into the expression for N3
found in step (v).

The solutions to the composite three-level model have
the same general form as those derived in Sec. III. For
models involving more than a single laser transition, such
as those for sodium, the situation can be much more com-
plicated. In these cases the solutions usually take the
form of quotients of polynomials, 's which often contain
large numbers of terms.

For the velocity-selective case the general solution for a
system with m (I~u ) laser transitions is given by

g(0)
g [F„'"(Si& i, S2& z, . . . , S W~)]W,~„+g[F((Si&i,Si&2, . . . , S W )] WgMi+

Q I

Fa(Si&i,Si&i, . . . , S W )

~(0)
g[F„(SiWi, S2&2, . . . , S~ W~)]WMg+

g[FI'"'(Sinai,

S2&i, . . . , S W )] WgM(+
Q l

Fa( Si& ,iS2W i, . . . , S W )

g ~I{u)(Z1~Z2» Zm )~l (s) I(u)

N„, Wa(Zi, Zp, . . . , Z }

(Al)

where the E's and P 's are polynomials in S~ and Z (de-
fined below), respectively, G(x) is given by Eq. (15), and
Nj '=&1 'G(x). Note that F„''&F„and Fi"'&FI. Now
each ith l-+u laser transition (R„i=Re„)generates both
an SW and a Z factor, which are defined as

y, =—+I,"+—,1 „1
e e

q, =r,'+ —',
g (A4)

I
Sj ——

J

The average homogeneous o;H and Doppler o;H-
broadened absorption cross sections are defined as

(A2)I
i (i)l

where Iz" and I,"p are the usual saturation and optical-
pumping intensities, respectively, and are given by

tot
~I'H

iH =
gl
tot

O'ia
(AS)

y+ y —r.e g

pg
iH

(A3)

For example, the i =1~4 laser transition in the sodium
five-level model (see Sec. IV) has gi (level 1) =3, g„(level
4) =3, et(it4)H ~X2(rN/rH), so rt14)H 13~A2(rxlrH), —
and so

gIx+
rs+1+S;, ( 14)

(14)
Iop

fg~e+~g ~41 O(14)H

rs V'1+Si4 .
Xe + Vg ~41 O'(14)D

(A6)
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As mentioned earlier, the polynomials can be quite com-
plicated in that they can contain very many terms (e.g.,
those for the sodium five level model contain well in ex-
cess of one hundred terms' ). Product terms, such as
(SiWi)(spW2), ZiZ2, (SiWi)($2W2}(S3W3), etc., are
by far the most numerous [e.g., see Eqs. (72)]. The exact
number and form of the products are determined by the
number of pumped levels and laser transitions. Note that,
terms of the form constant times (SW)" or Z"
(n =2,3, . . .) cancel and so do not appear in Eqs. (Al).
When, instead of a single tunable laser field, there are j
(j =2,3, . . .) separately tunable fields then I~I; so that

Z;"'=II /I, ~, b,;~h;I' ( =Q~ co; )—, etc. So, in addition to
summations over u and 1 in Eqs. (Al), there are now
sums over j, one for each independent laser field. So, for
example,

Q„Eg(si&i, . . . , S W )

In cases where the ground- or excited-state (or both) hf
splittings are less than the Doppler width, the relevant

laser transitions can be pumped by a single field (see Sec.
IV). Then the polynomials can be greatly simplified by
neglecting all of the product terms. This follows from the
fact that when one transition is resonant the others are off
resonance by the hf splitting (since there is only one field)
and are thus much smaller because the I.orentzian and
Gaussian functions decrease fairly rapidly with frequency.
Therefore, to a good approximation, the product terms
can be dropped and the polynomials written as

w(z„. . . ,z )= g az, ,

where a; and u; are various combinations of y„ys and
branching rates I";. (There are similar expressions for I'a
and P a.} As an example, in the sodium five-level model
(m =4) terms containing W&4W&5, and W&4&24 are
negligible compared to those containing only W,4, W&s,
or &24. The solutions are then given by

&I(u) =

~(0)
g ga,"'"(S,W, ) W,~„+g gb,""'(S,W, ) W,~,+
u (I) i I (u) i

1++C, (S,W, )
(AS)

(0)

S2&2 WsMi+
X.+Xg —I 2

Ve 1
St&2 W,MO+

Pe+3 g 2 'Vg

where a; and b;, etc., are constants for a given buffer-gas pressure. For example, in the four-level system shown in Fig.
5(b) (for the moment neglecting degeneracy) N i is given by

r T
~ ~

r, /y,
S2W2 WsMi+

Xe +Xg 2
(I+5;W, +S,W, ), (A9)

where I = 1,2, u =0, i =2 refers to the 2~0 (0~2) tran-
sition (I z, S2, and W2 ), and i =1 denotes the 1~0
(0~ 1) transition.

Even though the expressions for IVi and X„are now
much simpler, they remain difficult to integrate analyti-
cally over velocity to obtain MI and M„. This is because
their denominator is a sum of different Lorentzians (one
for each laser transition). However, since their widths
(y&} are usually much less than the hf splittings, the
Lorentzian does not significantly overlap„and Eqs. (AS)
can be further simplified by expanding them in terms of
their resonant contributions. That is, for each ith (I~u )

laser transition

yg%1 ——
1

1+S;W;

~(0)
18'g~1+

S2W2

1+Si&2

upper and lower levels (i.e., +&+g„). Note that the ex-

pression for IVI reduces NI ——(1/ys )( Ws~i+M~ '/T),
which is the background (i.e., I =0) population for level I.

Now when IV„=O (fast radiative branching) Eqs. (A10)
can be further simplified by dropping all excited-state
terms. For instance, Eq. (A9) reduces to

&,(„)—
Terms in (S;,W;,~;)

1+S;W;
(A10)

~(0)
2

Wg~, +

where the numerator contains sums over all relevant Mathematically speaking, the broadband case is much
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FIG. 7. 12-level system for 6Li-D1 transition, and comparison between Eqs. {81)and {82).

(ls)
Iop ——

g'I
we+ Xg

—~.I
gu

fg
+(ls)D

(A12)

where

1 1
'Ve = + T'

1
Xg

simpler because no velocity integration is required. Then
the ~s are of the same form as Eq. (Al) [also see Eqs.
(72)] but with

APPENDIX 8: COMPARING COMPOSITE
AND EXACT MODELS

To gain some idea of the accuracy of the composite
models, a comparison between the I.i-al composite
three-level model of Sec. IV and a full 12-level one was
carried out in Ref. 15. Only the results for the broadband
limit wi11 be presented here.

In the three-level broadband limit, the population M~
of the unpumped F= z, MF ———,

'
sublevel can be written

as

27Z+5
27Z+30 '

where Z=rT, and

When the ground-state hf splitting is much larger than
the Doppler width more than one laser is required to
achieve efficient optical pumping. In this case, the lasers
are separately tunable and, in general, the product terms
in Eqs. (A 1) must be retained. Consequently, the approxi-
mation discussed above no longer applies and numerical
methods must be used to evaluate the velocity integrals.

with

& ~g2 &
—(s/ku)rH~~

2ku

On the other hand, the solution for the complete 12-level
(see Fig. 7) case is given by

1 (4186100)Z +(4&Q400)Z +(7839200)Z +(373000)Z +(37152)Z+1458
N„, 6 (1591812)Z6+(3069180)Z +(2288489)Z"+(855936)Z +(171450)Z +(17604)Z+729

+ 3 2

(4950)Z'+ (1860)Z +762 + 3

(5202)Z'+(4799)Z'+(1088)Z +81 3+17Z
(B2)
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Both of these results are plotted together in Fig. 7. The
two curves asymptotically approach each other and the
value 1 for large Z (i.e., for combinations of high intensi-
ties and buffer-gas pressures). Both converge to their
zero-field equilibrium value —,

' for Z =0. The curves
diverge for intermediate values of Z, with the largest
separation occurring around saturation, indicating that

the 12-level model saturates at somewhat lower intensities
and pressures than the three-level one. As the figure
shows, the results of the two approaches are fairly close,
hence indicating that the three-level composite model is a
reasonably good approximation to the much more compli-
cated 12-level one.
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