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The analytic expressions of the second-order eikonal exchange amplitudes are derived for
electron-hydrogen scattering in both post and prior forms. In the case of the Glauber exchange am-

plitude, these expressions are shown to be reducible to closed forms, The results are applied to the

calculation of elastic e-H(1 s} scattering. Useful conclusions are drawn.

I. INTRODUCTION

In a recent paper' Franco and Halpern showed that the
technique used earlier ' for approximating the Born ex-
change amplitude is not suitable for the eikonal-exchange
amplitude and introduced a new method of approximation
to be used in this case. The justification for the need to
consider an approximation for the eikonal exchange am-
plitudes, even though this amplitude for electron-
hydrogen collision had been obtained in terms of the
two-dimensional integral, was already expounded in the
introductory part of another paper by Franco and Hal-
pem. Besides providing much better approxjmate values
for the amplitude in both the phase and the modulus, the
new method of approximation yields, in particular„an ex-
change amplitude without an unwanted indeterminate
phase contained in the previous technique. ' Essential-
ly, the new method of approximation suggested an ap-
proximate expansion of the eikonal exchange amplitude
around the position of one of the electrons instead of rely-
ing on the Bonham-Ochkur type of expansion2 3 for the

ik (r&-f2)
factor e /~ ri —ri

~
of the amplitude as the previ-

ous technique did. Subsequently, " we pointed out that
the contribution from the so-called electron-nucleus
scattering term to the exchange amplitude is quite signifi-
cant and thereby cannot be excluded in the approxima-
tion. In their subsequent work, *' Franco and Halpern
included the first-order contribution of the expansion to
the approximate amplitude and succeeded in dramatically
improving the accuracy of their analytic approximations.
They showed, in particular, that the contribution from the
electron-nucleus scattering term only starts to become sig-
nificant from this first-order correction and that their
first-order eikonal exchange amplitude can provide both
the modulus and the phase in remarkably good agreement
with those of the exact eikonal exchange amplitude over a
wide range of energies and scattering angles.

In view of the amazing success of the method, it is very
tempting to include the next-order correction to the ap-
proximate amplitude. In this work, we shall, therefore,
obtain the second-order eikonal exchange alnplitude in the
Franco-Halpern approximation. In Sec. II we derive the
analytic expressions for both post and prior forms. We
show that in the case of the Glauber exchange amplitude,
these terms can be put in closed forms which can there-
fore be computed quite easily and fast. In Sec. III we spe-

II. SECOND-ORDER CORRECTIONS
TO THE EIKONAL EXCHANGE AMPLITUDE

The post and prior forms of the eikonal exchange am-
plitude are, respectively, '
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~here rl2 ——rl —rz and q; f——1/k; f. These amplitudes
may be separated into two terms, the electron-electron
(corresponding to 1/r, 2) and the electron-nucleus (corre-

cialize our general results to elastic scattering from the
ground state of hydrogen. Finally, the results of numeri-
cal calculation of elastic scattering in the Glauber approx-
imation are presented with discussion in Sec, IV. It may
be worth mentioning that although the eikonal exchange
amplitude is just one of the many forms used in the litera-
ture to approximate the exchange amplitude, it should, for
the sake of consistency, be employed preferably in the
eikonal and eikonal-related calculations ~here the direct
eikonal scattering amplitude has been known to work re-
markably well for e+--atom scattering at intermediate en-

ergies.
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sponding to 1/r2 or 1/r, ) scattering term.
Following the same procedure of approximation as

described in Franco and Hslpern's papers' we change the
variables of integration from (ri, rg) to either (rip, ri) or
(r&, r&2) and then expand the integrands in 'Eq. (la) and
(lb} amund ri2 ——0 to obtain the second-order correction
for the approximate eikonal exchange amplitudes. For
post exchange the first case was referred to by Franco and
Halpern as case I of the approximation while the second
was referred to as case Ii. With the initial- and final-state
wave functions P; and Pf given in the forms

where D;(iJ„~) and Df(P, A, } are the appropriate differen-
tial operators, we obtain, after some very tedious deriva-
tions, the following expressions for the second-order
correction to the electron-electron scattering term of the
post and prior eikonal exchange amplitudes in case I (the
upper sign is for post and the lower sign is for prior ex-
change),

gf,
" '= Df [(q Vk )(q f+)+2(q Vk )(A+ f+)+(A+ Vk )(A+ f+)] M(q+A+~, p+}M, +z, i'+)

—2yp(q Vk +i,+ Vq)[f+ VqM(q+r+A, ,I3+p, +z,iri+)]
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+y~ i M(k+, 5,2, ig—~)
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~here
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a=A, =O
(3a)

f+ ——Vk M(k+, O, z, ig+—) .

In Eq. (3) we use the same notations used by Franco and Halpern, namely,

k+ =k;, y+ =—}Li,

(3b)

k—:kf, y (4)

Df =D;(p, ,r)Df(p, k, ) .

M( A, d, z, i i)r, K( A, d, 'R, f,i'), and L( A, d, z, f,i') are shown to be expressed in the following forms:
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where the functions u (A, d, a,b) and u( A, d, a,b) are defined as

u(A, d, a,b) =f d8[A +(d+—8) ]'(d+8 i A 2)—
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For the conventional Glauber amplitude where the direction of the inomentum transfer is chosen to be perpendicular to
the z direction (q.'R=O), we succeed in putting both these functions in closed forms. u (q,d, a,b) is expressed in terms of
a hypergeometric function as
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while the method of reduction of U(q, d, a, b) to a closed form and its closet-form expression are shown in the Appendix.
On the other hand, the second-order correction for the el+tron-nucleus scattering is found to be
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In case I' we obtained the following expressions for the second-order corrections to the electron-electron and electron-

nUcleus scattering terms, respectively:
r
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for prior exchange in the case of eikonal exchange ampli-
tude.

III. ELASTIC SCATTERING

l'+ ——Vk M(k „5,z, -i'+)
~

—
& 0. (13b}

It is worth mentioning that with a similar procedure of
approximation, one can also obtain equivalent forms for

terms of the functions K and G only if in the process of
reduction, one performs an integration by parts for the
relevant expressions only once. In the case of eikonal ex-
change amplitude, the latter forms are somewhat easier to
calculate as the functions E and G are expressed in terms
of some one-dimensional integrals only. It should also'be
stressed that the formulas obtained above for the second-
order correction terms are quite general and valid for both
the eikonal and Glauber exchange amplitudes as well as
for arbitrary initial and final states of the hydrogen atom.
It is also easy to verify that there is no post and prior
discrepancy in the second-order Glauber (qJ.z) and eikon-
al exchange amplitudes provided that we choose the z
direction as that of k; for post exchange and as that of kI

gr' —gf —g p kj —kf —k
(14)

Consequently, we have
2 g

q k;= —q.kf —— , q=2k sin—
2

0
kf -k; =k;.kf ——k oos— q-z =0

2 *

k--x=k .z=k cos—.A A
r f

Both case I and case F of the approximation are con-
sidered. The second-order term of the electron-electron
scattering in case I is found to be

In this section we apply the general results obtained
above to derive the second-order 61auber exchange ampli-
tude (qix) for elastic scattering by a hydrogen atom in its
ground state. In this case
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where g y
' is the second-order electron-electron scattering term in case F,
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The second-order electron-nucleus scattering term in case I is

l'g —2

p
6(2) i 6(2)+ 8~i) e(e/2)s(k2) —iy —2

sinh(n g) "'2 cos (i ri+ 1—)q8
2

X I4(iri 1)[u(—q, 2,iri 2,iri)+v—(q, 2,iri 2,i ri)]+(q—'+4)'" '2 '"I, (18)

where h g' ' is the corresponding term in case F and is given by
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In comparison to the first-order terms, these expressions
are also relatively simple. The calculation of these
closed-form second-order amplitudes can, therefore, be
done quite easily and fast.

IV. NUMERICAL RESULTS AND DISCUSSION

For the zeroth- and first-order Glauber exchange am-
plitude we use the results of Franco and Halpern. Equa-

I

tions (16), (17), (18), and (19}are employed to evaluate the
second-order electron-electron and electron-nucleus scat-
tering terms. To verify the correctness of the closed
forms derived for the functions u and v, we have tenta-
tively calculated these functions with the use of both their
closed and integral forms and have found that the two re-
sults of calculation agree with each other within the nu-
merical error of a relative order of 10

In Figs. 1—4 we display the results of our calculations



for the phases and the moduli of the zeroth-, first-, and
second-order Glauber exchange amplitudes at small and
large scattering angles. Except at 100 eV, we present only
the results of case I for small angles since the values for
cases F and I are very close. For large angles and at ener-
gies about 200 eV and above, we display the values of the
moduli of the second-order exchange amplitudes in case I
only since the values of cases I and F are also very close
to each other. The phases of the amplitude at large
scattering angles are, however, presented for both cases I
and I'.

We find that at energies of 200 eV and above, the in-
clusion of the second-order correction terms shows a clear
improvement in the agreement of the approximate ampli-
tude with its exact one at large scattering angles (30'—60')
for both the modulus and the phase. The agreement of
the second-order Glauber exchange amplitude with its ex-
act one is excellent at scattering angles of 30' and smaller.

In general, the second-order values of case I agree better
with the exact ones than those of case E. At lower ener-
gies, the second-order approximati. on tends to overesti-
mate the exact values of the modulus a bit at small
scattering angles while the first-order one tends to un-
derestimate them a bit [see Fig. 2(c)].

At scattering energies of 100 eV and below, the
second-order exchange amplitude worsens the agreement
with the exact amplitude somewhat at scattering angles of
0'—30'. However, in comparison to the zeroth-order ap-
proximation amplitude, the agreement of the second-order
amplitude with the exact one is still very much improved.
In fact, the values of the modulus of the second-order am-
plitude at 100 eV are of the order of 80—90% of those of
the exact amplitude in this range of scattering angles.
The difference between the phases also does not exceed 3'.
It should be warned that the differences falsely appear to
be great with the scale of the graph used in Figs. 1(a) and
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FIG. 1. (a) Elastic e-H(ls) scattering. Comparison of phases of zeroth-, first- and second-order analytic approximations to
Glauber exchange amplitude with those of the exact Glauber amphtude as function of scattering angles (0'—25 ) at 100 eV. ———,
zeroth order; ———,first order, case I; - ~ ~, cond order, case I; ——.—,first order, case I'; --"--, second order, case E;
exact Glauber. (1) Same as in (a) at large scattering angles (20'—60 }and at 100 eV. (c) Comparison of moduli of zeroth-, first-, and
second-order analytic approximations (case 1) to Glauber exchange amplitude arith those of the exact numerical Glauber amplitude as
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l(c). Considering the fact that there is some difference in
the values among the zeroth-, first- and second-order ap-
proximations, and that the zeroth- and second-order ap-
proximations tends to overestimate the values of the
modulus of the exact amplitude at small scattering angles
while the first-order one tends to underestimate them, we
believe that the series expansion used in the method of ap-
proximation seems to converge more slowly at low energy,
but there also seems to be a tendency for the terms of con-
secutive order to cancel each other. The slow convergence
of the series expansion at low energy is also seen to refiect
in the more significant difference between the first-order
values of the phase in cases I and F [Figs. 1(a) and 1(b)].
Although the phases of the second-order exchange ampli-
tude do not agree with the exact ones as well as those of
the first order at small angles and low energies, the
second-order values in cases I and E tend to be more con-
sistent with each other in both ranges of scattering angles,
large and small [see Figs. 1(a}, 1(b} and l(d)]. Therefore
we conjecture that in order to improve the approximate
eikonal exchange amphtude at low energy significantly,

one would need to choose the right place to stop the series
expansion of the amplitude and the next more suitable
stop would probably be at the third-order one. However,
handling the third-order exchange amplitude may be too
tedious a job and it may therefore no longer be worth the
effort to carry out the approximation further. At energies
of 200 eV and above, the second-order exchange ampli-
tude definitely provides an improvement over the first-
order one for both the phase and the modulus of the am-
plitude in a wider range of angles. Thus, the second-order
eikonal exchange amplitude may safely be used in place of
the first-order one for a wider range of scattering angles
and at energies of 200 eV and above.

Equations (16) and (17) show that the second-order
electron-electron scattering term in both cases I and F
falls off as k at large k. Since these second-order terms
also depend on q cos i(8j2) in the form of a factor, it is
therefore expected that their contribution to the second-
order eikonal exchange amplitude increases significantly
at large scattering angles. This is exactly the same situa-
tion one encounters in the first-order eikonal exchange
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FIG. 2. (a) Same as in Fig. 1{a)at 200 eV. (b) Same as in Fig. 1(b) at 200 eV. The first-order values in case F are very close (at this
scale of the graph) to those of the zeroth order and are thereby not displayed. (c) Same as in Fig. 1(c) at 200 eV. (d) Same as in Fig.
1(d) at 200 eV {case I).
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amplitude determination. Therefore, both the first- and
second-order eikonal exchange amplitudes may, as expect-
ed, not work too well at large scattering angles. However,
if one sticks to the small scattering angle area for which
the Glauber approximation is essentially designed, the
Franco-Halpern approximation seems to work remarkably
well, and in general the range of angles where the approxi-
mation is accurate could be extended significantly when
the second-order amplitude is used in place of the first-
order one. It is also possible to see that the difference be-
tween the second-order electron-electron scattering terms
in cases I and F falls off as k . Again, since some of
the terms of the difference depend linearly on q or on
cos (8/2), this difference increases at large scattering
angles and decreases at small scattering angles. Conse-
quently, the approximate values in cases I and I' are al-
most identical at small scattering angles and only differ
significantly from each other at larger angles.

Through Eqs. (18) and (19) one can see that the
second-order electron-nucleus scattering term of both
cases I and F falls off as k . It should be stressed that
although the order of falling off in k ' of this term is
higher than that of the electron-electron scattering coun-
terpart, the contribution from this term to the second-

order eikonal exchange amplitude at lower intermediate
energies is in no way less significant. This is because at a
reasonably low energy, say 50 eV, the value of k ' in a.u.
is about 0.52 and with that value of k ', the reduction of
a term of one or two orders higher in k ' can easily be
made up either by a coefficient of great value of the term
or by the summation of a great number of these terms.
Thus, at lower energies, the leading degree of falling off in
k ' of a term should not be used as an absolute mean to
distinguish the size of that term in the scattering ampH-
tude. A term of higher order of falling off in k ' will be
small in value only when the scattering energy is suffi-
ciently high. Even at these high energies, since many of
these terms of higher order of falling off in k ' also de-
pend linearly on q or on cos 2(8/2), the relative magni-
tudes of these terms should depend as well on whether
they are compared at small or large scattering angles.

In Tables I and II we display the real and imaginary
parts of the second-order electron-electron and electron-
nucleus scattering terms in ease I at 100 and 1600 eV
respectively, while in Table III the real and imaginary
parts of the zeroth-, first-, and second-order terms of the
Glauber exchange amplitude in case I at 100 eV are
shown. We see that the magnitudes of the second-order
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FIG. 3. (a) Same as in Fig. 2(a) at 400 eV. The second-order curve almost coincides with the exact one and is thereby not shown.
(b) Same as in Fig. 1(b) at 400eV. {c)Same as in Fig. 2(c) at 400eV. (d) Same as in Fig. 2(d) at 400e&.
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TABLE I. The real and imaginary parts of the electron-electron and electron-nucleus scattering
terms in the second-order Glauber exchange amplitude at 100 eV (case I). The numbers in the square
brackets are powers of 10.
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—0.714[—2)
—0.534[ —2]
—0.347[—2]
—0.149[—2]

0.687[—3]
0.323[—2)
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FIG. 4. (a) Same as in Fig. 2(a) at 800 eV. The second-order curve almost coincides with the exact one and is thereby not
displayed. (b) Same as in Fig. 1(b) at SOO eV. (c) Same as in Fig. 2(c) at 800 eV. The second-order curve almost coincides with the ex-
act one and is thereby not shown. (d) Same as in Fig. 2(d) at 800 eV.
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TABI.E II. The real and imaginary parts of the electron-electron and electron-nucleus scattering
terms in the second-order Glauber exchange amplitude at 1600 eV (case I). The numbers in the square
brackets are powers of 10.

1

2
3
5

10
15
20
25
30
40
50
60
70
80
90

100

Real part of
e-e term

—0.533[—4]
—0.465[ —4]
—0.366[—4]
—0.127[—4]

0.869[—S]
0.281[—4]
0.351[—4)
0.304[ —4]
0.242[ —4]
0.188[—4]
0.119[—4]
0.871[—5]
0.787[ —5]
0.854[ —5)
0.102[—4]
0.124[ —4]
0.148[—4]

IIIlaglnary pMt.
of e-e term

0.168[—4]
0.163[—4]
0.159[—4]
0.145[—4]
0.144[—4]
0.163[—4)
0.206[—4)
0.230[—4]
0.234[ —4]
0.224[ —4]
0.177[—4]
0.109[—4]
0.258[ —5 J

—0.666[—5]
-0.165[—4]
—0.267[—4]
—0.369[—4)

Real part of
e-S term

—0.624[ —5]
—0.615[—5]
—0.600[ —5]
—0.560[ —5]
—0.513[—S]
—0.446[ —5]
—0.357[—5]
—0.297[—5]
—0.256[ —5]
—0.227[ —5]
—0.189[—5]
—0.168[—5]
—0.156[—5]
—0.149[—5]
—0.148[—5]
—O. I S2[—5]
—0.161[—5)

Imaginary part
of e-N term

0.110[—6]
0.102[—6]
0.919[—7]
0.678[ —7)
OA98[ —7]
0.462[ —7]
0.942[—7]
0.174[—6]
0.262[ —6)
0.349[—6]
0.512[—6)
0.664[ —6]
0.813[—6]
0.965[—6]
0.113[—5]
0.132[—5)
0.154[—5]

electron-electron and electron-nucleus scattering terms at
100 eV are of a comparable size despite the fact that the
electron-nucleus term falls off two orders of k ' faster
than the electron-electron one. Only at high energy (1600
eV) when the order of falling off in k '

plays an impor-
tant role in the classification of the magnitude of a term
that indeed we find the values of the electron-nucleus
scattering term to be of either one or two orders smaller
than those of the electron-electron scattering term as ex-
pected. Table III indicates that the magnitude of both the
real and the imaginary parts of the second-order term at
lower energy are comparable to those of the first-order
one (slow convergence of the series at low energy). Furth-

ermore, the real parts of the second-order term are oppo-
site in sign to those of the first-order one at scattering an-
gles up to 70' (i.e., of the same sign as those of the
zeroth-order one). Consequently, the contribution from
the second-order term cancels out a part of the contribu-
tion from the first-order one and thereby worsens the ac-
curacy of the approximate amplitude at low energy some-
what as was already discussed above. Because of the dras-
tic increase in the degree of complexity of the expressions
of the terms of order higher than the second in the
Franco-Halpern expansion, it is difficult to check to see
how far one could go on with the inclusion of these
higher-order terms without encountering some divergent

TABLE III. The real and imaginary parts of the zeroth-, first-, and second-order terms of the approximate Glauber exchange am-
plitude at 100 eV (case I). The numbers in the square brackets are powers of 10.

Angles
(deg)

1

2
3
5
7

10
15
20
25
30
40
50
60
70
80
90

100

Zeroth order

—0.381
—0.380
—0.378
—0.371
—0.362
—0.344
—0.305
—0.261
—0.216
—0.176
—0.113
—0.716[—I ]—OA58[ —I]
—0.300[—I ]
—0.202[ —I ]
—0.141[—I ]
—0.102[—I ]

Real parts
First order

0.1068
0.1065
0.1059
0.104
0.101
0.959[—I ]
0.844[ —I ]
0.718[—I ]
0.599[—I ]
0.496[—I J
0.352[—I ]
0.276[—I ]
0.243[ —I ]
0.234[ —I ]
0.237[—I ]
0.244[ —I ]
0.253[ —I J

Second order

—0.575[—I )
—0.572[ —I ]
—0.569[—I ]
—O.S57[—I ]
—0.539[—I )
—0.506[—I ]
—0.435[—I ]
—0.361[—I )
—0.293[—I J
—0.238[—I ]
—0.164[—I ]—0.120[—I ]—0.835[—2]
—0.409[ —2]

0.106[—2]
0.677[—2]
0.123[—I ]

Zeroth order

0.1154
0.114
0.113
0.110
0.104
0.938[—I ]
0.720[ —I ]
0.492[ —I )
Q.288[ —I ]
Q. 125[—I J

—0.768[—2]
—0.159[—I ]
—0.179[—I ]
—0.173[—I ]
—0.158[—I ]
—0.142[—I ]
—0.126[—I ]

Imaginary parts
First order

—0.217[—2]
—0.215[—2]
—0.213[—2 J
—0.205[ —2]
—0.196[—2]
—0.185[—2]
—0.194[—2)
—0.262[ —2)
—0.400[ —2]
—0.594[—2]
—0.106[—I ]
—0.151[—I ]—0.186[—I ]
—0.212[—I ]
—0.230[—I ]
—0.243[ —I )
—0.254[ —I ]

Second order

—0.349[—2]
—0.343[ —2]
—0.334[—2)
—0.304[ —2)
—0.259[—2]
—0.164[—2]

0.559[—3]
0.333[—2]
0.632[—2]
0.913[—2]
0.130[—I ]
0.138[—I ]
0.116[—I ]
0.704[ —2]
0.101[—2]

—0.595[—2]
—0.134[—I ]
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term of the expansion series (if there should be any). It is
also not obvious by a direct examination of these terms
whether the expansion series converges or not. However,
the numerical values obtained for the first few terms of
the series as shown in Table DI do sean to indicate that
the series converges though somewhat more slowly at
lower scattering energies. Regardless of whether some of
these higher-order terms diverge or not, we believe that it
may no longer be worthwhile to carry out the Franco-
Halpern approximation beyond the second-order one in
view of the tremendous complexity required in the deriva-
tion of these terms of order higher than the second.

((z)„(p)„
u(q, d, a,b)= ——ds+'g, ( —1)"

T

d2 2n —(.5+ 1)

Since q /d ~ 1 and the signs of the consecutive terms of
the series are opposite alternatively, the series in Eq. (A5)
converges quite rapidly and the numerical computation of
u(q, d, a,b) can therefore be done quite fast. If q /d &1,
we change the variable of integration to z=q2/x2. The
function becomes

I wish to thank the Natural Sciences and Engineering
Research Council (NSERC) of Canada for financial sup-
port of my research projects with Operating Grant No.
A-3962. I also wish to thank the Royal Society of the
United Kingdom and NSERC of Canada for a research
grant under the Anglo-Canadian Exchange of Scientists
Scheme which made possible my visit at Royal Holloway
and Bedford New College (University of London) where a
part of this work was carried out. The kind hospitality
that I have enjoyed during my stay at the College is grate-
fully acknowledged.

u(q, d, a,b) = — q'+' . .2F, (n,P;y; —z)
q2/d2

Xz
—(5+3)/2dz (A6)

q 2/d2
Py —) -"+""d

(A7)

Next, we write

u(q, d, a,b)

I qs+1 F (~ P.y. z)z —(5+3)/2dz
00

25 O
P ]

This appendix shows how the function u(A, d, a,b)
reduces to closed form in the case of the Glauber ex-
change amphtude. The function u ( A, d, a, b) is defined as

u(A, d, a, b)= f d8 f dg[A'+(d+8+P)']'

x [d+8+/ i A:R]—

After setting a=A, =O and considering q z=O, the func-
tion reduces to

u(q, d, a,b}=f d8f dP[q +(d+8+P) ]'
x(d+8+((}) '.

The integration over P can be performed using a known
integral formula' and the function becomes

T

00

u(q, d, a,b)= —— dxx 2Fi a,P;y;—

I'(a+s)I'(p+s)I (y)l ( —s)
I'((2)I'(P)l (y+s)

where s =(5+1)/2. For the second integral in Eq. (A7)
we use a transformation formula for the hyperg(ximetric
series and put it in the form

f q2/Q2 F (a P y z)z "+""—dz-
I (y)I'(p-a) ~'/e' 5,

2Fi (Q (p pig yi p r )dlI I y —a

1(y)I (a-P} ~'/e' 5,+ r 2F1(+2 p2 y2

where

(A9)

The first integration can be carried out straightforwardly
by applying an integral formula'

,F,(a,P;y )z "+""—dz-

b —1 5+15=2a+1 b, a= —a, P—= —a, y=

(A4)

5( ——a+s —1, 52 p+s —1, ——
cx ) =A', P) =cx + 1 —y,
yl =~+1 p, ~2=p, —

p2= p+1 yy2= p+1—
(A10}

Two cases are to be distinguished here. If q /1 & 1, us-
ing a series representation for the hypergeometric func-
tion, we obtain by integrating over x,

Finally, by using the series representation of the hyper-
geometric functions in Eq. (A9), we obtain, after an in-
tegration over t is carried out analytically,
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1

n +5t+1

q2/g2
,F, (~,P;y; z)—e "-+""dz

r(y)r(p —tz) dz ' " (&1) (pl) „d' 1
( —1)"

r(p)r(y —a) q'- „o (yt) n! q2 n+5i +I

r(y)r(a —p) d (tr2) (p2) „d
r(a)r(y —p) q' „o (y2) n! q'

(Al 1)

Since both series in Eq. (All) converge rather rapidly, the numerical computation of the second term of Eq. (A7) can
also be done quite fast In. summary, when q /d & 1, the closed-form expression for v(q, d, a,b) is

v(q, d, a,b)=— 1 s+, r(tz+s )r(p+s )r(y) r( —s)
25 1 (a)1 (p)I'(y+s)

( —1)"r(y)r(p-u)
r(p)r(y-tr) q' „o (y~)„n!

r(y)r(a —P) d' ' " (~2).(P».
( —1)"

r(tt)r(y-p) q' „, (y2)„n!

d
2

d2
2

n+5, +1

n +5t+1 (A12)
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