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Time-dependent analysis of nonstationary effects in velocity-selective optical pumping is per-
formed with a four-level model for weak light intensities. No phenomenological relaxation con-
stants are introduced and the nonstationary effects are obtained as the consequence of averaging the
time evolution of individual atoms in a vapor phase moving in the light fields when typical pumping
times are comparable with the finite laser-beam transit times. Under appropriate conditions strong
deformation of the population distribution of the long-lived lower state occurs, which in the case of
polarization spectroscopy is responsible for the appearance of a dip (possibly narrower than the
homogeneous linewidth) in the center of a Doppler-free resonance. The theoretical results are in a
good qualitative agreement with the recent experimental observations.

I. INTRODUCTION

Velocity-selective optical pumping (VSOP), i.e., a redis-
tribution of populations of lower-state sublevels of atoms
belonging to a given velocity class, has been found to be a
very important mechanism in Doppler-free laser spectro-
scopy.!~® The standard approach to VSOP is based on
steady-state density matrix or rate equations where the re-
laxation and possible finite laser-beam transit-time effects
are accounted for with the help of phenomenological
rates. Although such an approach proved to be very use-
ful in many applications, some experimental observations
have been recently performed®~'* which cannot be ex-
plained with the steady-state theories.

Bjorkholm et al.'® have described strong deformations
of two-photon line shapes attributed to nonstationary ef-
fects in VSOP and conclude that the standard theory with
phenomenological rates is inadequate for their description.
It turns out that similar nonstationary effects are respon-
sible also for narrow dips observed by Gawlik et al.!""12
with the help of polarization spectroscopy (PS). Recently,
Thomas and Forber!* have reported on nonexponential de-
cay of a photon-echo amplitude which also could not be
explained with a simple transit rate, and Klimcak and
Camparo'* have described optical-pumping dips in a
homogeneously broadened line.

Effects of finite transit time in saturated absorption
spectroscopy (SAS) of two-level systems without optical
pumping have been discussed in Ref. 15, in two-photon
spectroscopy in Ref. 16, and, more recently, by Thomas
and Quivers® in optical pumped three-level systems.

While the transit-time effects analyzed in Refs. 9, 15,
and 16 are responsible for rather subtle modifications of
the line shapes, the effects described by Bjorkholm
et al.,'° Gawlik et al.,'"'? and Klimcak and Camparo'*
are by no means small. On the contrary, they provide a
rather spectacular illustration of the importance of the
nonstationary effects.

The optical-pumping dips of Refs. 10 and 14 and the
dips described by Gawlik et al. are similar in that they
both result from the nonstationarity of optical pumping.
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However, they reflect this nonstationary situation in vari-
ous ways. In the case of polarization spectroscopy (Refs.
11 and 12) the probe beam is required to do some optical
pumping, while the dips of Refs. 10 and 14 occur even
with negligible light intensity. Moreover, the homogene-
ous optical pumping dips of Ref. 14 are only observed for
atoms probed after the process of optical pumping has
been completed, whereas the dips of Refs. 10—12 are ob-
served during the process of optical pumping. This dis-
tinction manifests the fact that there are various ways in
which optical pumping can affect a spectral line shape.

In this paper we give a theoretical analysis of such non-
stationary effects with the help of a simple four-level
model where the lower state possesses an appropriate
structure allowing for optical pumping. For the sake of
comparison with the experimental work'""!? we will refer
mainly to the results obtained in PS, but the main con-
clusions apply also to other spectroscopic techniques
where optical pumping (not necessarily velocity selective)
can take place. In Sec. II the experimental situation,
fields, and atomic system are specified. In Sec. III we in-
troduce time-dependent rate equations (derived in the Ap-
pendix) and solve them under given conditions. In Sec.
IV, which is the main part of the paper, we express the
probe-beam signals in PS in terms of atomic populations,
discuss time evolution of the populations and the transit-
time effects under nonstationary conditions of VSOP, cal-
culate theoretical PS signals which exhibit narrow dips,
and finally, we briefly discuss many-line interference ef-
fects.

II. MODEL OF ATOMIC SYSTEM
AND EXPERIMENTAL SITUATION

A. Experimental situation

Our analysis concerns the experimental situation where
investigated atoms in an absorption cell are irradiated
with two counterpropagating beams, the pump and the
probe originating from the same laser. The pumping
beam is circularly polarized (e.g., o), whereas the probe
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FIG. 1. Schematical setup for studying VSOP with two coun-
terpropagating beams: the probing beam linearly polarized
(€,=€,), and the pumping beam polarized differently than ¢,
(e.g., circularly, €, =€,). If analyzer A and polarizer P are
orthogonal (€,-€; ~0) the setup allows studies of PS; if Pand A
are parallel (€,-€;=1) SAS can be studied.

is linearly polarized. We record the intensity of that com-
ponent of the probe beam which passes a linear analyzer
placed between the cell and detector (Fig. 1). Depending
on an angle between the direction of the incident probe-
beam polarization €, and the analyzer’s axis €; we can
realize either the case of polarization spectroscopy or of
saturated absorption spectroscopy: For analyzer A
crossed (or nearly crossed) with polarizer P (€,€; ~0) we
have the situation typical for PS. On the other hand, if
the analyzer is parallel with the polarizer (€,€;=1) we
have the case of SAS.

For the sake of simplicity we consider here only the
case when the pump beam is circularly polarized. It is
quite straightforward, however, to discuss also other situ-
ations characteristic for PS or SAS within our simple
model. For instance, if an appropriate transformation of
a reference frame from the { |0), | £1)} circular basis to
the { | x),|y),|z)} one is performed, the case when the
pumping beam is linearly polarized at 45° to €, can be
readily discussed!” with the help of the energy-level dia-
gram of Fig. 3 and the rate equations from Sec. III below.

In the following we shall concentrate exclusively on PS.
It should be remembered, however, that many results of
this paper are more general.

To make the analysis as simple as possible we assume
that both light beams are overlapping and have the same
diameters and uniform intensity distributions. It is not
very difficult to fulfill this condition in practice by using
appropriate diaphragms for selection of the central region
of the Gaussian laser beams, but, if necessary, the quanti-
ties I4,I; in Eqgs. (4) and (5) below could also be con-
sidered as space dependent. One could study either a gen-
eral space dependence of I.,I;, or a simpler case when
the beams have uniform intensity distributions but dif-
ferent diameters. The time evolution of the populations
of an individual atom in the latter case consists of periods
within which the atom interacts either with a single beam
or with two beams, and can be easily calculated for each
of those periods along the lines of this paper. Possible x-y
dependence of the light fields does not change the main
qualitative results of this analysis so we will ignore it.

Figure 2 shows the assumed geometry of the light
beams and an additional aperture selecting the very nar-
row axial part of the probe beam for detection. The
difference between the light beams and the shaded detec-
tion region radii is denoted by R.
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FIG. 2. Geometry of the light beams and an additional aper-
ture selecting very narrow axial part of the probe beam for
detection. R denotes the difference between equal radii of the
beams and that of the shaded detection region. v, and v, are
transversal and longitudinal, respectively, components of the
velocity v of an atom moving across the beams.

B. Fields

The net electric field of both light beams counterprop-
agating along the Oz direction is

E(z,t)=& cos(wt —kz)+ & 'cos(wt +kz) , (1a)

where &, &' are the amplitudes of the pumping and prob-
ing beams respectively and k is the magnitude of the wave
vector. The pump beam is o* polarized and the probe
beam is polarized linearly along the Ox axis, so that we
have

E(z,t):%’é_’_e—-i(wt—kz)_{_%sxe—-i(wt%-kz)_'_c.c’ , (1b)
where €+ = F(1/V2)(&, +i€,).

With the field given by Eq. (1) we can write matrix ele-
ments of the interaction Hamiltonian V= —E-D,

VO+ — ___B'+e —i(mt+kz)+c_c' ,
— _ o —ilot—kz2) —i(wt +kz) 2)
Voo =—Pe +pB e +c.c. ,
where
&d_ &'dy

=7, == 3
b= Pe=%ums @
are the Rabi frequencies for the pump and probe, respec-
tively. Unless otherwise stated, different values of matrix
elements d, =(0|€;-D|*) are allowed for, hence the
Rabi frequencies 8, and B_ might also differ.

C. Atoms

The simplest possible model of atomic system that al-
lows discussion of the nonstationary effects of velocity-
selective optical pumping with polarized laser beams is a
four-level system composed of a single | J=0;m =0) lev-
el as the upper state, and three degenerate Zeeman sublev-
els |J=1;m =0,%1) as the lower levels. In Fig. 3 we
denote sublevels m = —1,0,+1 of the J=1 state as
| =), | 1), and | +), respectively, and mark transitions
induced by the o™ polarized pump beam with double ar-
row and with single arrows those due to the probe. The
frequency w of the light waves is close to the frequency wg
of the transition | J=0)-|J=1).

The upper state |0) can decay spontaneously to all
lower sublevels. It is assumed that the collisional relaxa-
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FIG. 3. Four-level system allowing discussion of the nonsta-
tionary effects of VSOP. The states | —), |1), and | +) are
sublevels m = —1,0, + 1, respectively, of the J =1 lower level,
| 1) playing the role of the trap level. I;,I+ are the pumping
rates for the pump and the probe, respectively. Circularly polar-
ized pump beam induces transitions marked with a double ar-
row, while the transitions induced by the linearly polarized
probe beam are depicted with a single one.

tion of the lower levels is so slow that it can be neglected
with respect to transit effects and the perturbation by
light.

Level |1) is not directly perturbed by the light beams
so it acts as the “trap level” in a way that atoms which
have decayed to | 1) cannot be further excited. The ex-
istence of such a trap level is essential for nonstationary
effects discussed below. It should be noted that its role
may be played by any stable level that can be populated by
spontaneous emission from the upper state but cannot be
further excited by the light beams. In particular, it could
be an off-resonance hyperfine component of the lower lev-
el as in the case of alkali metals.'®'* In our simple
analysis, however, it is quite sufficient to consider the
Zeeman sublevel | J =1;m =0) as the trap since it has all
necessary properties, i.e., it is not directly perturbed by
light of the given polarization.

To make our model more general we will calculate time
evolution of the populations with the assumption that the
branching ratios p; from the upper state to sublevels | i)
and the corresponding dipole matrix elements can be arbi-
trary (with p, +p_ +p;=1). Changing p, would allow
us then to control the effect of trapping on the dynamics
of optical pumping, while different values of p, and p_
could be helpful for discussion of systems more complex
than that of Fig. 3. Referring to the specific conditions of
PS we will later take p . =p _.

Despite its simplicity (particularly the assumption that
only the lower state has some structure) the model gives
very satisfactory results. This is due to the fact that for
weak light intensities it is the optical pumping in the
long-lived lower state which determines the characteristics
of the observed signals.

III. RATE EQUATIONS

A full description of an atomic system interacting with
a light field is provided by the generalized Bloch equa-
tions for the density matrix of the system. If, however,
the intensity of the light beam is sufficiently weak, so that
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the coherence and strong-field effects can be neglected, a
much simpler system of rate equations can satisfactorily
describe the atom dynamics.

In the analysis presented in this paper we use the fol-
lowing system of rate equations for the populations of lev-
els |0), | +), | =), and |1), (see Fig. 3), which have
been derived in the Appendix:

no=(n_—nog)I;+I1_)+(n —ng)l —Tny, (4a)

ny=—(n,—ng)l +p,Tny, (4b)

n_=—(n_—ng)I;+I_)+p_Tny, (4c)

ny=piIng, (4d)
where

I,(8,kv,)=4(B*/T).L(8—kv,) ,

(5)
I.(8,kv,)=4B2/T).L(65+kv,)

are frequency-, velocity-, and intensity-dependent pump-
ing rates for the pump (I;) and probe (I.) beams;
L(x)=1/(1+4x2/T?); 8=w—wq; v, is a longitudinal
component of atomic velocity; I is the spontaneous decay
rate of the upper state; and p_, p_, and p, are branching
ratios of the decay from |0) into the |+ ), | —), and
| 1) states, respectively.

In spite of an essential role of level | 1) as the trap for
the fraction p; of the excited population ny, Eq. (4d)
brings no additional mathematical complication to the
system of the first three equations (4a)—(4c), because the
“trapped population” n, does not directly influence the
remaining ones. This simplification results from negli-
gence of nonradiative relaxation which could bring some
possible mixing of the populations. Under such condi-
tions the only important consequence of the trap level is
the fact that p, +p_ <1. It is not very difficult to in-
clude in Egs. (4) relaxation other than spontaneous emis-
sion (e.g., collisions). However, as long as the spontaneous
emission and the transit effects described below are the
dominant processes, Egs. (4) are quite adequate for discus-
sion of the salient features of the considered phenomena.

As in Ref. 10 we do not introduce any phenomenologi-
cal relaxation constants to account for finite transit times.
Instead, we find the time-dependent solutions of Egs. (4)
and analyze their properties in the transient regime where
optical pumping is nonstationary. The nonstationarity
arises from the movement of atoms across spatially con-
fined light beams which results in finite interaction times
often being shorter than the time necessary for reaching
steady-state conditions. In standard stationary ap-
proaches transit effects are accounted for by using
steady-state solutions of the rate (or density matrix) equa-
tions with appropriate phenomenological relaxation con-
stants. Such steady-state solutions, however, describe the
effects of infinitely long interactions with the light beams
when an equilibrium between pumping and relaxation had
already been established. This approach with simple tran-
sit constants is inadequate (though widely used) when
transit times across the light beams are finite and compar-
able with the pumping times determined as (I,,I+)~'. In
such cases time-dependent analysis of transit effects has



34 NONSTATIONARY EFFECTS IN VELOCITY-SELECTIVE. . .. 3763

to be performed, or space-dependent relaxation rates
should be used as suggested in Ref. 14.

We solve the system of Egs. (4a)—(4c) with the initial
condition at the time ¢ =0 when a given atom enters the
beams,

1o (t=0)=n_(t=0)=4y(v,) , (6)

Aolv,) being the initial equilibrium population of the
lower-state sublevels (same for all sublevels).
The time-dependent normalized solutions are given by

"ol s 1“1 I
+ .
ny |=2G PJ—I__:L P ™)
n i=1 i
- p_T+I+1_
Ji

where in the weak-field approximation (I,I. <<T') the
coefficients C; and eigenvalues of the characteristic equa-
tion are

C1=—C02aT(p+J2J3 ——p_1213) »
C2=——C012J2(P+J3—p_13) ’
C3=C013J3(p+.]2—p_12) ’

A=—-T,

AN=—-T(+a),

M=—-T(1-a),
with

Co=No[2pp_UI+I_—I )TaT]™ !,
Li=1_+A; Ji=I;+1_+A;,
a=[1—p I (I,+1_)T~%]'/%,
T=3I,(1—p )+U+I1_)X1—p_)].

If the decay rates into the | +) and | —) states are
equal, p, =p_=p =2(1—p,), then I,=1_=I,, and
we can write C; in a more compact form,

20, +1,
C1=‘—»/Vo—p‘l:"‘ ,
Ny I,
C,=—
2 2p TaT’
Ny I35
37 2p TaT’
with

T=+5(1+p)Q2L,+I,),
and
a=[1—-pI,{, +1,)T73)V 2.

Under the above conditions, i.e., with a weak-field ap-
proximation (I,,I; <<T'), p, =p_, and with the initial
condition (6), solutions (7) can be written as

21, +1
no(t) = — N pr s Tt
_iV_OIZJZe—T(l-Hz)t Lo Ids _rian
2p TaT 2p TaT ’
2I,+1
n(t)=pA7y pr —e =
‘/4/0 T Is+Ip—T aTt —aTt
+ 2 e T (e —e )
+ e—aTt_*_eaTt] , 9)
21,+1
~Ep s e
)=
n_(t)=pAy r ¢
N 1 —T
e T e e

+e -—aTt+eaTt

The first terms of Eqgs. (9) represent a fast-transient
behavior of the atomic populations after the atom has en-
tered the interaction region at ¢t =0, and are of the order
of (I,,I)I' ~'exp(—T't). When the light intensities are
weak and ¢ >>T" ! those terms can be neglected.

Time evolution of the populations depends very strong-
ly on the parameter a defined by Eq. (8). For a negligibly
weak probe beam (I, <<I;) and/or for absence of a trap
level, i.e., p;=0, a=1 and in each of the above popula-
tions a stationary term different from zero appears. If the
probe beam is not weak in comparison with I, O<a <1
and all terms of Egs. (9) decay to zero. It is therefore
natural that the nonstationary effects of optical pumping
show up only if the probe beam is appropriately strong
and if the level structure under consideration includes a
suitable trap level (p,50).

IV. VELOCITY-SELECTIVE OPTICAL PUMPING

As discussed previously (Refs. 1—3), if the long-lived
lower state is not single and the light intensities are not
too strong, VSOP rather than saturation of an optical
transition is responsible for the Doppler-free signals in po-
larization, as well as in saturated absorption spectroscopy.

Equations (9) allow, in principle, discussion of various
specific effects, e.g., SAS with optical pumping, or probe-
beam-induced fluorescence described in Ref. 14. For the
sake of brevity, however, we shall limit the calculations
only to the PS signals. In Sec. IVA we express the
probe-beam signal in terms of atomic populations, in Sec.
IV B we discuss the time evolution of the populations, and
in Sec. IV C we analyze the transit-time effects.

A. Probe-beam signals in polarization spectroscopy

Macroscopic polarization & =Tr(Dp) induced by the
field (1) in the ensemble of atoms described in Sec. IIC
(Fig. 3) is
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Z =D _opo-+D 0po++Do_p_o+Dospo-

Making use of relation (A2) from the Appendix, 2 can
be decomposed into the contributions due to the pumping
and probing beams

Q=Pe-—i(mt-—kz)+lye—~i(wl+kz) . (10)

The probe-beam signals are determined by the second
contribution in Eq. (10),

2
(ﬁ.e )
ot

where { ) denotes ensemble averaging (for the situation
considered the most important being the velocity averag-
ing). Being concentrated on PS (€,€; ~0) we are mainly
interested in the birefringence and dichroism of the inves-
tigated medium, which results in a difference between P,
and P’_, i.e., the left and right circularly polarized com-
ponents of P’,

Ips~ |(P', —P"_)|%. (11)

I probe =~

>

(For the realization of PS with a linearly polarized pump
at 45° to 'ép, which we shall not discuss in detail, the
probe-beam signal arises from a linear birefringence and
dichroism, i.e., a difference between P, and P;.)

If p, =p_, according to Egs. (A2) and (A5) from the
Appendix, the components P’, are

with Q, =8+kv, —iT' /2, which for an excitation suffi-
ciently weak to neglect ny (ny <<n4) yields

' ’ dBI
P+_.P__=——Q+(n+——n_).

Thus we arrive at the following expression for the probe-
beam signal in PS:

e

Q. v
Equation (12) explains the importance of velocity-selective
optical pumping for Doppler-free polarization spectro-
scopy because the asymmetry of populations An=n_

—n_ of the lower state, i.e., the lower-state polarization,
is due to optical pumping by both beams.

2

Ips~(dp')? (12)

B. Time evolution of An

According to Eq. (12) calculation of the probe-beam
signals requires velocity averaging which consists of in-
dependent integration over transversal and longitudinal
components of the velocity. Since the transversal com-
ponents v, determine atomic transit times across laser
beams of finite diameters, integration over v, is
equivalent to integration over various times of interaction
of individual atoms with the light. It is therefore impor-
tant to perform a thorough discussion of the time depen-
dence of the difference of the populations An(t). Taking
t >>I'~! we get easily from Egs. (9)

N ol
2aT

Figure 4 shows the time dependence of An for atoms with
zero longitudinal velocity v, =0 in the tase of a negligibly
weak probe beam (8'=2X107*T") when a=1. The An(t)
dependence on the pump-beam intensity (expressed in
terms of the Rabi frequency f3) is presented in Fig. 4(a),
and on the laser detuning from the exact resonance in Fig.
4(b). The effect of detuning is equivalent to decreasing
the intensity of the pump, both leading to a decrease of
the pump rate of atoms with v,=0. Since for a=1 one of
the terms in Egs. (9) and (13) becomes stationary, An
monotonically increases with time until a stable maximum
value of atomic polarization is reached. As the transit ef-
fects are the only relaxation processes which are taken
into account in this analysis, the final maximum value of
the lower-state polarization An(t—oo) is 2475/(1+p,),
i.e., 3.4 for p; =7, and even 24 if there is no trapping
( Pi =0).

Figure 5 shows the time dependence of An under the
same conditions as before, except for the probe-beam in-

An(t):n+~—n_= e—T(l—a)t_e—T(1+a)t) . (13)

0 —>
o 4000/r t

(b)

o —>
0 4000/r ¢

FIG. 4. An(z) dependences for atoms with v, =0 and a negli-
gibly weak probe beam (f'=2X107*T), i.e., when a=1 (a) for
8=0 and various intensities of the pump beam expressed in
terms of the Rabi frequency B, (b) for B=6.3 X 10~T" and vari-
ous detunings 8.
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FIG. 5. An(t) dependences for v,=0, B=6.3x 107’ and
for a strong probe beam when a <1 (a) for §=0 and various in-
tensities of the probe beam (expressed in terms of B'), (b) for
B'=3.4X 10T and various detunings 8.

tensity which is not negligible now, i.e., 8’ may be com-
parable with 8 which makes a < 1. Figure 5(a) shows the
effect of the probe-beam intensity for zero detuning. It is
seen that the strong probe beam is responsible for nonsta-
tionarity of the polarization An and for the reduction of
its amplitude with respect to the case with a=1 (Fig. 4).
This is due to a depletion of both | —) and | + ) states
by pumping to the trap level |1) with the probe beam.
Thus, if the two beams are strong, there is a competition
between the probe which depletes both populations n .
and the pump which builds up An. In Fig. 5(b) An(z) is
plotted for a strong probe and various laser detunings.
Here it is seen that detuning from §=0 simply lengthens
the time scale of the evolution. An important conse-
quence of this fact is that after a given evolution time the
off-resonance polarization An(w=w,) can be larger than
the on-resonance one An(w=wy). It is important that this
property holds also for An averaged over all longitudinal
velocities, i.e., various Doppler shifts of the apparent fre-
quencies of the two beams with respect to wo. Figure 6
shows (An(1)), for various & and for B=3.4Xx10"T,
and B'=7.7x 10T

Under the experimental conditions with which we are
concerned (see Fig. 2) the evolution time is determined by

(o) 2000/r1 t

FIG. 6. Time dependence of An averaged over Doppler shifts
for a strong probe beam (8=3.4X 10~T, B'=7.7X10~°T') and
for various detunings 8. With a broken line the transit-line dis-
tribution W (t) [Eq. (16)] is shown for typical experimental con-
ditions with R=1.5 mm, u =500 m/s, and ['=1/7=6X10’
s—L

FIG. 7. An(t,v,) dependences for B=f=6.3X 107°I" and
various detunings (a) §=0; (b) 8= %l", (¢c) §=T". The velocities

v, of atoms perturbed by off-resonant light beams are indicated
with arrows in diagrams (b) and (c).



3766

the transit time of an atom across the beams, which is a
simple function of the transversal velocity v,. This point
will be discussed in more detail in Sec. IVC. Here we
want to compare the (An(#)), dependence with the dis-

tribution of transit times [given by Eq. (16) below] which
is plotted with a broken line in Fig. 6 for typical experi-
mental conditions.

A full dependence of An on longitudinal velocities v,,
detuning 8 and time ¢ in the case of a strong probe beam
(a<1) is shown in Fig. 7. For 8=0 [Fig. 7(a)] the probe
and pump beams interact with the same longitudinal velo-
city class v,=0. As was already seen in Fig. 5, shortly
after an atom has entered the beams at ¢ =0 polarization
An builds up due to the pump-beam action, whereas later
the depletion due to pumping by the probe beam takes
place, leading to a dip in the lower-state population differ-
ence. For the off-resonance excitation (§540) both beams
perturb different velocity classes and their competition
(buildup and depletion of An) becomes more pronounced
[Figs. 7(b) and 7(c)].

C. Transit-time effects

As it was already noted, standard steady-state ap-
proaches with phenomenological transit relaxation con-
stants are not appropriate when atomic transit times
across the light beams are comparable with the pumping
times. Under such circumstances time-dependent solu-
tions for An(z) have to be found and averaged over vari-
ous transit times or, equivalently, transversal velocities of
individual atoms. For a complete velocity averaging in
Eq. (12) the integration over longitudinal velocity com-
ponents has to be performed. Both averagings are in-
dependent in our case and, in principle, may be performed
in any order but it seems more natural to integrate firstly
over v, (over transit times) and then over v,.

We assume Maxwellian velocity distribution of atoms
in the cell,

Wv) =W, )\W(,),
with
1 —(v, /u)?
w = ‘ s 14
(v;) u‘/;e (14)
and
v, _ 2
W(vl)=——2£—e (v, /u) , (15)
u

where u =(2kz T /M)'/? is the most probable velocity.

Since for the geometry such as in Fig. 2 interaction
time t=R /v,, one may derive from the W(v,) distribu-
tion a corresponding one of the transit times,

2R _ 2
e (R /tu) .

W(t)= (16)

tu
W (1) is depicted in Fig. 6 with a broken line for typical
experimental conditions, i.e., R =3 mm, ¥ =500 m/s.
Thanks to the relation between ¢ and v,, and between
the W(t) and W(v,) distributions, the transit-time-
averaged populations
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Ni= [ m

can be calculated as

N;= fowni

Details of such an averaging are given in Ref. 10; here we
simply write the averaged AN

W (tyde

Wi(v,)dv, .

AN= fomAn(z(ul))W(ul v,

—A[F(B_)—F(B,)], (17
where A =(474/2)I;/aT), and
BtzT(lia){:— , (18)
Fix)= [ e/ evay . (19)

As seen, the transit-time-average AN depends essential-
ly on the dimensionless products of the average transit
time R /u and the rates T(1+a) of the time evolution of
the populations [see Egs. (9) and (13)]. Thus, useful pa-
rameters for description of the ensemble-averaged signals
are the following dimensionless saturation parameters:

ﬂ]’.
G=4——,
' u
and (20)
, 312 R
G'= F i

The last step of velocity averaging in Eq. (12) is calcula-
tion of the integral

f_ ———W (v,)dv, =

P
-0, R+is (21)

where # and .# are real and imaginary components,
respectively, of the probe-beam electric field associated
with the dispersive (#) and absorptive (.#) properties of
the medium.

Finally, we get the probe-beam signal for exactly
crossed polarizers
2

. W) e
Ips~@BV| [ do,—g— [ "AnW (v )dv,
+

o AW(,)
=@p | [ do, = [F(B_)-F(B,)]
® +

=(dB U R*+57) . (22)

It is interesting to note that the saturation parameters
in Egs. (20) are the same as those which are used in stan-
dard steady-state approach G =45?/(y,y,) where in the
low-pressure regime and with long-lived lower levels v, is
taken as the transit rate (y, , being the phenomenological
decay rates of the upper and lower levels, respectively).
This is, however, the only similarity of our calculations
with the standard approach which is incapable of repro-
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ducing the line shapes given by Eq. (22), except for very
weak light intensities where the first terms of power-series
expansions of F(x) could be used.

Because of complicated, nonanalytical integrals in Eq.
(22) the theoretical probe-beam signals have to be comput-
ed numerically. In Fig. 8 several PS resonances are shown
calculated for various values of G’ and for constant value
of G=0.5. For small G’ the PS signal is a Doppler-free
nearly Lorentzian resonance of a width close to the natur-
al (homogeneous) linewidth T" of the investigated transi-
tion. As the value of G’ increases, the resonance line
shape deviates from the Lorentzian one and broadens un-
til, eventually, a dip in its center appears. This is a conse-
quence of a corresponding dip in the An(¢) dependence
which develops for appropriately large values of I,¢ (see
Fig. 7). For not-too-high G’ the dip could be significantly
narrower than the homogeneous linewidth. Further in-
creasing of G’ does not increase the signal amplitude any
more resulting only in a broadening of the central dip.

To complete the discussion of nonstationary VSOP we
will analyze possible complications which may arise if the
given atomic system has several close but distinct lines.

Gl
3
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| 0.01
-2 0 +2
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FIG. 8. Doppler-free PS resonances calculated for saturation
parameters G =0.5 and various values of G'.

In the case of PS such complications are threefold: First-
ly, the optical pumping cycles at each of the transitions
could be mutually dependent; secondly, additional cross-
over resonances may appear because of coupled transi-
tions; thirdly, new interference contributions would ap-
pear in the net signal. The first two complications occur
when the lines are coupled either by a common level or by
spontaneous emission and, in general, require solving
equations much more complicated than in the above
model. The third complication, on the other hand, is
universal in a way in that it occurs for coupled as well as
for uncoupled transitions. In the latter case simple
analysis of the interference effects could be performed
with the help of the model developed in this paper.

If there are n uncoupled distinct transitions which con-
tribute to the net PS signal then the resulting electric field
of the probe beam is

n
E= Y (R +iI)+B+i% ,
i=1
where & +i% is a constant coherent background, which
could be introduced by, e.g., uncrossed polarizers or a
phase retarder between them, and %#; +i.#; are the contri-
butions of each ith line given by Eq. (22).
The net PS signal is then
Ips~ SR+ I+ B+ U +2 3 RR;
' ' W
+2 D I I+BIRAUIS 23)
W ' '

The first four terms in Eq. (23) are symmetrical around
each resonance frequency wg, while the last ones which
arise from the mutual interference between contributions
due to various transitions and from the interference be-
tween the background and atomic contributions are
asymmetrical. As in the standard Doppler-free PS,>* in
the considered case where the transit-time effects are im-
portant the mutual interference also may severely distort
the resulting line shapes. In some cases, however, this dis-
tortion may be compensated by a proper choice of the
coherent background. Another paper'® brings a detailed
discussion of an influence of the interference effects on

the PS signals with subnatural dips in the case of two
close uncoupled lines.

V. CONCLUSIONS

The time-dependent analysis of nonstationary (transit)
effects of velocity-selective optical pumping effects has
been performed with a simple four-level model. It is lim-
ited to weak light intensities but as is well known' % the
VSOP phenomena occur just for weak excitation. As in
Ref. 10, no phenomenological relaxation constants are in-
troduced to account for finite relaxation times, and the
transit-time effects have been obtained as a consequence
of averaging the time evolution of individual atoms mov-
ing in the light fields.

Under appropriate conditions, i.e., existence of a trap
level, suitable interaction times, and strong probe beam,
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nonstationary velocity-selective optical pumping with two
counterpropagating laser beams (tuned to one-photon
transition) may lead to very strong modification (forma-
tion of the dip) in the population distribution of the long-
lived lower-state sublevels with respect to the steady-state
distribution. Such a modification is in turn responsible
for the appearance of the narrow dip in the center of a
homogeneously broadened Doppler-free signal in polariza-
tion spectroscopy. Our results are therefore complemen-
tary to those by Bjorkholm et al.'® who have been prob-
ing an excited-state population in two-photon spectro-
scopy.

It is noteworthy that the dips in PS signals could be sig-
nificantly narrower than the natural linewidth I, and that
they occur in the vapor phase. Most experiments where
subnatural resolution was obtained have been performed
with collimated atomic beams to get rid of the large
Doppler width. Our results illustrate that the use of the
beams is not essential if another Doppler-free technique,
appropriate for a gas phase, is employed.

The appearance of the dip is the most spectacular
consequence of nonstationarity of VSOP. As in the case
described in Ref. 10, its origin has not been immediately
realized. The interpretation based on the first observa-
tions!! with sodium has been refuted by more refined later
measurements.'? Details of those measurements and a
discussion of the properties and possible spectroscopic ap-
plications of such subnatural dips based on the results of
this work are published elsewhere.!® Here we wish only to
point out that the subnatural dips do not allow the resolu-
tion of the lines frequency separation of which is less than
I'. Still, we wish to emphasize the possibility of using the
dips to study, e.g., subtle shifts of isolated lines in a low-
pressure vapor phase with a high resolution or for laser
frequency stabilization.
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APPENDIX: DERIVATION OF THE RATE
EQUATIONS

We start with the density-matrix equation

p:—é[%,p] s (A1)
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where 7 =257y—E-D, and J¢ contains the terms respon-
sible for spontaneous emission from level |0) (Fig. 1). If
the strong-field standing-wave effects are not taken into
account and if the rotating-wave approximation is made,
the elements of p which are responsible for optical coher-
ences could be written as

—_ —i(wt +kz)
Po+=iByr e ’

pO-ziﬁR_e—i(mt—kz)__iﬁ'_R_’_e—-i(wt+kz) , (A2)
where the Rabi frequencies 3,5% are defined in Eq. (3),
R, and r are slowly varying envelopes of the contribu-
tions to the optical coherences due to the probe beam, and
R _ is the envelope of the contribution due to the pump
beam.

In the following we will assume weak intensities of the
light beams and neglect Zeeman coherence p, _. Also
any possible nonradiative relaxation i$ neglected, the only
incoherent parts in the Hamiltonian 5 being related with
spontaneous emission from the |0) state to the lower
states | +), | —),and |1).

Under such conditions the following set of equations
for envelopes r,, R4, and populations n; is obtained
from (A1):

ry=iQ,r,+n,—ngp,

. (A3)

R, =iQ,R_ +n_—ngy,

R~=iQ_R_+n_——n0 s

ho=—B(r . +r%)
—B2(R,+R*%)—BXR_+R*)—-Tny,

ny=Bir +rt)+p,Tngy, (Ad)

n_=B2R,+R%)+BAR_+R*)+p_Tn,,
ri1=plrn() ’

where Q+=8+tkv,—iT /2.

For B, B+ <<T, and ¢ >>T"~! evolution of populations
is much slower than e ~T* and integration of Eqs. (A3) re-
sults in

ro(t)=[ne(t)—n_(1)]/(iQ,),
R ()=[no(t)—n_()]/(i2,),
R_(t)=[no(t)—n_()]/(iQ_),

which substituted into Eqs. (A4) yield readily the rate
equations (4) of Sec. III.
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