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Translational energy-gain spectroscopy is used to determine the final-state (nl) populations follow-

ing single-electron capture by AP+ (q =4—8) and Ne~+ (q =4—7) projectiles in atomic and molecu-
lar deuterium targets at an energy of 545q eV. The importance of kinematics in analyzing these sys-
tems is discussed. The final-state populations are found to be very sensitive to the energy-level
structure of the collision system. The results are interpreted in terms of a "reaction window" in the
energy gain which is calculated using a multichannel Landau-Zener model.

I. INTRODUCTION

One of the fundamental processes occurring in low-

energy ion-atom collisions is the transfer of electrons
from the target to the projectile. We take "low-energy"
collisions to mean those for which the nuclear motion of
the projectile is slow compared to the motion of the bound
target electrons. At these energies the electrons adjust to
the changing interatomic fields and the collision partners
form a quasimolecule. Electron capture is generally be-
lieved to occur at one or more avoided crossings of the
adiabatic potential energy curves of this molecule. Within
the last decade, considerable effort has been directed to-
ward collisions between multiply charged ions and hydro-
gen atoms. These systems provide the simplest test of
theory and are also of practical interest in astrophysics
and plasma physics.

The emphasis in theoretical research has been on sys-
tems with bare projectiles. The potential energy curves of
these one-electron systems can be accurately calculated for
specific collision partners, which allows detailed study of
the charge capture mechanisms. When many-electron
projectiles are considered detailed predictions become dif-
ficult. However, the large number of curve crossings per-
mits approximations leading to generalized models applic-
able to many collision systems. Much of the recent exper-
imental work has concentrated on measurement of total
electron-capture cross sections for many-electron projec-
tiles. Surveys of these experimental and theoretical efforts
are given by Gilbody' and by Janev. The development
of new ion sources has now allowed these measurements
to be extended to bare projectiles. A brief review of this
work is given by Meyer et a/. It should be noted that
both the generalized theories and the detailed predictions
for specific systems are in reasonable agreement with the
experimental data.

A more sensitive test of the theory of electron capture
than measurement of the total cross section is the mea-
surement of the final (nl) populations of the projectile.
Several groups are working in this area with many-

electron targets. The initial work in this area for atomic
hydrogen targets was done using crossed beam techniques
by Stegbings et a/. More recently, Mccullough et a/. 'o

and Afrosimov et a/. " have used translational energy
spectroscopy of the charge-changed projectile to deter-
mine the energy defect of the final states. The work
presented here uses the later method to examine the reac-
tions

X'++D(ls) X+'e —"(n/)+D+,

X ++D ('X+) X+' e"(n/) D '+(lscr ), (2)

for both argon and neon projectiles at 545q eV. We have
determined the final (n/) populations for these systems
and will compare these results to a multichannel Landau-
Zener calculation of the partial cross sections.

II. EXPERIMENT

V, = Vi+0.75( Vi —V2), (3)

The present experimental work was performed using
the Macdonald Laboratory 6-MV EN tandem Van de
Graaff accelerator. The experimental apparatus is shown
systematically in Fig. 1. The projectile ions were pro-
duced in a secondary recoil ion source based on the design
developed by Cocke et a/. ' The recoil cell consisted of a
hemispherical electrode and a flat plate electrode. A
pump beam of 25-MeV F'+ was post-stripped and then
passed through the hemispherical electrode. The entrance
and exit apertures of this cell were 3 mm in diameter.
The recoil target gas was injected into the hemispherical
cavity formed by the electrodes. The gas pressure in the
cavity caused a rise in the collision chamber pressure to
-6X 10 Torr from the background pressure of
-2X10 Torr. The best energy resolution was found
experimentally to occur when operating with Vl close to
Vq. The energy of the ions leaving the recoil cell was
E = V,q, where the cell potential was given by the empiri-
cal formula
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FIG. 1 Schematic of apparatus.

and q was the charge of the ion. Under normal operating
conditions, V, ranged between 43 and 45 V, with
( Vi —V2) no longer than 2.5 V.

The ions extracted from the recoil source were directed
into the double-focusing magnetic spectrometer with the
aid of a set of electrostatic deflectors, Dl, which operated
perpendicular to the magnet plane. The charge- and
momentum-analyzed beam emerging from the magnet
was directed through the deuterium oven with another set
of deflectors, D2, also operating perpendicular to the
magnet plane.

The atomic deuterium target was produced in a thermal
dissociation oven similar in design to that described in de-
tail by Can et a/. ' The heating element of the oven was a
tungsten tube, 5.1 cm long and 7.0 mm in diameter, which
was rolled out of a 25-p, m-thick sheet. Each end of the
tube was held between a pair of cylindrical molybdenum
sleeves. The outer sleeves were clamped securely in
water-cooled copper end plates. The inner sleeves were
designed to move longitudinally to allow for thermal ex-
pansion of the tungsten tube. The inner sleeves also acted
as entrance and exit apertures of 1.5 mm and 4 mm diam-
eter, respectively. The tube was surrounded by a concen-
tric tantalum heat shield and a concentric copper, water-
cooled shield. The heating was provided by a half-wave
rectified current fiowing axially along the tube. The
current was rectified to provide a time interval during
which energy-gain data could be collected with no voltage
drop across the length of the tube. The temperature of
the outside of the tube was measured using an optical py-
rometer which viewed the tube through a set of holes
drilled radially through the heat shields. A heating
current of 115 A typically provided a temperature of 2050
K. The suppression of thermionic electrons emerging
from the oven was critical and was accomplished by exter-
nal grids (Sl and S2} at potentials of —20 V relative to
the oven.

The dissociation fraction of Dz is defined as

E=(Vx+b V/K)q, (5)

where E is the spectrometer constant whose measured
value was 1.04. After leaving the spectrometer, the ions
were accelerated and then detected by a channel electron
multiplier.

Energy-gain spectra were collected by scanning the re-
tarding voltage Vx. The data shown here were taken with
V, =45.0 V and Vo ———500.0 V, giving a projectile ener-

gy of 545q eV. The measured energy resolution of the
direct recoil beam which has not undergone charge ex-
change ranged from 0.25q to 0.35q eV. The energy gain
of a projectile with initial charge q and final charge q' is
given by

b E=q'Vg qVg, + (q' q)(b—, V/K —Vo)—,

where Vx is the retarding voltage for which the direct

peak is passed.

III. RESULTS AND DISCUSSION

The energy-gain spectra for Ar and Ne projectiles on
Ar, D2 and D targets are shown in Figs. 2—11. The
curves in these spectra are drawn to guide the eye. Each
peak is labeled with the n and I of the outgoing reaction
channel. These outgoing channels and the associated data
are presented in Tables I and II.

Although Eq. (6) allows absolute calibration of the en-
ergy scale, an observed small dependence of the spectrom-

m.(D) a
~(D)+2~(D, ) 2+a '

where a=a(D)/m(D2) and m(A} is the effective target
thickness (particles per area) of molecular or atomic deu-
terium. As described in detail by Can et al. ,

' a can be
determined by measuring the ratio of double-electron-
capture events from the D2 target remaining in the oven
at high temperatures to the double-capture events from a
pure D2 target in the cold oven. The large inaccuracies
inherent in the use of this method in our case led us to use
a more direct method of determining f, as discussed
below. The dissociation fraction was determined to be
70+5% at 2050 K. When cold, the oven served as a gas
cell for argon and molecular deuterium targets. Energy-
gain spectra taken as a function of the target pressure for
selected cases showed no pressure-dependent features, in-
dicating that single-collision conditions were met.

The collision energy was set by applying a negative po-
tential Vo to the entire oven assembly. The collision ener-

gy is then given by V„,(q), where the effective accelera-
tion potential is V„,= V, —Vg. After passing through
grid S2, the ions were retarded by applying a voltage Vz
to the entrance slit of a hemispherical double-focusing
electrostatic spectrometer. The grid S3 was used as a
focusing element and to keep background electrons in the
experimental chamber out of the spectrometer. The spec-
trometer was operated with a fixed voltage difference
hV= V+ —V between the hemispherical plates so that
the energy resolution was independent of the energy gain.
The energy E of a beam of charge q passing through the
spectrometer is given by
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A. Kinematics
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TABLE I. Summary of collision parameters for Ad+ on Ar, D2, and D targets at 545q eV. Only populated energy levels and the
associated relative probabilities, f,I, deduced from the present data, are shown. The energy gains b,E were calculated from the Q
values correcting for kinematic shifts (see text}.
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0.466JO.017

0.139+0.014

14.04
i

13.43 i

12.29

10.16
9.84
9.68
9.58
9.12
8.70 .
8.16
7.93 i

D

0.055+0.007

0.024+0.005

0.771+0.018

0.150+0.010

3$3p4p
4d

17.98
12.70

0.402+0.039
0.365+0.030

0.23410.016

17.73
12.72

0.545 +0.036
0.219+0.012

0.236+0.038

18.72
14.09
9.79

0.140+0.009
0.668+0.025
0.192+0.018

3s 4d
4f
Ss
5p
5d
TI

18.87
15.07
11.87
8.50

0.086%0.003
0.282+0.006
0.308+0.007
0.040+0.003

0.284+0.003

18.66
15.05
11.97
8.69

0.255+0.010
0.230%0.012
0.237+0.007
0.029+0.002

0.278 +0.009

16.37
13.25
10.33
7.71

0.123+0.011
0.277 +0.022
0.413+0.030
0.187+0.017

Ar'+

3$5$
5p
5d

20.15
17.16
12.79

24.23
20.37 i,

19.11 i

13.07
11.33

i

0.152+0.008
0.360+0.012
0.200+0.013

0.288 +0.012

0.015%0.002

0.617+0.018

0.106+0.005

0.261 +0.032

19.95
17.10
12.88

24.00
20.22 I

19.03 i

1149
i

0.191+0.024
0.332+0.030
0.146+0.013

0.331+0.023

0.022%0.004

0.527+0.027

0.097+0.013

0.354+0.061

18.38
14.38
10.40

21.42
20.ZS i

14.69 I

»«I

0.187+0.013
0.678%0.028
0.135+0.016

0,068+0.009

0.932+0.038

P =2p(1 —p) .

The general expression for N states and N —1 crossings is

given by Salop and Olson assuming that there is no in-
terference between different paths leading to a particular
final state. The probability for capture into the ith final
state is

P = pip2 p (1—p. )[1+(p +Ip ~z p~)'+(p +tp+2 pn -i)'(1 pn )'—
+(p +ip +2 p~-2)'(1 —pw-i)'+ +p +i(1—p +2)'+(1 —p +i)']2 (13)

The partial cross section o.; is obtained by integrating over
the impact parameter. The total cross section is then
found by summing over the possible final states. We have
not attempted to account for the possibility of rotational
coupling between the final states. Janev et al. 26 have in-
cluded rotational coupling in the MCLZ model for bare

pro)ectiles on atomic hydrogen. However, there is no sim-
ple extension of their model to many-electron projectiles.

%e have calculated the partial and total cross sections
for each of the collision systems. As can be seen from
Eqs. (9)—(11) the probability for capture depends on the
charge of the projectile and on the Q value of the final
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TABLE II. Summary of collision parameters for Ne~+ on Ar, 02, and 0 targets at 545q eV. Only populated energy levels and the

associated relative probabilities, f„~, deduced from the present data, are shown. The energy gains hE were caicu1ated from the Q

values correcting for kinematic shifts (see text).

D2

Projectile

Ne+

Final state

2p'('P)3p('~)
('s)

('D)3p( F)
( D)

('P)3d('P)
('D)

( D)3d( F)
('D)
('~)
('S)

hE (eV)

16.28
is.2s J

12.5Q
,

'

11.79 J

9.48
J

8.33 j

0.137+0.022

0.136%0.039

0.692+0.067

0.034+0.004

AE (eV)

16.29 I

is.so J

i2.631

9.68
8.SS

J

0.113+0.035

0.332+0. 139

0.533+0.196

0.022+0.007

hE (eV)

14.18 J

13.S2 J

i 1.&4 J

1Q.24
8.28
7.84
7.42

'

6.96

0.11620.009

0.525+0.024

0.359+0.020

Ne'+ 3p4s( P)
(1p)

TI(1)
TI(2)

11.83
10.60

0.361+0.015
0.220+0.010
0.125+0.007
0.295+0.022

11.88
10.69

0.362+0.019
0.325+0.017
0.246+0.024
0.157+0.022

13.66
12.48

0.211+0.016
0.789+0.035

Ne+ 3$3d
4$
4p

TI

24.07
18.12
1S.63,
14.54,

0.565+0.031

0.243 +0.018

0.192+0.033

23.96
18.19
1S.7S J

14.68

0.679+0.022

0.151+0.011

0.170+0.010

19.68
17.33
16.29 j

0.787+0.033

0.213+0.017

Ne+ 2$5$
5p
5d

TI(5-4)
TI(4-4)

13.44
12.44
10.94

0.727 +0.030

0.096+0.012
0.178+0.015

13.62
12.64
11.15

0.645+0.022

0.171%0.010
0.184+0.011

15.29
14.33,J

12.85

0.543+0.041

0.45710.041

state [through Eq. (8)). When Q; is too small Hi2 is so
small that p is near unity and P is negligible. Similarly,
when Q; is very large Hi2 is also very large, p is small,
and P is again negligible. Thus there is a reaction window
in Q value where the probability of capture has an appre-
ciable magnitude. The width and location of the reaction
window are dependent on C and on the density of final
states. A single state calculation therefore will not accu-
rately reflect the position of the reaction window. We fit
the theoretical partial cross sections to our final-state pop-
ulations by adjusting this coefficient. The actual distribu-
tion in Q value of resolvable final states for each collision
system was approximated for the model calculations by a
uniform density of states. As an example, consider the
case of Ar + on Ar (Table I) where the Q values 8.60,
12.03, 15.46, and 18.89 eV were used to represent the 5p,
Ss, 4f, and 4d final states instead of the actual values of
8.50, 11.87, 15.07, and 18.87 eV. The theoretical partial
cross sections for this example are plotted in Fig. S in his-
togram form As anothe. r example, partial cross sections
are also plotted for Ar + on Ar in Fig. 7.

The fitted values of C~ for each target and projectile
are given in Table III along with the calculated and exper-
imental (where available) total cross sections. The
Landau-Zener cross sections tend to slightly overestimate
the experimental values, but the degree of agreement is

reasonable given that the form of the coupling matrix ele-

ment was developed for bare projectiles on atomic hydro-

gen. We believe this indicates the model is applicable to
these systems. The values of C are in most cases less

than that used by Olson and Salop. This is expected be-

cause the coefficient given there, 9.13, represents coupling
to the only parabolic state which, for a given n, can cou-

ple to the incident channel. The I-subshell degeneracy is
removed in our cases by the departure of the projectile
core from a point charge. Thus, the amplitude of the par-
abolic state is spread over spherical states of different I
but the same n. The coupling matrix coefficient for hy-

drogenic projectiles reflects the projection of these spheri-
cal states onto the parabolic state. The situation is more
complicated for the multielectron projectiles we use be-

cause the final states on the projectile are no longer degen-
erate in the principal shell. However, a similar projection
is possible, with the C~ for individual (nl) states depen-
dent on the energy of the state. The average effective C
which we find in our fitting procedures should be reduced
as a result of this projection. It is perhaps surprising that
C is not even smaller than we find.

The values of C for Dz are always lower than those
for Ar, possibly due to the larger number of electrons on
the Ar target. Another possible explanation for this effect
is the population of excited vibrational levels of the D2+
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Lz
&expt

&Lz

expt

OLz

+expt

Neon
3.54
2.25

12.0
4.56

2.88
4.32

3.05
2,31
3.20

9.80
4.56
3,60

2.59
4.29
3.70

3.05
2.50
2.05

6, 16
4.74
4Q

1.74
4,28

&Lz

&expt

&Lz

0'expt

O'Lz

&expt

r. z
O'expt

Cw

ol.z
0'expt

Argon
6.30
3.26

2.7
3.54

9.53
4.55
7.11

7.45
5.37
5.01

7.88
7.15
4.62

5.Q5

3.23
3.20

1.65
3.18
2.62

4.65
4.34
4.2
5.75
5.25
5.23

6.65
7.07
4.89

4.55
3.53
3.10

1.80
3.62
3.2

10.25
4.89
4.3
6.89
6.85
4.5
8.25
8.13
5.5

target. Several authors have suggested accounting for this
effect by multiplying Hiz by the square root of the
Frank-Condon factor when molecular targets are used.
However, we point out that the Frank-Condon factor
represents the overlap between well-defined vibrational
states. Our energy resolution is not sufficient to resolve
individual vibrational levels. Therefore, it is not clear a
priori that these factors should be included in our calcula-
tions.

No other consistent trends are seen as either the projec-
tile charge or target is varied. At its present state of com-
plexity, this model is most useful in the interpretation of
final-state populations. The predictive abilities could be
improved by calculating the coupling matrix 0~2 for each
state of a specific collision system. Such a calculation has
been carried out by Larsen and Taulbjerg~ for Ar + on H
using quantum-defect wave functions in a close-coupling
model. Calculations using their results indicate the
strongest final populations should be in the 4f and Ss
states, in slight disagreement with our results showing
strongest population in the 5s and 5p states. The large
kinematic shifts associated with the light deuterium target
make it possible in principle to misidentify the populated

TABLE III. A comparison of matrix coupling coefficients
(C ), total Landau-Zener cross sections aLz, and experimental
cross sections o,„pt for Ar and Ne projectiles on Ar, 02, and D
targets. All cross sections are given in units of 10 ' cm . Ex-
perimental cross sections for Ar targets are from Ref. 6, D2
from Ref. 13, D with Ar projectiles from Ref. 32, and D with
Ne projectiles from Ref. 33.

D

states. In order to investigate this point, we made experi-
mental measurements of the differential cross s'ections
for Ar + incident on 02. The results show that the angu-
lar distributions are centered closer to the Coulomb
scattering angle 8, than to the half Coulomb event angle
which we assumed in our kinematic calculations. Howev-
er, even at these larger projectile scattering angles, the
kinematic shifts are consistent with our initial identifica-
tions. Thus the disagreement between theory and experi-
ment appears unresolved.

D. Discussion

Our spectra indicate the the final populations are deter-
mined primarily by the energetics of the collision system
rather than by the nature of the target, whether it be
atomic, molecular, many electron, or one electron. The
spectra for argon and molecular deuterium are very simi-
lar, with the same (nl) values populated. This similarity
can be attributed to the small difference between the bind-
ing energies of Ar (15.75 eV) and molecular deuterium
(15.43 eV). Further comparison of these spectra, within
the limit of our energy resolution, does not reveal any
clear evidence of vibrational excitation of the molecular
deuterium target during the capture process. A direct
Frank-Condon transition would lead to significant popu-
lation of the v=0 through about the v=13 vibrational
levels of Di+, covering an energy range of approximate-
ly 2 eV. The resulting shift and broadening of the single-
capture peaks are not present in our spectra. %e are led
to the conclusion that the present collision velocities are
not sufficiently high to produce a strict Frank-Condon
transition, and that the internuclear distance partially re-
laxes during the collision. One can understand this con-
clusion by calculating the ratio of the collision time T,
(=2R, /U) to the time necessary for the Dz+ molecule to
move to its equilibrium internuclear separation T„(=—,

of a vibrational period). This ratio ranges from
T, /T„=1.04 to 1.92, indicating that the molecule should
have time to substantially relax. It should be noted that
capture into the first vibrational level of Di+ results in a
shift to lower Q value of 0.2 eV. This shift is of the same
magnitude and in the same direction as the kinematic
shifts discussed above. Thus, it would be difficult to dis-
tinguish population of the first few vibrational states from
the expected kinematic shift.

Comparison of the spectra for atomic and molecular
deuterium targets for cases where the density of states is
large (Ari+, q =5—8) reveals a shift of the reaction win-
dow to smaller energy gains for the atomic target. %ithin
the context of the MCLZ model, this occurs in part be-
cause of the lower binding energy of the atomic target
through the factor a in Eq. (11). We point out that a fur-
ther increase of the coupling matrix element through an
increase in C~ is required to fit the data for the atomic
targets. While the reaction window is shifted to lower en-
ergy gains by the decrease in the binding energy of the
atomic target, the Q value of a given final state is shifted
to higher values. As a result, the final-state populations
for the atomic targets are shifted to slightly higher l
values compared to the molecular cases.
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The possibility of metastable contamination of the pro-
jectile beam must be considered for multiply charged ions.
Only for the cases of Ar + and Ne + projectiles were we
required to use rnetastable projectile cores in order to
identify populated states. The electron configuration for
both projectiles is np which gives the mestastable levels
'D and '5 in addition to the ground state P. Our resolu-
tion is not high enough to determine the metastable frac-
tion of the incident beam for either of these cases. How-
ever, it is clear that some of the final-state population is
due to capture to the 'D metastable state.

The positive identification of the broad, high-energy-
gain peaks as due to TI processes depends on knowledge
of the doubly excited states which are populated prior to
autoionization. The energy levels of these states are gen-
erally not known, but reasonable numerical estimates can
be made. Consider the specific system Ne + + Ar
~(Ne5+)" + Ar +. Energy levels for configurations of
the form (nl, n', 1') were calculated from a Hartree-Fock
program by Wilson. ' The range of energy gains accessi-
ble to these levels is shown in Fig. 11. The double capture
appears to be into states of the form (5 1,41') or (41,41'). It
is impossible to identify exactly which states are popu-
lated due to the kinematic broadening of the TI peak
caused by recoil of the projectile following ejection of the
autoionizing electron.

A common feature of all our spectra for Ar and Dz tar-
gets is the similarity in the energy-gain values of the TI
peaks. This appears to imply that the energy required to
remove two electrons from Di is nearly the same as that
for Ar (43.39 eV). However, the energy needed to remove
the two electrons from Di depends on the charge-capture
mechanism. If both electrons are removed simultaneously
in a Frank-Condon transition, then the energy required to
remove both electrons is 50.94 eV. This would place the
TI peaks for D2 targets at Q values 7.55 eV lower than for
Ar if the same final states are populated. If the electrons
are removed adiabatically with the molecular ion allowed
to completely relax as the electrons are removed, then the
required energy is 31.67 eV and the TI peaks should come
11.72 eV higher in Q value than for the Ar target. The
kinematic effects due to the difference in target masses
must also be considered. The lighter D2 target will be
scattered with larger recoil energy than for the Ar target,
resulting in lower energy gains for the projectile. Howev-
er, these kinematic shifts are expected to be a few eV, sub-
stantially less than the 11.72 eV difference in Q value. As
noted for single capture, this analysis suggests that the
capture process at these projectile velocities is in the inter-
mediate region between a Frank-Condon transition and an
adiabatic transition.

The D2 + molecular ion must lose 7.55 eV through re-
laxation of the internuclear separation during the double-
capture process, if the Q values for TI from the Ar and
D~ targets are to agree. An estimate of the time T~ need-
ed for this relaxation, made by assuming that the
Coulomb force between the deuterons is constant over the
relaxation time, gives Tz ——1.5&10 ' sec. The ratio

T /TR of the collision time to the relaxation time for our
systems ranges from 3.51 to 6.54. Thus, there is ample
time for the molecule to relax during the collision.

It is possible that the double-capture process populates
different final states on the projectile with Di and Ar tar-
gets, and that the similarity in the TI spectra for the two
targets is imposed by similar effective reaction windows
for two electron transfer. However, pronounced structure
in the TI spectra is seen for the cases of Ne + and Ne +

which we identify with population of particular groups of
final states as indicated in Figs. 9 and 11. The relative lo-
cation of the TI groups for Ar and Dz, for these cases at
least, must directly reflect the two electron separation en-
ergies for the two targets. Thus we believe it unlikely that
significantly different final states are populated for the
two targets in other cases.

IV. CONCLUSIONS

The final state populations following charge capture are
very sensitive to the energy-level structure of the collision
systems. The differences in the populated states between
the Ar, Di, and D targets can be attributed to shifts in the
reaction window for capture caused by the different
strengths of the effective coupling matrix elements. Sig-
nifican population of transfer ionization peaks is seen for
both Ar and Di targets. The similarity in the energy
gains for the TI peaks for these targets indicates that the
two-electron-capture process from the molecular target is
in the intermediate region between a Frank-Condon tran-
sition and an adiabatic transition. A similar conclusion is
reached for single capture from Dz from the absence of
evidence for strong vibrational excitation. The MCLZ
model adequately describes the relative populations of the
final states with reasonable values for the coupling matrix
elements. The model seems to be more useful as an inter-
pretive rather than predictive tool in analyzing these col-
lision systems. The prediction of final state populations
awaits more sophisticated calculation of the coupling ma-
trix elements H~i and incorporation of rotational cou-
pling effects.
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