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The close-coupled theory of collisions in a radiation field is used to calculate the absorption pro-

file for the Sr 'P~'S resonance hne broadened by collisions with Ar. The calculations predict the
polarization ratios of Sr P fluorescence following line wing excitation by either linear or circular po-
larized light. Ab initio calculations were used to obtain the ground and excited SrAr molecular-

potential curves, which were adjusted to give improved agreement with experiment. The radiative-

scattering theory gives a unified description of the absorption coefficient and polarization redistribu-

tion from the small detuning impact limit region to (he far spectral wings. The cross sections for
elastic and inelastic depolarizing collisions of Sr P&+Ar were also calculated. The calculated ab-

sorption coefficient, impact-broadening rate, linear- and circular-polarization ratios, and depolariza-
tion rate coefficients are for the most part in good agreement with experiment.

I. INTRODUCTION

Several recent papers have described experimental mea-
surements of the collisional redistribution of polarized
light by Sr or Ba perturbed by rare gases. ' The process
can be described by the following equation:

M('So)+A+fico~M('Pi )+A,
where M=Sr or Ba and A =He, Ne, Ar, Kr, or Xe. A
polarized photon of energy fm with polarization vector ee
is absorbed in the wings of the 'P~'S pressure-broadened
line (q=0 for linear polarization and q =+1 or —1 for
circular polarization}. This collision-induced transition
occurs during a binary collision of M and A, and may be
described as a molecular transition of the transient MA
quasimolecule. This excitation process can produce align-
ment (q =0,+1) or orientation (q =+ 1 only) of the result-
ing 'P atom. At a much later time the 'P atom fluoresces
with photon energy near the 'P~'S transition energy %coo.

The observed polarization properties of the emitted pho-
ton depend not only on the nascent distribution of 'Pi
(m=0, +1) Zeeman sublevels produced by the initial
quasimolecular absorption but also on the depolarizing ef-
fect of any subsequent collisions between excitation and
fiuorescence. Although experiments have been carried out
for strong as well as weak radiation fields, we are in-
terested here only in the case of weak fields where effects
due to the dressing of the atomic states can be neglected.

A considerable body of theory on this subject has been
developed recently, including complete quantum-
mechanical treatments ' and simplified models. '

This theory has been reviewed by Burnett. ' %e have pre-
viously given the formal theory of polarization redistribu-
tion in weak fields in terms of the radiative scattering
cross sections o (jm} for process (1) and the collisional
depolarization cross sections cT(jm~jm ).' Preliminary
results of our numerical calculations have been report-
ed. ' ' ' This paper now presents the detailed numerical
results of our fully quantal close-coupling scattering cal-

culations using realistic molecular potentials for the
Sr + Ar system as a prototype. Basically good agreement
between measurement and theory are found for the total
absorption coefficient, for the nascent Pi distribution
for both linearly and circularly polarized light, and for the
depolarization cross sections. We discuss only the numer-
ical results here. An associated paper will show how a
half-collision factorization of the radiative scattering am-
plitudes' ' can be used to project much physical in-

sight out of these calculations. Such an analysis shows
how it is possible to separate the effects of Franck-
Condon excitation and axis-rotation dynamics and thereby
lend qualitative credence to the simple geometric model of
Lewis et al. '

Section II summarizes the pertinent aspects of the
theory. Section III develops the molecular potentials, and
Sec. IV shows our numerical data and a comparison with
experiment. Our conclusions are summarized in Sec. V.

II. THEORY

The theory needed to address this problem is the theory
of collisions in a radiation field, " ~ which simultaneous-
ly treats both the inelastic scattering and radiative aspects
of the redistribution collision. Fully quantal scattering
calculations based on such a theory have already been
used to demonstrate nonadiabatic effects on spectral pro-
files for radiative collisions' and to predict observed
fine-structure branching ratios for optical col-
lisions. ' ' Furthermore, we have shown how the an-
gular momentum transfer theory of orientation and align-
ment in molecular photofragmentation can be adapt-
ed to radiative scattering calculations in order to calculate
polarization redistribution. ' %'e need not give the details
of the theory here but will only summarize the essential
features and illustrate the content and structure of the
coupled equations.
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The channel states span all internal and relative coordi-
nates except the magnitude of the internuclear separation
R and form a convenient basis, the Hund's case-(e} basis,
for expanding the coupled equations for the radial ampli-
tudes. The case-(e} basis functions have well-defined
molecular parity with respect to inversion of all coordi-
nates (electrons, nuclei} thmugh the molecular center of
mass. The standard molecular spectroscopic parity la-
belsi are e and f for the respective basis functions of par-
ity ( —1) and —( —1) .

The construction of the coupled equations for field-free
scattering in the case-(e) basis follows standard pro-
cedures. ' ' For the present problem the field-free
close-coupling expansion for each j and J,

e(jJ)=y
I jlJM &F(ljJ;R)/R, (3)

A. Reduced coupled equations

The perturber atom is a structureless 'So atom, whereas
the M atom has angular momentum jo——0 and j= 1 in its
respective initial and final states. The presence of the ra-
diation field of polarization e~ imposes a preferred direc-
tion in space for angular momentum quantization. The
quantization z axis is taken to be along ez for linearly po-
larized light and along the propagation direction of light
for circularly polarized light. The scattering channel
states which describe the asymptotic fragments with
atomic angular momentum j and relative angular momen-
tum I are written as eigenstates of total angular momen-
tum J=l+j in order to use the symmetry properties of
molecular eigenfunctions,

I
IjJM &= g (jIJ I

intinM}
I

Irrtt & Ijirt & .

shown in Table I. The Born-Qppenheimer potentials 8'],
W'2, and Wi in Table I are defined to vanish as R ~ oo.
The matrix elements Vtl (R } in Table I are indexed by the
permitted values of channel-state quantum numbers I de-
fined by Eq. (2) for a given total angular momentum J.
The nondegenerate X 'X initial state of e parity, for which
only lo ——Jo is permitted, is thus described by a single
scattering equation. The 3 X 3 V matrix for the threefold
degenerate set of final states for a given J separates into
two blocks of opposite parity: a 1 X 1 block for the A 'II
state of f parity with I =J and a 2X 2 block for the 8 'X
and 3 tll states of e parity with I =J+1. Solution of the
coupled equations defined by substituting V from Table I
into Eq. (4) completely defines the ground-state elastic
and excited-state elastic and depolarizing cross sections
for field-free collisions (see Sec. IID below). Note that
the equations for field-free scattering do not depend on
the quantum number M, that is, on the direction of J in
space.

When the molecule-field states are used as a basis
for the coupled system, molecule plus radiation, these
equations must be modified to take into account the new
interactions introduced by the radiation field. First, the
excited state energy in Table I must be decreased by %co,

since one less photon is present after an absorption event.
The electronic-field asymptotic energy is chosen to be 0
for the ground state and is —5 for the excited state,
where

is the detuning. Second, the coupled equations must be
expanded to account for the new interactions introduced
by the dipolar coupling with the field

generates the following coupled equation(s):

d2

dR
F+ [E 1'—V(R)]F=O.

The nonvanishing coupling matrix elements of V are

V =(2eficog/c)'~ eq d,

where p is the field intensity (photons cm sec ') and d
is the molecular dipole operator. The following selection
rules apply to the matrix elements of V

TABLE I. Nonradiative matrix elements of V(R). B(R)=fi2/2pR . W](R), W2(R), W3(R)=X'X, A 'H, and 8 'X potentials,
respectively. Scop ——Eq, ('I') —Eq, ('S ).

Ip ——Jp

'S+'S e parity

Wl(R)+8Jp( Jp+ 1)

'P+ '5 f parity

8;(R )+BJ(/+ 1)+~

'P+'5 e parity

W3+ W'2+8J( J—1)+fop2J+1 2J+1
(J(J+"~'"(w w )2J+1

(J(J+"~'"
(W —}V }2J+1

3 + W2 +8(J+ 1 )(J+2 )+Scop2J+1 2J+ I



P. S. JULIENNE AND F. H. MIES

J=Jp+b,
M=MO+q,

{ciil )
) =(27r)fdpp/c))/2J(1)

=5.8578 X 10 P' c((" (10)

where P designates parity. The three possible values of
the branch index b, —1,0, +1, designate respective P, Q,
and R transitions, in accordance with the nomenclature of
molecular spectroscopy. The selection rules limit
radiation-induced transitions from the e-parity initial
state of total angular momentum Jp to the following:

(1) P transitions to the two coupled final e-parity states
with J=JO —1,

(2) Q transitions to the single final f-parity state with
J=Jo,

(3) R transitions to the two coupled final e-parity states
with J=Jp+1. Thus, the complete M+A radiative
scattering problem can be solved by setting up the six cou-
pled equations in accordance with this scheme. This set
describes the initial state and the five possible final chan-
nels accessible from the initial state.

Although the P matrix elements in Eq. (6) depend on
M and q, Ref. 13 shows how for weak radiation fields this
dependence can be ehminated from the coupled equations
by introducing reduced radiative coupling matrix ele-
ments,

( ~jJM
I eq 'd

I (oj oJoMo )
IojoJo) =

If we neglect the R dependence of the electronic transition
dipole moment, the reduced matrix elements due to the
nonvanishing asymptotic atomic transition moment are

d(1) ( I) 5, (2j+I))/2(2J+ I))/2
0

& ~VojJoJ'IIo)VII~Iljo»

where II'is a Racah coefficient and the phase is given by

a = 1+q+j+l—3J .

The reduced radiative coupling matrix elements that ap-
pear in the coupled equations are

where P is laser power in Wcm and 1"' from Eq. (8)
is in atomic units (eao). The reduced atomic matrix ele-
ment (j l ld l ljp) for Sr 'P~'8 is 3.12eap, based on a mea-
sured absorption oscillator strength of 1.92.

Note that Eq. (8) exhibits the Hund's case (e) selection
rule I =lp. This corresponds to our physical picture that
at large internuclear separation the photon can only cause
a change in the atomic angular momentum j, not in the
relative angular momentum of nuclear motion I. Howev-
er, if the R-dependent interatomic interaction is taken
into account, additional R-dependent terms in the molec-
ular transition dipoles appear. These long-range
dependent terms vary as 8 and have the selection rules
I = Ip 1p+2. Although the presence of these R-dependent
induced-moment terms with /glo can have a large infiu-
ence on the spectral profile for asymptotically forbidden
transitions, ' '2 they are of little consequence for the case
of optical collisions. The long-range case-(e) reduced
transition dipoles may be written as

d"'(JI~Jolp) =(jl jdl lJo)[Cp(Jl~Jolo)

+Ci(Jl~Jplp)a/R ], (11)

where a is the polarizability of the Ar atom. The expres-
sions for Cp and Ci are shown in Table II. Since the R-
dependent terms only amount to a few percent at most for
the relevant range of R for Sr+ Ar, the Ci terms will be
neglected here in our numerical calculations.

8. Reduced scattering matrix elements

The six coupled equations are readily constructed using
the molecular electronic-rotational matrix elements in
Table I and the reduced radiative coupling matrix ele-
ments of Eqs. (10) and (11) and Table II. These equations
do not depend on radiation polarization q or space projec-
tion M of J. Since rcxluced-coupling matrix elements are
used in the coupled equations, the desired reduced s ma-
trix elements, ' which describe either linearly or circularly

Transition

TABLE II. Radiative coupling coefficients of Eq. (11).

C3

P /=Jo —2

P /=Jp

Q I=JO

/= Jp

' [/2
2JO —1

2JO+ 1

1
' I/2

2Jo+ 3

2Jo+ 1

3
Jo(Jo —1}

(2JO —1 }(2Jp+1 }

Jo
[(2JO—1)(2JO+ 1)]'/

—1

Jo
[(2JO+1)(2JO+3)]' '

3
(Jo+ 1}(Jo+2}

(2JO+ 1 }(2JO+3 }
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polarized light experiments, are directly obtained when
the S matrix in the asymptotic case-(e) basis is extracted
from the asymptotic close-coupled solutions in accordance
with the normal procedures of scattering theory.

The angular momentum transfer formahsm of Ref. 13,
summarized in Sec. II C below, applies only when the ra-
diation field is sufficiently weak that radiative couplings
produce a small perturbation on the colliding atoms, i.e.,

I
s„ I

«1. The required condition is that the detuning 5
be large compared to PiQ, ' ' where the Rabi frequency Q
for the 'P~'S transition is given by

A'Q = ( &&io)P/c )'~i(jl Id I Ijo) . (12)

C. Radiative scattering cross section

The radiative scattering cross sections o„(jmq} for pro-
ducing the excited state in ~man sublevel m when excit-

It is this requirement that the field be weak which ensures
that the s„are linear in V~ so that the dependence on q
and M can be factored using the Wigner-Eckart theorem
and incorporated analytically into the algebra. For strong
fields the explicit dependence on q and M needs to be tak-
en into account. DeVries and George have suggested
that for strong fields the Clebsch-Gordon coefficient
(J1Jo IM, —q) in the radiative couplin matrix element
can be replaced by its mean value 1/ 3. Although this
approximation is convenient for estimating the total cross
section for strong-field cell experiments, i it is not suitable
for calculating polarization redistribution in strong fields.

Even for weak fields there are certain subleties involved
in extracting the case-(e) S-matrix elements from the nu-
merical solutions of the coupled radiative scattering equa-
tions. The problem arises for optical collisians since there
are nondiagonal radiative coupling terms in the asymptot-
ic potential matrix. Thus, the proper asymptotic states
for calculating the S matrix are the diagonalized, or
dressed, channel states, not the field-free case-(e) channel
states. However, we have used dressed-atom scattering
theory to show that the small perturbative effect of dress-
ing can be ignored for weak fields, i.e., when i)IQ «b, .
To first order in the radiative coupling, the radiative S-
matrix elements in either the dressed or undressed bases
are the same and are proportional to the nonadiabatic
Franck-Condon-type matrix elements,

s„(ljJ+—lojoJo)=s"„(IJo)

= —2mi( ala&$ /)c'~

)&(4 (IjJ) Id'"
I
4+(IojoJo)} (13)

where 4+ and 4 are field-free scattering wave functions
with respective incoming and outgoing scattering boun-
dary conditions (see Refs. 13 and 39 for details). Some of
the practical consequences of asympototic dressing are
discussed in Sec. IV.

Note that the s„ in Eq. (13) are proportional to P'
which serves as a scahng parameter in the calculations.
As long as P is not too large, s„/P'~ is a constant in-
dependent of P. The observable absorption coefficient and
polarization ratios described below are thus independent
of the choice of P.

ed by photons of polarization q are given by'

(T~(jmq)= g tT~(J) .3(j lt
I m, —q)

2t+1 (14)

where p' is given by the fallowing coherent sum over re-

duced radiative matrix elements:

1

p'(IJoco)= g (2J+1)'~ (2r+I)' '

(16a)

The radiative matrix elements s are uniquely defined by
the following indices: so ——R k /2p, the incident collision
kinetic energy; oi, the photon frequency (or, equivalently,
the detuning b, ); Jo, the initial angular momentum; b, the
branch index; and I, the final relative angular momentum
of the separating atoms. When the coupled equations are
solved numerically for a given choice of eo, b„and Jo, five
radiative S-matrix elements are found corresponding to
the permitted combinations of b and I. If Eq. (14) is writ-
ten as

p'(I J)o=QC,s(IJo)s (IJo),
b

(16b)

then Table III shows the coefficients in the expansion
(16b}.

The total cross section o„(j) for producing the final
state j irrespective of m is readily shown to be

2

lT~= g CT~ . (17)
&=0

The index j for the cross sections will often be dropped,
since only the j=1 'P final state is excited. The total
cross section can also be written as

(1&)

by introducing the branch partial cross sections

(2Jo+1} g I
s „(IJoeo)

I

' . (19)

Equation (16) shows that the final-state distribution de-
pends on the coherent mixture of final states resulting
from separate P, Q, and R excitation followed by in-
dependent dynamical evolution to the asymptotic states.
On the other hand, Eq. (19) shows that the total cross sec-
tion depends only on an incoherent sum of the individual
matrix elements. The total cross section, which is in-
dependent of q, can also be written as

cr„= g o„(jmq) . (20)

This equation applies to a cell experiment where there is a
random spatial distribution of J vectors, i.e., a micro-
canonical distribution of M. The transfer cross sections
cr' for the Sr + Ar system (lo ——Jo ) are defined by

er'(j) = g . g lp'(IJoeo)
I

2JO+ 1
2

k' J 3(2jo+1)
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TABLE III. C@(LJO) coefficients of Eq. (161).

Jo —2

Jo —2

b= —1 (P) b=O (Q) b =1 (8)

Jo+2
Jo+2

' 1/2
2Jo —1

1/2
(2J.—1)(J.+1)

6Jo
' I/2

(2Jo+ 3)(Jo+ 1)

30Jo

0
1/2

2Jo+ 1

5

0

' 1/2
2Jo+ 1

3
1/2

2Jo+ 1

6Jp(Jp+ 1)
' 1/2

(2Jo —1)(2Jo+ 1)(2Jo+3

30JO(Jo+ 1)

1/2
2JO+ 3

3
1/2

Jo(2JO+ 3

6(Jo+ 1)

1/2
Jo(2Jp —1)

30(Jo+ 1)

Equations (17)—(20) give useful sum rules for checking
the numerical results.

where v is relative collision velocity and the angle brackets
indicate an average over the thermal velocity distribution.
If the detuning is in the far spectral wings of the profile
where the one-perturber approximation applies, the total
rate of converting reactants to products, [M][A]k„,
where the square brackets indicate number density, is the
same as the rate of disappearance of photons a P, where

a„ is the Beer's law absorption coefficient. Thus, in the
far spectral wings the normalized absorption coefficient
K„ in units of cm is'

Q~

[M][A]
(22)

The right-hand side of this equation is actually indepen-
dent of P, which cancels due to the proportionality of k
to P.

Let us define the quantity

25
ys(h) = k„[A],Q2

(23)

which has the units see ' of a first-order rate coefficient.
It can be shown that the standard expression for the
pressure-broadening rate (or width in frequency units) in
the impact limit for an isolated line may be written as

yE(0)= lim yE(b, ),

D. Spectral profile

The total radiative scattering cross section o can be re-
lated to observable features of the spectrum. Let us first
define the second-order rate coefficient for radiative
scattering,

where the condition V" ~gh must be satisfied while tak-

ing the limit. This quantity is nonvanishing in the impact
limit since cr varies as 5 in this limit. The impact-
limit absorption profile is

fi 0
RF yg(b. )[M]——

25
(26)

Equation (26) is equivalent to the expressions introduced
by Lisista and Yakovlenko and Cooper, which have
been used to interpret the integrated intensity of the 'P
fluorescence following wing 'P+ 'S excitation in ex—peri-
ments on Sr+ Ar and Ca+ He. The first-order rate
coefficient yE(h) is interpreted as a frequency-dependent
broadening rate which approaches the impact-limit result,
Eq. (24), for small detuning and is proportional to the
normalized absorption coefficient, Eq. (22), for large de-

tuning,

where y„ is the natural broadening rate and 5 is the usual
shift term. We will defer to a separate paper any detailed
discussion of the radiative scattering impact-limit theory.
However, the result in Eqs. (23)—(24) is readily derived by
comparing the standard result with the o found by

applying the impact-limit analysis' ' to the close-
coupled Franck-Condon amplitude on the right-hand side
of Eq. (13). The results in Eqs. (23)—(25) are rigorous for
the isolated 'P~'8 line and include the effect of both
elastic and inelastic (depolarizing) collisions.

A simple steady-state kinetic model shows that the total
rate of fiuorescence RF (photons cm sec ') from the ex-

cited 'P state is just equal to the radiative excitation rate
[M][A]k„. We see immediately by rewriting Eq. (23)
that
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26
ks(b, ) =ys(b )/[A]= k„.0 (28)

The function kE(h) is useful to plot in that it is defined
throughout the profile from the core to the far wings, it
varies much less rapidly with b, than the radiative scatter-
ing rate coefficient k„, and it prominently exhibits satel-
lite features.

Before leaving this discussion of the total cross section,
it is instructive to note the relation to the unified Franck-
Condon (UFC) theory for the absorption profile. 6 The
major approximation of the Szudy-Baylis UFC theory is
to make the adiabatic approximation, rvhich ignores cou-
plings between different molecular Born-Oppenheimer
states so that motion occurs only on single Born-
Oppenheimer, or adiabatic, molecular potentials. The adi-
abatic theory requires that the single-channel wave func-
tions of the Born-Oppenheimer molecular potentials be
used to evaluate the Franck-Condon matrix elements in

Eq. (13) instead of using the close-coupled scattering wave
functions. The equivalent adiabatic approximation is in-
troduced into the radiative scattering calculation by ignor-
ing any off-diagonal nonradiative mixing terms in the
coupling potential matrix V and using only the molecular
Born-Oppenheimer potentials as diagonal scattering po-
tentials for the initial and final scattering states. [For
the present problem this requires a Hund's case-(a) basis
and neglect of the 'X-'II Coriolis coupling. ] Such a cal-
culation gives adiabatic kz(b, } and yz(b, ) functions de-
fined just as in Eq. (28) but using the total adiabatic radia-
tive scattering cross section cr„(X)+2o„(II), instead of
o„(j),

2b, 'kg(b)= ([o„(X)+2cr„(II)]u).
Q2

(29)

The basic expression J(h) of the UFC theory and the
UFC absorption profile, respectively given by Eqs. 2.48
and 2.39 of Szudy and Bayhs, 46 are

J(b)=i}i kg(b)/6

1 )'.+r ~(~)
I(co)=—

~ (~ ~o »'+[X—.+}~(0)]'

(30}

(31)

The generalization of the adiabatic UFC theory to include
inelastic scattering, or nonadiabatic, effects simply «-
quires replacing the y„quantities in Eq. (31) by the corre-
sponding yE quantities from Eq. (23). The resulting ex-
pression is equivalent to Eq. (25} for detunings within the
impact limit if the constant yE(0) impact-limit value is
used in the numerator. However, the actual 6 dependence
of yE(b, ) in the numerator for such detunings gives rise to
the Lorentzian asymmetry @which has been observed exper-
imentally for several systems and has been predicted
theoretically. Our Eq. (23) gives a practical way of
calculating the asymmetry.

2b,
ys(b, ) = P[/I]E0

The density dependence can be eliminated from yx(h}
to define a frequency-dependent broadening rate coeffi-
cient kE(b ) by

E. Polarization ratios and depolarization rates
for 'S~'P transitions

The numerical solution of the close-coupling equations
gives the radiative scattering cross sections cr„(m,q) for
calculating the measured polarization ratios for either
linear (q =0) or circular (q=+1) polarization experi-
ments. Recall that the quantization axis is chosen along
eo for the former and along the Poynting vector for the
latter. The following symmetry relations follow from Eq.
(14) for j=1.

o~(1,0)=o„(—1,0),

cr (1,+1)=o ( —1,+1),

o„(+1,0)=o„(0,+I) .

(32a)

(32b)

(32c)

These relations and the sum rule Eq. (20) permit o„(m,q}
to be found for all nine combinations of m and q from the
three cross sections o (0,0), o (1,0), and cr (1,—1). The
radiative excitation rate coefficients are calculated from
these cross sections,

k„(m,q) = |,'o„(m, q )u ) . (33)

The distribution of m states produced by the radiative
excitation is usually described by the irreducible spherical
tensor multipole moments p'"' of the density matrix. The
n =2 multipole is characterized by the alignment parame-
ter 13,34

k„(l,q) —k (O,q)
Ao(q) =

k„
(34)

It is simPle to show Ao(+1)= —Ao(0)/2 for a j=1 sys-
tem. The n =1 multipole is characterized by the orienta-
tion parameter'

k„(l,q) —k„(—l,q)
Oo(q) =

&2k
(35)

The orientation parameter vanishes for q =0, and
Oo( —1)= —Oo(1). The laboratories measuring the
Group-II rare-gas redistribution did not explicitly report
these parameters, but chose to present their data extrapo-
lated to the limit of zero pressure in the form of the fol-
lovving polarization ratios

and

k„(0,0)—k„(1,0) 3Ao(0)

k„(0,0)+k„(1,D} Ao(0) —2
(36)

k (1,1)—k„(—1, 1)
Pc(h) =

k„(1,1)+k„(—1, 1)

3~20o(1)
2—Ao(D)

(37)

Actually the same six-channel close-coupling calcula-
tion which yields the 'I'~'S radiative S-matrix elements
also gives the five independent nonradiative S-matrix ele-
ments needed to calculate the collisional depolarization
cross sections for the excited 'P state in terms of the re-
duced Grawert partial cross sections,

o, (m, m')=g(jjg
~
m, m') o, ,
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cr, = g g( —1) (2J+1)W(jjli';Jg)
kc I l' I

x [5g s(—jlJ, lj'J)) (39)

k,' '=3k, (1,0),
k,"'=k, (1,0)+2k, ( —1,1) .

(41a)

(41b)

Radiative scattering theory may be used to show that
the following special relationships apply for detunings in
the impact limit:

4+2
k, ( —1,1)= lim

2
k ( —1,1),a-o Q2

4A
k, (1,0)=lim k (1,0) .

o 0

(42a)

It is simple to show from these relationships that the po-
larization ratios take on the following form in the impact
limit:

1 —k,' '/2kE(0)
Ps(b =0)=

1 —k,' '/6kx(0)

1 —k,"'/2k@(0)
Pc(b =0)=

1 —k,' '/6kE(0)

(43a)

(43b)

where kz(0) is the broadening rate coefficient of Eq. (28).
These expressions are known from standard impact
theory and were used in Refs. 1 and 4 to estimate the
impact-limit polarization ratios from the measured rate
coefficients. Alternatively, the broadening coefficient can
be found if k,' ' and Ps(5 =0) are known,

6(1 Ps)—
k, (0)=k,"'

3—I'g

III. MOLECULAR POTENTIALS

In order to carry out the numerical solution to the
close-coupling equations, we must have the 8'o(R ),
IV&(R), and IV2(R) Born-Oppenheimer potentials for the
respective X'X, A '0, and 8'X states. Since no mean-
ingful data exists for these potentials from theoretical or
experimental sources, we have tried a combination of
ab initio calculations and empirical adjustment of poten-
tials to try to get realistic approximate potentials for these

and fi k, /2p is the excited-state asymptotic kinetic ener-

gy. By measuring the pressure dependence of the Ps and

Pc polarization ratios, it is possible to find the collisional
destruction rate coefficients k,' ' and k,"' of alignment
and orientation. ' These multipole-destruction rate coef-
ficients may be written in terms of the collisional depolar-
ization rate coefficients, '

k, (m, m') = (o,(m, m')u ),
where

states which can account for the available data. We will

assume that these potentials can be represented as a sum
of a repulsive exchange-overlap term and an attractive
dlspers10n term,

IV;(R)= V„;(R)—Vd;(R) .

The potential is difficult to calculate accurately, since the
shallow van de Waals well region is determined by the
balance between large repulsive and attractive forces. Al-
though one-electron pseudopotential and model potential
methods have been fairly successful for calculating
alkali-metal —rare-gas potentials, their use is less well

developed for effective two-electron systems such as
alkaline-earth-metal —rare-gas molecules. The best calcu-
lation we could do for SrAr would be a large-scale
configuration-interaction (CI) calculation analogous to the
NaAr calculation of Saxon, Olson, and I.iu. Since such
a calculation was not realistically possible for us at the
time these potentials were needed, we instead have used
various approximations to estimate the repulsive and at-
tractive contributions in Eq. (45).

A. Repulsive potential

The Hartree-Fock X 'X ground state of SrAr was first
obtained using a double-g plus polarization basis for Ar
and a triple-g basis for Sr, which was found necessary to
represent the excited 'P Sr atom. The Hartree-Pock orbi-
tals were used in a restricted CI calculation which includ-
ed all single and double excitations from the Sr doubly oc-
cupied 5scr valence orbital. This CI scheme not only ex-
cludes any dispersion-type excitations, but also neglects Sr
core and Ar valence-shell excitations. The resulting po-
tentials can be fit to an exponential form using the con-
stants in Table IV,

V„;(R)=A;

Since the Ar orbitals are frozen in their ground-state
Hartree-Fock form and do not have an opportunity to re-

lax in the field of the excited state Sr p orbital in this lim-

ited CI calculation, we might expect the calculated
exchange-overlap potentials to be too repulsive, especially
for the 8 'X state, the most repulsive of the three In .fact,
we fmd that the excited-state potentials must be made sig-
nificantly less repulsive in order to improve agreement be-

tween the calculated and measured kz(b, ) and Ps.
The SrAr potentials are qualitatively similar to the cor-

responding nonrelativistic potentials for the alkali-
metal —rare-gas molecules. The least repulsive state of the
three is the A 'lI state, for which the Ar approach to Sr is
in the nodal plane of the Sr 5pn. orbital. The most repul-
sive is the 8 'X state, for which the Ar approach is in the
direction of the maximum density of the "dumbbell" of
the Sr 5po. orbital. Therefore, the A 'H state leads to a
red-shifted difference potential relative to the asymptotic
difference ficoo, whereas the 8'X state leads to a blue-
shifted difference potential. This qualitative behavior
should be generic for the alkaline-earth-metal —rare-gas
systems, and applies to the adjusted potentials described
below as mell.
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TABLE IV. Numerical potential fitting parameters. AB parameters in atomic units: 1 a.u.
(energy)=e /ao ——4 359814X10 ' j 1 a.u. (length)=ao ——0.529177&10 cm.

0.102 675
0.164 881
1.755 220

Original
B

0.031 476
0.186473
0.666 304

0.051 087
0.043 957
0.0

17.75
1.1095

11.09

Adjusted
B

1.064
0.8715
0.921

0.0
0.0
0.0

State
x'x D =0.079 370

Vg

Original
E=0.499 889 C~——588.24 8 = 12.003

State

x'x
w'n
B'X

Original

588.24
622
888

C06
Adjusted

450
500
1200

Vd(R) =C6Xs(R)/R +CsXs(R)/R

+CioXio(R)/R (47)

The damping coefficients X approach unity as R~ oo and
vanish as R ~0. The damped dispersion series is conver-
gent at all R, whereas the normal undamped series is only
an asymptotic series (i.e., eventually divergent if too many
terms are included). Calculating the three terms in Eq.
(47) requires finding the dipole, octupole, and quadrupole
polarizabilities and corresponding first-order wave func-
tions for the Sr and Ar atoms. Our calculated Hartree-
Fock polarizabilities for Ar and C6, Cs, and Cio coeffi-
cients for Arz agree with known values" to within 5%.
Although our multiconfiguration self-consistent-field
wave function for Sr includes correlating p and d con-
figurations, it did not include spht-shell valence-core exci-
tations. The damped-dispersion contribution to each of
the three terms in Eq. (47) is shown in Table V. The total
ground-state damped dispersion energy can be fit to the
function

Vg(R) =De, R )R (48a)

B. Dispersion potential

The damped-dispersion energy in the X 'X ground state
was calculated using the methods developed by Koide'
and Krauss and Neumann, '

(49b)

TABLE V. Calculated X 'X damped-dispersion energy in
10 6 atomic units.

known to be important for an atom such as Sr. There-
fore, we adjust the calculated total ground-state dispersion
energy by scaling the calculated value by the ratio of mea-
sured to calculated dipole polarizabilities, ,",, =0.77. The
scaled value C,fr=450 for the ground state is used in the
adjusted potentials described below.

There is currently no ab initio procedure available for
calculating the damped-dispersion coefficients for excited
states with aHowed downward transitions. However, the
series expansion method used by Mahan ' and Proctor
and Stwalley for alkali-metal —rare-gas excited states can
readily be generalized to the present case. Using the for-
mulas given by Mahan, ' we have

C,(W 'll) =a((r,')+4(r,') /5), (49a)

C (8'X)=a((r, )+7(r )/5),
where a is the Ar polarizability and (r, ) and (rz ) are
the expectation values of r for the Sr 5s and Sp atomic
orbitals. If we use the Coulomb-approximation result '

for the expectation values, respectively 15.5 and 40ao for

=C,ffk (48b)

The coefficient C,ff and match point 8 are chosen so
that V~ and its first derivative are continuous at the
match point. Note that C,rr contains contributions from
C8 and C,o terms as well as C6. The parameters in Eqs.
(48) are shown in Table IV.

Our calculated Sr dipole polarizability, 237ao, is much
larger than the measured value, 186ao (Ref. 59), since we
have neglected the effect of core relaxation, which is

8
9

10
11
12
13
14
15

813
526
330
206
129
82
54
36

R term

550
327
187
104
58
32
18
11

term

92
56
31
18
10
4
2
I

Total

1455
909
548
328
197
118
74
48
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the 5s and 5p orbitals, we find C6(ir) =530 and
C6(X)=790 in atomic units (e ao). When the same ap-
proximation is applied to the SrAr ground state using our
calculated Ar polarizability, we find C6(X 'X) =322,
which compares well with the scaled ab initio value, 314
atomic units.

Since the role of damping in the excited state is un-

known, the excited-state dispersion energy was fit with the
same functional form as the ground state, Eq. (48). The
excited-state fits were scaled from the ground-state fit in
Table IV by multiplying at each R by the ratio
C ff(A Il 8 X)/C ff(X 'X). The original excited-state
C,ff values shown in Table IV which we used in the pre-
liminary calculation we reported' were found from Eqs.
(49) using the Dirac-Fock expectation value for (r, ).

Note that the 8 'X state has the larger dispersion coef-
ficient of the two excited states. However, the alkaline-
earth-metal —rare-gas X and II C6 coefficients do not
have the 7:4 ratio of alkali-metal —rare-gas coefficients be-
cause of the extra 5s valence electron. The dispersion
contribution to the difference potential is red shifted for
both excited states.

C. Adjusted potentials

Our initial set of potentials were used to calculate the
wing absorption spectrum, the impact broadening coeffi-
cient, the Pq polarization ratio, and the depolarization
cross sections. ' Since significant disagreements between
calculated and measured results were found [blue wing
kE(lh) factor of 6 too high; red wing Pz ratio 50% too
high], we conclude that the original set of potentials need
to be corrected. This is not at all surprising, given the
variety of approximations which had to be introduced in

order to estimate the potentials. Since the potentials in

the shallow van der Waals well region of R are deter-
mined by the cancellation of large positive and negative
terms, they are sensitive to the approximations used. Ac-
curate calculation of such shallow wells strains the limits
of current ab initio methods. We did not use a systematic
method such as least-squares fitting to get improved po-
tentials, but through a trial-and-error procedure were able
to obtain potentials which give much better overall agree-
ment between theory and experiment. Although the re-

sulting potentials still have some deficiencies, there is no
simple way of assessing their inaccuracies.

The potential parameters of the adjusted potentials are
shown in Table IV. The adjusted Ceff values for the three
potentials in Table IV were used to scale the Eq. (48) fit to
the calculated ground-state damped dispersion. We found
that the repulsive potential V, had to be decreased signifi-
cantly for both of the excited-states. Some possible
reasons for this are discussed in Sec. IIIA above. Al-
though the ground-state V„parameters are numerica11y
different, the fits are substantially the same in both cases
over the R range of importance. Since an increase in
dispersion energy can mimic to some extent a decrease in
exchange-repulsion energy and vice versa, we suggest that
the adjusted parameters in Table IV be viewed solely as
numerical fitting parameters and, with the possible excep-
tion of the ground state, not be individually interpreted

1

0 ——'-

A II

-100
1

7 9 11 13

R(a,)

FIG. l. Adjusted Born-Oppenheimer potential energy curves
8'(R) for the X'X, A 'H, and 8'X states of Sr+ Ar. All

curves are referred to the same asymptote, W'( 00 ) =0.
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100— B Z —')I, Z

—100—
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FIG. 2. Calculated A 'H —X'X and 8 'X —X 'X difference
potentials for the adjusted potentials.

physically as uncorrelated parameters.
The adjusted potentials are shown in Fig. 1. The big-

gest change is in the 8 'X potential, for which the respec-
tive D„R, values changed from 4 cm ' at 17ao to 52
cm ' at 11.5ao. This dramatic change was necessary to
account for the blue-wing absorption data and the ex-
istence of a red satellite feature, as well as the polarization
data. The D„R, change in the A 'II potential from 57
cm ' at 10.3ao to 80 cm ' at 8.8ao is relatively much
less than for the 8 'X potential. The most accurate poten-
tial is expected to be that for the ground state, which has
a shallow van der Waals well about 24 cm ' deep with an

R, near 11.5ao. Since the A 'II-X 'X difference potential
is red shifted for both the V„and Vq contributions, the
A II state gives rise to a quasistatic red wing and anti-
static blue wing of the spectral profile. However, the
8 'X-X 'X difference potential is red shifted at large R
due to the dispersion component but blue shifted at small
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8 due to the repulsive component, so that there is neces-
sarily an extremum on the red side of the difference po-
tential. Therefore, the 8'X state has a quasistatic blue
wing and a red satellite feature which may or may not be
prominent depending on the details of the difference po-
tential. These generic features of the SrAr difference po-
tentials should be true for all Group-IIa —rare-gas
nsnp 'P—ns 'S transitions. The SrAr difference poten-
tials are shown in Fig. 2.

IV. CALCULATED RESULTS

The calculations were carried out using our standard
close-couphng scattering code ' based on the Gordon al-
gorithm. Solution of the set of six coupled equations for
a single total angular momentum Jo, incident energy eo,
and detuning b required about 1.5 sec on a CYBER 205
computer. Calculations were done for a range of detun-
ings for a collision energy of 500 cm, which corre-
sponds to kT for T=719 K. The energy variation and
thermal averaging of kE(h) was studied at selected detun-
ings of +100 cm ', —30 cm ', 20 cm ', +0.5 cm
and 001 cm

A. Reduced radiative s matrix elements

The choice of radiation flux P as a scaling parameter is
arbitrary within wide limits. The flux should neither be
too small, to avoid numerical differencing problems, nor
too large, to avoid nonhnear strong-field saturation ef-
fects. Quite satisfactory results were obtained by choosing
P so that the s typically had magnitudes on the order of
10 —10 6. A flux /=0.01 Wcm was used except for
very small detumngs in the impact limit, where the flux
was adjusted downwards to keep the magmtudes of s„
small and satisfy iiiQ &~b,. In any case the calculated s
were found to be perfectly linear in P' over many de-
cades of variation of P. Some specific numerical exam-
ples may be found in Table II of Ref. 39.

Some care must be taken in the case of optical collisions
in order to extract the desired field-free Hund's case-(e)
s matrix elements. Our scattering code obtains the
asymptotic S matrix in the representation found by di-
agonalizing the asymptotic electronic-rotational-radiation
coupling potential matrix, that is, in an asymptotic
dressed-state basis. This poses a problem when we set up
the radiative close coupling with a single set of six cou-
pled equations in which all three branches are treated
simultaneously. Since there are three degenerate j=1 f-
ina channels (one for each branch) with the same final
/=1& that are mixed by radiative couplings to the initial

j =0, Io ——Jo channel, any S matrix calculated in an
asymptotically diagonal dressed representation is suscept-
able to numerically ambiguous rotations of basis. Thus, S
should always be rotated back to the unambiguous case-
(e) representation taking care to use the explicit orthogo-
nal transformation which actually diagonalized the
asymptotic basis and defined the close-coupled S. This
procedure is discussed in more detail in the Appendix of
Ref. 13.

The coupled equations can be set up in an equivalent al-

ternative fashion as three separate sets of coupled equa-
tions, one for each of the three possible branches. Such a
calculation can be done for Sr + Ar by setting up for each
Jo one set of three-coupled equations for the P branch
(i.e., for the initial channel and the two final channels), a
similar set for the A branch, and a set of two coupled
equations for the Q branch. Since the asymptotically de-
generate j=1 channels for the P and R branches have
different l values, the numerical diagonalization at large
but finite R projects the correct case-(e) basis functions.
Since there is only a single final channel with the same 1

as the initial channel, ' there is no asymptotic radiative
mixing of final channels. The extraction of the numerical
s„ from the asymptotic solutions is therefore straightfor-
ward and unambiguous.

Both calculations, that with each branch calculated
separately and that with all three calculated simultaneous-
ly, were tested for Sr + Ar and found to yield identical re-
sults. The approximate Ni scaling of computation tiine,
where X is the number of channels, shows that the
separate branch calculation will generally be more compu-
tationally efficient than the full calculation (e.g., compare
6 versus 2X 3i+2i). However, the advantages of the full
six-channel formulation in computational logistics for the
Sr + Ar problem was judged to outweigh the time-savings
advantage of the separate branch calculation. Certainly
the separate branch calculation is likely to be preferred for
more complex systems with more channels.

B. Opacity functions

Any cross section can be written in terms of an opacity
function P(J) defined by

cr=
z g (2J+ 1)P(J) .

k~

The opacity was calculated for the necessary range of J
for each of the various partial cross sections noded, that
is, the transfer cross sections cr', the branch cross sections

the polarization cross sections o„(mq), and the
Grawert cross sections o, . Although P(J) is typically re-
quired for several hundred J values, P(J) in many cases
was sufficiently smoothly varying with J that interpola-
tion using only every nth value of J was successful (n =2,
3, 4, or 5). Extrapolation of the opacity function beyond
some large J cutoff J,„was done by fitting the last two
calculated opacities to the form AJ '. The overall nu-
merical accuracy of the calculated partial cross sections
for the given set of potentials is expected to be in the
range 0.1—1 %.

There are three quite distinct regions of detuning for
which the behavior of the cross sections is characteristi-
ca11y different. These regions are the far wings, the inter-
mediate wings, and the impact region, associated with ap-
proximate detuning ranges of

~

6
~

& 50 cm ', 50
cm '&

~

5 [2 cm ', and
~

b
~

~2 cm ', respectively.
The suggested boundaries of these regions are by no
means precise and are meant only to give a rough indica-
tion of where characteristic changes occur.

In the far-wing detuning region, absorption is predom-
inantly to a single molecular state, to the A 'II state for
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red detuning and to the 8 'X state for blue detuning. The
classical Franck-Condon principle applies and quasistatic
theory ' is a good approximation for the total absorp-
tion coefficient. Kulander and Rebentrost have demon-
strated the equivalence between quasistatic theory and the
Landau-Zener curve-crossing model for radiative scatter-
ing. The normalized absorption coefficient for a collision
energy E,o 1s

4 e e 2327K (R P )
( 1

@gal

)i/i
3A,

(51)

where the asterisk implies that the quantities are evaluated
at the internuclear separation R' where %co equals the
difference potential; V is the ground-state potential at
R =E.*. The thermally averaged absorption coefficient is
given by Eq. (51}with the square-root factor replaced by

—v+/kg T
the Boltzmann factor e

The branch partial cross sections o„", Eq. (19), for far-
wing detuning are found to follow closely the ratio of
Honl-London line strength factors for the appropriate
transitions. These ratios o„:o„:o„":cr„are—,':0:—,:1 for a
'X-'X transition and —, :1:—,':2 for a 'll-'X transition.
These ratios were found to hold to within a few percent
for red and blue far-wing detuning. Figure 3(a) shows the
opacity functions for the P, Q, and R partial cross sec-
tions for a red detuning of —100 cm ', a collision energy
of 500 cm ', and a radiation flux of 0.01 Wcm '. Al-
though these opacities oscillate with J in a similar fashion
due to nearly common Franck-Condon factors, they oscil-
late with J slightly out of phase with each other due to
the different final J's. The calculated partial-cross-
section ratios for this example are 0.48:I:00:0.52:2:00.
Figure 3(b) shows for the same case the opacities for
cr (m =0) and cr„(rn =1}for q=0. The fact that these

oscillate nearly in phase with each other is due to the
common Franck-Condon excitation through the A 'H

state for both.
A totally different behavior applies for small detunings,

where the well-known impact approximation is valid.
The detuning must be sufficiently small that b, ifi&&r, ',
where r, is the duration of the collision. Close-coupling
effects are dominant in this region, and a purely adiabatic
description in terms of isolated 'X and 'll molecular
states is inappropriate. Both states contribute to the ab-

sorption, and their nonadiabatic mixing cannot be neglect-
ed. Special relations exist in the impact limit between ra-
diative and nonradiative scattering, and exact relations
such as Eqs. (42) and (43) apply. Figure 4(a) shows the
opacities at a detuning of 1 cm ' for the total cross sec-
tion and the Q branch, and Fig. 4(b) shows the opacity
functions for a„(m =0) and o„(m =1) for q=0. These
latter functions do not look at all like each other, in con-
trast to the far-wing behavior of Fig. 3(b). The m=1
opacity function is found to be proportional to that for
cr, (1,0), as predicted by Eq. (42b), but it does not follow
the oscillations of the Q-branch opacity.

The intermediate detuning range between the far wings
and the impact limit has some common features of both.
Both molecular states contribute to the absorption, which

may be influenced by nonadiabatic mixing of states.
However, the excitation Franck-Condon factors no longer
are determined by the asymptotic properties of the nonra-
diative scattering wave function as in the impact limit.
For our problem both the A 'Il quasistatic wing and a
8 'X satellite feature contribute to the intermediate red-

wing absorption, whereas the intermediate blue wing has
contributions from the 8'X quasistatic wing and the
A 'll antistatic wing. The opacity functions for
o (m =0) and cr„(m=1) in Fig. 5(b} for intermediate
blue detuning of 20 cm ' shows a characteristic complex-
ity due to contributions from both types of absorption.
There are no simple regularities to be found, as in the im-
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FIG. 3. Far-red-wrin opacity functions P(J) for a collision
energy of eo ——500 cm ', detuning of 6= —100 cm ', and
)=0.01 Wcm 2. (a) Opacities for the I' , Q-, and R-branch-
partial cross sections. (b) Opacities for the o„(0,0) (upper curve)
and o„(1,0) (lower curve) cross sections.
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FIG. 4. Impact-limit opacity functions for eo ——SOO cm
b, = 1 om ', and /=0. 0001 Wcm 2. (a) For total cross section
o„and g branch. (b) As in Fig. 3(b).
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FIG. 5. Intermediate-wrin opacity functions for e ——500
cm ', 6=20 cm ', and /=0.01 Wcm '. (a) As in Fig. 4(a).
(b) As in Figs. 3(b) and 4(b).
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FIG. 6. Calculated frequency-dependent broadening coeffi-

cient kg(b ) for a collision energy of eo ——500 can ' {line}. The
points show thermally averaged values for T=500 K (0) and
1000 K.(Q). The dashed lines show the estimated contributions
from A 'Il aiid 8 'X absorption, as defined by Eq. (52).

pact limit and far wings, and the radiative scattering am-
plitudes are given by a coherent sum of interfering contri-
butions from 'X and 'Il absorption.

Since a 'X-'X transition has no Q branch, the o~ partial
cross section repreients absorption to the 'll state only.
This is true for any detuning, including the impact limit.
In fact, if the Honl-London ratios are assumed for the P,
Q, and 8 contributions of the Szudy-Baylis adiabatic
Franck-Condon theory, then 2oP from our close-couphng
calculation is just the quantity needed to predict the ab-
sorption coefficient for the 'II-'X transition. The differ-
ence 0'„—2cr~ gives an estimate of the contribution of the
'X-'X transition to the total. Therefore, the Q-branch
opacities in Fig. 5(a) can be used to estimate the contribu-
tion of the A 'll absorption to the total. For the example
in Fig. 5, 20„represents 36% of the total cross section.

ks (b, )=kE( 6)—kE"(b, ) . (52b)

These two functions are also shown in Fig. 6. The far
red- and blue-wing absorption are dominated by, respec-
tively, A 'll and 8 'X absorption, as expected. There is
prominent satellite feature peaking near 6= —20 cm
associated with the extremum in the 8-X difference po-
tential at 6= —28 cm ' (see Fig. 2).

The calculated ks(h) function for so——500 cm ' is
compared to the available experimental data in Fig. 7,
which shows the red- and blue-wing absorption data of
Harima et al. and the experimental impact-limit re-
sults. ' Equations (27) and (28) were used to convert
the wing data to the form required by the figure. The
overall comparison between theory and experiment is
favorable, although there are significant differences of de-

C. Frequency-dependent broadening coefficient

Figure 6 shows the frequency-dependent broadening
coefficient kz(b ) of Eq. (28) for a collision energy of 500
cm ', as well a several thermally averaged points. This
quantity is independent of the value of the radiation flux
P actually used to do the calculation at the various detun-
ings, as discussed in Secs. II 8 and IV A above. The coef-
ficien kz(h) is not very sensitive to T for the range of
detunings shown, since the van der Waals weHs are shal-
low compared to kT. An estimate of the contribution of
the A 'II state to the absorption is given by the function
defined by

(52a)

Similarly the contribution of the 8'X state can be es-
timated from the following function defined by the close-
coupling calculation:

I

Q

n~

4
I

IA
2-

—80 —40 0

a(cm ')
40 80 130

FIG. 7. Comparison of the calculated kE(h) for eo——500
cm ' and the ming () and impact-limit (0) data.
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tail. The most obvious difference is in the magnitude of
the 8'X satellite feature. Our potentials predict this
feature to be too large relative to the data. However, the
calculated and measured far-wing data are in fairly
reasonable agreement. The far-wing data of Harima
et a/. may not be reliable, since the absorption data of
Alford et al. for the closely related system Ha+ Ar
shows large disagreements with that of Harima et al.
for detunings in excess of about 50 cm

Our calculated I.orentzian half width at half maximum
(HWHM) pressure-broadening coefficient for the impact-
limit core is kE(0)=1.8X10 cm sec ' at 700 K. The
calculated values vary between 1.6X10 and 2.0X10
cm sec ' for T between 500 and 1000 K. The calcula-
tion compares well with the experimental broadening
coefficients which have been reported, (2.4+0.06) X10
cm sec ' at 700 K (Ref. 68) and 1.68 X 10 cm sec ' at
750 K. If an impact-limit value of Ps ——0.65+0.03 is es-
timated by extrapolating the data of Alford et al. using
the shape of the calculated Ps-versus-b, curve (see Fig. 8),
then Eq. (44) predicts k (0)=(1.8+0.3)X10 cm sec
near 800 K, given that k, '=(1.58+0.19)X10 cmise:
Thus the polarization data of Alford et al. seem more
consistent with the broadening coefficient of Ref. 69 than
that of Ref. 68.

The variation of kE(b, ) across the impact-limit region
near 5=0 gives rise to a dispersion component in the ab-
sorption profile. If we define a slope parameter as in Ref.
48,

kx(b, ) =kE(0)(1—bb, ), (53)

our calculations predict b =0.14 (cm ') ' for T=700 K..
Since b is proportional to collision duration, it decreases
as T increases due to averaging over more rapid collisions.
Our calculated values vary from 0.16 to 0.11 (cm ') ' as
T ranges from 500 to 1000 K. Although the asymmetry

parameter has not been measured for Sr + Ar, our results
are comparable in magnitude to the multiplet average
value, 0.18 (cm ') ' measured by Walkup et al. ' for
room temperature for the P- S transition in the analo-
gous system Na+ Ar.

D. Linear-polarization ratios

Figure 8 shows the results of our calculation of the po-
larization ratio P, and comparison with the experimental
data of Alford et al. The figure shows our calculation
for eo —500 cm ' and several thermally averaged points
at T=800 K. The overall agreement is good. The
thermally averaged theoretical points appear to agree with
the measured points within the experimental uncertainty,
except for far-blue-wing detuning. This disagreement
seems consistent with the known deficiency of the 8 'X
potential, which fails to reproduce the red-wing satellite
feature in the absorption data. If the experimental data
are extrapolated into the impact region according to the
calculated shape of the eo ——500 cm ' curve, the impact-
limit value I', =0.65 discussed in Sec. IV C above results.
This extrapolated value agrees well with the calculated
impact-limit value 0.67.

Although thermal averaging is needed for accurate
comparison to data, the curve for fixed collision energy in

Fig. 8 shows the basic qualitative features of the detuning
dependence. The main effect of thermal averaging is to
fill in the "dip" regions for intermediate detunings near
6=+20 cm '. Figure 9 shows the temperature depen-
dence of P, for selected detunings. Since the predicted
temperature variation over a range of temperature which
would be experimentally accessible is comparable to the
range of error bars for the Alford et al. experiment, it
would be difficult to measure any significant or interest-
ing T dependence in P, in such an experiment.

0.01

0.4—

—40
1

0
a(cm ')

120

FIG. 8. Calculated polarization ratio P& for a collision ener-

gy 5p =500 cm ' (line). The squares (II) show the thermally
averaged values for T=800 K at selected detunings. The solid
circles () show the experimental data.

02-,
300

I
I

500 700

(K)
900

FIG. 9. Calculated temperature dependence of the Pq polari-
zation ratio for selected detunings.
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FIG. 10. Calculated Sr+ Ar polarization ratio I'q for a col-
lision energy e ——500 cm ' Oine) and thermally averaged points
for T=900 K (l8). The experimental data for Ba+ Ar

'
l

shorn ().

shows the T-dependent Pc ratios for several detunings.
There is a strong temperature dependence in the inter-
mediate wing P~ ratios, @which may actually change sign
as a function of T. As a general rule, the P~ and Pc ra-
tios or intermediate-wing detuning tend to be more sensi-
tive to details of the potentials than the ratios for impact
or ar-wing detunings. Part of the reason for this sensi-
tivity is the varying contributions from the X and II ab-
sorption (static, antistatic, and satellite) in this detuning
range. These calculations are suggestive of the magnitude
o possible observable effects, but should not be taken too
seriously until definitive potentials become available.

1

One perhaps surprising feature predicted by our calc-
ations and confirmed by the data is the persistence at

cu-

large blue detuning of a small but nonvanishing P
0 e

g

'X sta
eoretical considerations show that excitation of a0 a pure
state should lead to Pc —0. H—owever, the Coriolis

mixing of the excited 8 'X and A 'II states causes some II
character to be acquired by the 'X state so that a finite Pc
results.

E. Circuhar-polarization ratios

Figure 10 shows our calculated results for P, for a
ixed collision energy so=500 cm ' as well as several

t ermally averaged points at 900 K. Although there are
no Pc data for Sr+ Ar, Alford et al.4 have made mea-
surements for the similar system Ba+Ar. Both the
total-wing absorption coefficients and linear-polarizat'

67,2
ariza ion

ratios for Sr+ Ar ' and Ba+ Ar (Refs. 70 and 3) are
known from experiment to be very similar. Therefore, we
a, so show the Pc data for Ba+ Ar in Fig. 10. The good
qualitative comparison evident for the thermally averaged
Sr+ Ar calculation and the Ba+ Ar measurements gives
credence to the belief that the two systems should have
very similar Pc ratios.

th
Thermal averaging is important for P in compari
eory and experiment just as it was for Ps. Figure ll

020

F. Collisional rate coefficients k~

of S
The cross sections for elastic and depolarizing coll' '

co isions
o r Pi +Ar are shown in Fig. 12 in the form of
excited-state collision energy-dependent rate coefficients,

c——acU. The corresponding thermally averaged quanti-
ties are given in Table VI. The calculated value for the
ahgnment destruction rate coefficient, k' '=1.6&( 10
cm'

C
sec in the T=700—900 K range is in excellent

agreement with the measured value, (1.58+0.19)X10
cm sec

Althoough there is no measurement of the orientation
destruction rate coefficient kc" for Si+ Ar, there is a
measurement for both kc" and kc ' for the closely related
Ba+ Ar system, for which the ratio k"'/k' '

C C
=1.12 0.10. We find a similar ratio 1.10 at 900 K f, or
r+ r, as seen from Table VI. In order to explain a ra-

tio o this magnitude using the theorE for pure dispersion

to
potentials (—C6/R ), Alford et al. found that th h d
o assume a ratio Cs( X)/C6( II)=4. This ratio is signi-

2.5

0.15—

0.10— l 0
1.5—

0.05- k,(0,0)/4

0.00—

-0.05
500

l t

300 700 900
(K)

FIGG. 11. Calculated temperature dependence of the I'~ polar-
ization ratio for Sr + Ar at selected deturnings.

0
0 1500

t I

500 1000 2000
E (cm ')

FIG. 12. Calculated energy-dependent rate coefficients,
~ ——crau, for Sr 'I'& + Ar elastic and depolarizing collisions.
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TABLE VI. 'I') collisional rate coefficients in 10
cm3 sec

T (K) kc(0,0) kc(1, 1) k {I)yk(2)
C C

500
600
700
800
900

1000

4.00
4.25
447
4.69
4.89
5.08

3.95
4.19
4.41
4.61
4.80
4.98

1.57
1,65
1.71
1.76
1.81
1.86

1.47
1.53
1.58
1.61
1.64
1.67

1.07
1.08
1.09
1.09
1.10
1.11

ficantly different from the ratio 2.4 of C~f coefficients
(see Table V) used in our calculations. We would advise
some caution in using pure dispersion potentials for inter-
preting depolarization rates, especially since such theories,
which do not account for short-range forces, were recently
found to be quantitatively rather poor when compared to
measured alignment destruction rates for Sr P~ (Ref. 71)
and Yb Pi (Ref. 72) + rare gases.

Since the calculated elastic scattering cross sections for
the m =0 and 1 Zeeman sublevels of 'Pi are nearly the
same, only the coefficient for m =0 is shown in Fig. 12;
the m =1 coefficient would barely be distinguishable
from that of m =0 if it were plotted on the figure. The
temperature-averaged rate coefficients for m =0 and 1

are compared in Table VI. Although there are no mea-
surements of the elastic scattering rates for Sr 'Pi + Ar,
there is an experimental determination of the elastic kc
for Sr Pi + Ar. ' The measured value, 4.2 X 10
cm sec ' at T=400'C (673 K), is close to our calculated
value for Sr 'P& + Ar, 4.4)&10 cm sec '. Our calculat-
ed value is probably fairly reliable, since the same poten-
tials lead to good agreement with the impact-broadening
rate and alignment-destruction rate. The similarity of
elastic scattering rates for Sr 'Pi and iPi +Ar is not
surprising when we consider that the same experiment
found Sr P, + Ar alignment-destruction rates which
agreed with those of Alford et al. for Sr 'P, + Ar within
the error bars of both experiments.

V. CONCLUSION

We have demonstrated through specific numerical cal-
culations how radiative scattering theory provides a prac-
tical tool for giving a unified treatment of weak-field
atomic line broadening and redistribution phenomena.
The theory gives a complete description of an isolated
binary collision in a radiation field, including the simul-
taneous influence of radiative and inelastic collisional in-
teractions. The theory can be applied to optical collisions
for detunings throughout the absorption profile, froin the
impact core to the far wings. The Sr+ Ar system pro-
vides a useful prototype that has been well studied experi-
mentally and is amenable to theoretical calculation. The
'I'+—'S transition is the simplest realistic atomic system
which exhibits effects of atomic degeneracy. We have
tried to project a maximum amount of experimentally ob-
servable information from our calculations. Generally,

the comparison of calculated and measured results are
favorable when the adjusted potentials are used. When
data have been lacking for Sr+ Ar, we have described
how our results are compatible with results on closely re-
lated systems.

Our attempt to obtain potentials for SrAr is fraught
with difficulties, and it is not possible to assess with any
confidence how reliable our adjusted potentials are. There
is still a clear need for further theoretical and/or experi-
mental study of the Group II rare-gas potentials. There
are no experimental spectroscopic studies of these species
as for the analogous NaNe molecule. i Such studies
should be well within the capability of modern technolo-

gy. An improved theoretical "supermolecule" calculation
along the lines of Saxon, Olson, and Liu for NaAr,
which simultaneously calculates the exchange-overlap and
dispersion contributions to the energy, should be possible,
either with ab initio or pseudopotential techniques.

Since this paper has concentrated on describing a
variety of numerical results, we have not given here any
detailed interpretive analysis of these results. There are
two distinct regions of detuning, each corresponding to a
quite different physical picture of absorption: the impact
region for small detunings where b, /ii ~g~, ', and the line
wings for large detunings where the inequality in this con-
dition is reversed. %e will describe in separate papers the
general radiative scattering theory and analysis of these
two regions.

The impact limit is very familiar in line-broadening
theory. z' i The Franck-Condon integrals in Eq. (13)
are expressed in terms of the asymptotic properties of the
field-free wave functions of the initial and final states.
From the viewpoint of radiative scattering theory the pho-
ton may be absorbed at large E. either as the two atoms
approach each other or as they separate. If the former,
the atoms undergo a complete collision on the excited-
state set of potentials; if the latter, they undergo a com-
plete collision on the ground-state set. Thus, there are
two independent "whole collision" paths which contribute
to an absorption event and therefore interfere. The
impact-broadening cross section can thus be expressed in
terms of the field-free S matrices which separately
describe ground- and excited-state scattering. There is a
coherent contribution due to elastic scattering and an in-
coherent contribution due to inelastic scattering. Radia-
tive scattering theory does not give any new insights into
impact-limit theory, and is not even the most efficient
way to do impact-limit calculations. However, our theory
has the virtue of ensuring that all inelastic effects are
properly included in the radiative scattering cross sec-
tions, joins smoothly between impact and far-wing detun-
ings, and can describe departures from the impact limit
even for small detuning. For example, we are able to
predict the dispersion asymmetry of the Lorentzian ab-
sorption profile.

The line-wing region of the profile can further be
separated into far- and intermediate-wing regions. Al-
lowed atomic transitions will always involve degenerate
asyrnptotes and multiple molecular Born-Oppenheimer
states (since S~S transitions are forbidden). Far-wing
absorption can usually be described in terms of adiabatic
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Franck-Condon absorption between initial and final iso-
lated Born-Oppenheimer states. Absorption occurs at
sma11 E. at one or Inore stationarJJ phase points where Ace

equals the difference between upper and lower potentials.
The atoms separate on the excited-state potential, and
may be influenced as they separate by nonadiabatic or in-
elastic collisional effects involving coupling to other
molecular potentials. This "half-collision" picture of ab-
sorption and redistribution can be quantified using a gen-
eralized multichannel quantum-defect analysis of the
close-coupled wave function. ' '2o For far-wing detuning
the radiative scattering amplitudes can often be factored
into separate terms representing (1) an initial state half-
collision which prepares the molecule for absorption from
a specific Born-Oppenheimer state, (2) Franck-Condon ex-
citation, and (3) a final state half-colhsion which describes
the distribution of states of the separated atoms which
come from the particular Born-Oppenheimer state excit-
ed. Such a theory may be used to show how the simple

geometric model of polarization redistribution of Lewis
et al. ' is at least a qualitatively good picture. This
theory also aids our understanding of far-wing fine-
structure redistribution experiments. On the other hand,
the radiative scattering amplitudes for intermediate-wing
detuning normally involve interfering contributions from
more than one such half-collision path. Although the ef-
fects of such interferences can be substantially reduced by
summing over many partial waves, the intermediate-wing
region is generally much more difficult to interpret than
the fax wings.
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