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Dissipation of energy in the damped har-raonic oscillator
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A canonical description of a harmonic oscillator with energy dissipation is sought which combines

the advantages of the Kanai-Caldirola Hamiltonian and a simple model of strangulation previously

considered by the authors. The treatment is in the Heisenberg picture of quantum mechanics or al-

ternatively in classical mechanics. A strangulation p is superimposed on the damping (or growth) y,
represented by an oscillator mass m (t)=rnoexp(2yt). In general, the expected dissipation of energy

occurs only if P& f y f. If P& f y [ the attempted strangulation induces a long-term growth in ener-

gy unless a special initial motion is chosen. A sbght deviation from this initial motion results in a
temporary decay in energy followed by growth. P &0 always induces a growth in energy.

I. INTRODUCTION

In the last few decades much attention has been paid to
the subject of damping in a quantutn-mechanical system,
idealized as a harmoruc oscillator. In many treatments
the damped oscillator is regarded as an open system in
which energy is dissipated by interaction with a heat bath
or by Brownian motion. ' " On the other hand, consider-
able effort has been made to construct a satisfactory
closed canonical model of an oscillator with friction, 't
the most generally accepted description being via the
Kanai-Caldirola Hamiltonian' '2

The disadvantage of the Hamiltonian Ho;„ is that the
equation of motion for the coordinate is

q'+2pq+co (t)q =0, co(t) =cope

rather than the usual Eq. (2). The solution of Eq. (7) is
discussed in Ref. 22. The system may be termed the
strangled oscillator.

In the present paper we shall examine an exactly solv-
able model which is more fiexible and which can, under
favorable conditions, combine some of the advantages of
HKC and Bliss

HKC(t) = ,'p /m—(t)+ ,
' m(t)coctq— (la)

in which the mass of the oscillator is given a growth fac-
tor

II. MODEL FOR DAMPING %'ITH ENERGY
DISSIPATION

m(t)=moe r' (y)0) . (lb)
I.et us consider the modified Kanai-Caldirola Hamil-

tonian

This leads to the well-known equations of motion in either
classical mechanics or the Heisenberg picture of quantum
mechanics,

g+2gg+QP(@=0,

p 2Yp+coap=0 .—
(2a)

(2b)

The disappointing feature of the model is that the energy
exhibits only a cyclic variation without dissipation. ~' The
expectation value of the energy in a state

~

f'l has to be
calculated from the ansatz's's

(3)

A naturally dissipative system is described by the Ham-
iltonian

Hg;„(t)=e ~'( —,'P /mo+ —,
'

mococsq ) (P) 0)

for which

dH/dt =dH/dt = 2PH . —

Thus, instead of Eq. (3), we have the more satisfactory
formula

E( t)= ( 1P
~
Ho;„~ @)=e 'P'(

I/J
~
Ho;„(0)

~ y) .

Hctt(t) =e ~'HKc(t) (p) 0) (8)

To investigate the time variation of Hctc we introduce the
operators

L=e ~'[ —,'p /m(t) —,'m(t)cooq ]j, —

S=—,
'
(qp+pq) . (12)

Then we obtain the following coupled equations for
H —HCK e

where we attempt to impose some dissipation in an obvi-
ous way. We shall examine the asymptotic dependence of
HcK on the time for pt y&1. The Heisenberg equations
(or Hamilton equations in classical mechanics) are

q =dH/dP =e ~P /m(t) =e '~+r "P/mo, (9a)

p = BH/dq = —e —~'m(t)cooq = —e 2'~ ""mocooq .

(9b)

Elimination of p leads to the equation of motion

q+2(p+y)q+co (t)q =0, co(t) =cove
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dH/dt = t}H/dt = 2pH 2—yL,
dI. /dt =aL /at+(tr) '[-L,H]

2PL— 2y—H 2c—ope ~'S,

dS/dt =BSjdt+(i') '[S,H] =2L .

(13a)

(13b)

(13c)

(D+2P)(D —4y )H() ———4P)pe ~'DHp . (16)

In the case of the strangled oscillator (y =0) Eq. (16) is sa-
tisfied simply by DHp 0, i.e.,——H(t) =H(0)e ' as given
by Eq. (15). In the case P=O, Hp Hand ——Eq. (16)
reduces to

(D2+4p)2)(DH) =0 (~2=top2 —y'),
which is not satisfied by DH =0, but by the full solution

In the classical case S becomes qp and we replace
( at)-'[A, H] by (aA jaq)aH jaq (aA—jaq)aH jaq, with
A =L or S, to obtain formally the same Eqs. (13).

The elimination of L and S from Eqs. (13) leads to the
third-order equation for H,

(D+4p)[(D+2p) 4y ]—H = —4cope ~'(D+2p)H,

(14)

where D=d/dt. Writing

H(t)=e 2t"Hp(t),

Eq. (14) simplifies to

III. SOLUTION OF THE EQUATIONS
OF MOTION

It is convenient to make the scaling transformation

Q=qey', P=J2e (22)

=e 't"-( 2P'-/m, + ,'m-p~pg')+ ,'y(-gP+Pg) .

A change in time scale
tt~y= f e ~'dt'=(I —e t")/(2P)

0

transforms the Hamiltonian K to

«Q P y)= 2P'jmp+ 2mp~pg2

+ ,' y(—1 2') —'(QP+PQ) .

(23)

Let us denote differentiation with respect to y by a prime,
then Eq. (25) gives the equations of motion

Q'=(ih') '[Q,17]=Pjmp+ygj(1 —2'),
P'=(i%) '[P, l(.']= mptopg —yP/(1 —2') .—(26b)

The elimination of P leads to the equation

d Qldd+[co() —y(y+2p)l(1 —2') ]Q=0. (27)

then (cf. Ref. 18) the Hamiltonian given by Eq. (8)
transforms to

X=H+aP jat

HKC =A cos(2(ot )+Bsin(2(ot)+C,

where we may identify (cf. Ref. 18)

A = —y(cop jto} S(0},

(18a) We write

Q=x)«u, x= 1 2Py=e—

then Eq. (27) assumes the form of a Bessel equation

B= —(y /(o)L (0),
C=((op/co) [H(0)+yS(0)] .

(18b)
dv 1 du o

X dx 4p2
+— + (p+y)'

4px
(29)

The asymptotic time dependence of H may be exam-
ined by making the transformation x=e ~'. Then Eq.
(16) takes the form

with the solution

u=AJ„(kx)+BJ „(kx), (30a)

x P (XHp" +2Hp') x(y xcop)H—p+y H—p=&, (19)

where a prime indicates differentiation with respect to x.
Large values of t correspond to small values of x. How-
ever, it should be noted that we cannot sensibly put p=0
in Eq. (19) since the transformation breaks down in that
limit. Seeking a series solution

where (in quantum mechanics) A and B are arbitrary
time-independent self-adjoint operators and

v= 2(p+y) jp, k=--2(~pjp) . (30b)

We assume that v is not an integer. From Eqs. (22), (28),
and (30) we have the full solution of Eq. (10) in the form

Hp(x)= g (2„X"+
r=0

(20) q =e (t'+y"[AJ (ke -2t'()+BJ „(ke-2t'()]-(31a)

we find @=1 or +ylp and hence three possible asymp-
totic forms for H =HCK given by Eq. (15),

cf. Refs. 24 and 25, where a different approach is used.
The momentum p is calculated from Eq. (9a). In the case
when v is not an integer we find

H(1)(t) & )e —4t)
Qo 8

H(2)(t) & (2)e 2(y+P)t—

H(3)(t) g(3)e2(y —t))(
Qo e

(21)

These modes of decay (or growth) will be seen again in
Sec. V.

p =mpcop(e 'P « "[AJ (ke ~')+BJ „+)(ke ~')]

2mp(p+y)e(~+y"A—J (ke ~'),

where we have used the identity

zJ'„(z)=vJ~(z) —zJ„+)(z) .

(31b)
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If v =n, an integer, then Eq. (31a) must be replaced by

q=e '~+r"[AJ„(ke ~')+CY„(ke ')],
with an appropriate replacement for Eq. (311).

IV. LIMITING CASES

A. Limit y~O

(33)

V. BEHAVIOR OF q, p, V, T, AND HCK
FOR LARGE VALUES OF THE TIME

In Sec. IV A, when y~O, 0~K ~Hd;„giving the stran-
gled motion as discussed in Ref. 22, when in general q and

p "freeze" to finite nonzero values (with q~o) as t~ oo.
The time dependence of the energy (represented by the
Hamiltonian) is very s1mply

We may easily check that when Y~o, Eq. (31a) yields
the solution of Refs. 20 and 22. From Eq. (301) we see
that in this case v~ —, and

r

H(t) =e ~'[ —,'P (0}/mii+ —,
'

mocooqz(0)],

cf. Eqs. (5) and (6},which may be expressed in the alterna-
tive form

q=e AJixz e +8J—(ini
—pt ~o, -2ti ~o»~

H(t) =e -»'[-,' p'( ~ )/mo+ —,
'

mo~o~q'( ~ )] (39b)

Using the formulas

Ji&2(z) =(2/mz)'~'sinz,

J iigzi(z)=(2/irz) cosz

Eq. (34) becomes

(34)

(35)

No Q)0
q=A'sin e ~' +8'cos e

2P 2P
(36a)

q =A
"cos(coor) +8"sin(amor),

Then with r given by Eq. (24} we may rewrite Eq. (36a) in
the form

when we use Eqs. (16a) and (16b) of Ref. 22.
On the other hand in Sec. IV B, when P~o,

Hcx ~Hxc giving Eqs. (2a) and (2b), which are the gen-
erally accepted equations for damped harmonic motion.
A feature of such motion is that q~o and p~ao as
t~ao if Y &0, or q~ oo and p~o if Y &0. The Hamil-
tonian is given by Eqs. (18a) and (181) and shows oscilla-
tory behavior.

In the genera1 case we sha11 now show that a dissipation
in H occurs only if p&

~ Y ~, unless a specially favorable
initial motion is chosen. Then dissipation may be induced
for P& )Y ).

Let us consider the asymptotic behavior of q(t) and
p(t) Using. the asymptotic form

which identifies with Eq. (15a) of Ref. 22 when we write J (ke ~')-( —,'ke ~')"/r(v+1) (v&0), (40}

a"=q(0) and 8"=p(0)/(motto)

B. Limit P-+0

It is more difficult to see that Eqs. (31) give the well-
known damped harmonic osci11ator solution in the limit
P~o. From Eq. (30b) we see that in this case both v and
k becoine infinite and we require an asymptotic form of a
Bessel function of large argument and large order. The
formula required is more speciahzed than the standard
one found by the method of steepest descents. In Ap-
pendix A we show how the method of stationary phase
may be used to establish that as P~o+

' 1/2

Eqs. (31a) and (311)give, when Pt »1,
q(t)-A[r(v+ I)] '(k/2)'e '~+ "

+8[I ( —v+ 1}] '(k/2)

p( )t- m, I~[r(v+2)]-'(k/2). +'e »- (4 la)

+8[r(—v+2}] '(k/2) "+'e

—2mo(P+Y)A[r(v+1)] '(k/2)", (411)

where v and k are given by Eq. (30b). We always suppose
P» 0 and we note that as t~ ao

q(t)~q(~) (Y&0, any p/Y or Y&0, p&
~ Y ~

),
-z@e- -2

%CO
cos

p(t)~p(ao) (3 &0, p& Y, or Y&0, any p/~ Y ~
),

(42a)

+cot+it/4, (37)

q(t) =e "'[a cos(tot)+6 sin(tot)], (38)

with the identification' a =q(0), b =p(0)/(moto)
—Yq (0)/oi.

where cos8o ——+Y/~o (0 & i9o & ir} and oi =coo—Y . Using
Eq. (37) it is easy to see thatas P,~O, Eq. (31a) leads to

q(t)~~ (Y&0, p& ~Y~),

p(t)~~ (Y&0, p&Y)

(42c)

where q( Do ) and p( ao ) are constant operators. Equations
(42a) and (42b} compare with the limiting case A, whereas
Eqs. (42c) and (42d) agree with the case B.

The expectation values of q and p have the following
asymptotic forms in terms of the operators A and 8:
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( )
(8) k

I ( —v+1} 2
=&q( )) [q,p]=iA~[A, B]=ilia, a= I {v+1)I( —v+1)

2mo(P+y)

(y&0, any P/y or y&0, P& Iy I
), (43a)

V

&q&- — ."~ ~-'" (y o, p IyI), (43b}
I (v+ I) 2

2mo(P+y)(A )
p I (v+1) 2

= p(co)

{y&0, P& y, or y &0, any P/ I y I ),
' —@+1

no0(8 & k
~ p)pP—I"(—v+2) 2

(43c)

(y&O, P&y) . (43d)

b8 k

I
I ( —v+I)

I
2

=hq(oo)

(y & 0, any P/y or y &0, P» I y I
), (44a)

V

bA k 2(~r~ p),

I
I'{v+1)

I
2

We have taken expectation values since we are con-
cerned primarily with quantum mechanics. On squaring
Eqs. (41a) and (41b) for the operators q and p before tak-
ing expectation values we obtain corresponding results for
(q) and (p) in terms of (A) and (8). Similar results
apply for the uncertainties b A and ddt, thus

b.qbp —
I
a

I
'b, AM & —,'R. (48)

If both the equahties bq(0)bp(0) = —,
'

i}l
I
a I,

hA~= —,i}I Ia I
hold, then bqhp= —,i}I still holds as

t~ oo. An initially coherent state can remain coherent at
all times in the case p& I y I, but not otherwise. As may
be seen from Eqs. (45a) and (45b), the cases p& I y I

and
p& I y I

are fundamentally different and we shall now
discuss them in turn.

A. CaseP& IyI

Let us take the Harniltonian H =HCK given by Eq. (8),

T+ V ~2e —2(P+y)t+ I ~ 22e —2(f3—y)t
27tl p

(49)

substitute the asymptotic forms given by Eqs. (41a) and
(4lb) for q and p and take expectation values. Then for
times such that pt »1 the following dissipative asymp-
totic forms are found:

which gives rise to the Heisenberg uncertainty relation

D, AEB& , fiI a—I (47)

Equation (45a} may be written in the form

(y&0, P& Iy I ), (44b)

2~0
I p+y I

~Ahp-
I
I {v+I)

I
2

=4p( oo )

( H(t) ) ——,motto(q ( oo ) )e

=&v(i)& {y&o),

(H(i)) -(2mo) '(p'( ))e

(50a)

(y &0, P&y or y &0, any P/I y I ),
—@+1

k
2

iii OCOo8

I
I {—v+2)

I

""-"'(y o, p y}.

From Eqs. (44a) and (44c)

2iiio(P+ y }

I
I {v+1)I( —v+1)

I

=hq(oo)bp(oo) (y&0, P&y) .

From Eqs. (44a) and (44d), however, we obtain
' —2++ 1

PPl OQPO kLqhp- (b,B)+1)I ( —+2)
I

2

Xe"r ~" (y&0, p&y) . (45b)

Results similar to Eqs. (45a) and (45b) hold in the case
y~0.

From Eqs. (31a}and {32b)as shown in Appendix B,

=(T(i)) (y&0),
where, cf. Eqs. (43a) and (43c),

(50b)

(q (oo)) =[I ( —v+I)] (k/2) "(8 ),
&p'( )&=4 o'(p —IyI)'[I"( +1)] '(k/2)'"&A') .

(50c)

(50d)

When once Eqs. (42a) and (42b) have been established,
then Eqs. (50a) and (50b) are obvious froin Eq. (49).
These decays may be identified with the second and third
modes of Eq. (21).

B. caseP& IyI

Rather surprisingly, we find that if p&
I y I, an im-

posed strangulation produces in general just the opposite
effect. Let us consider first the classical aspect. Substi-
tuting Eqs. (41a) and (41b) into Fq. (49), with y &0, we
see that the last part of q leads to a growth in 0 propor-
tional to e~'" ~", the third mode of Eq. (21). To avoid
this growth we have to take 8=0; similarly, if y &0, we
have to take A =0. Then we find
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i.e., a switch to the second mode of Eq. (21). Provided the
initial motion is chosen carefully, an infinitesimal
strangulation induces the Kanai-Caldirola Hamiltonian
ultimately to decay at the proper logarithmic rate
H/H = —2y, as in Eq. (5). In this case Eq. (10) gives an
equation of motion almost identical with the standard Eq.
(2a) for damped motion. The Hamiltonian may be con-
sidered to represent the energy and Eqs. (Sla) and (Slb)
give

or

I +P~ (Pt I P

Ep —,
'
p——( oo ) /m p ( y & 0)

Ep —,
'

m pro pq (——oo ) ( y & 0) .

(52a)

(52b)

This replaces the unsatisfactory distinction between Ham-
iltonian and energy in Eq. (3).

There are, however, two serious difficulties. Firstly, the
smaller we make P the longer we must wait for Eq. (52) to
apply and by this time the solution of Eq. (10) may differ
appreciably from the solution of Eq. (2a). Secondly, we
must consider the practicability of making 8=0 (or
A =0) by a choice of the initial motion. To make 8 =0
we need to choose the initial velocity to satisfy the rela-
tion

q(0) =p(0)/mp

tpp[J„'(k)/J„—(k)+v/k]q(0), (53)

where we have used Eq. (32). Such precision is not feasi-
ble. If Eq. (53) is not exactly satisfied there may be
asymptotic decay for a titne, followed by growth as we
shall discuss next.

Turning our attention to quantum mechanics, let us

suppose that y &0 and the system is initially in a slightly
fuzzy eigenstate of the operator 8 with eigenvalue zero.
Since 8 is independent of the time the state remains sta-
tionary and

(8)=0, M =e (e small} for all t . (54a)

H(t)-(2mp) 'p (oo)e 'P+y" (y&0, 8=0, pt»1},
(51a)

H(t)- —,'mptopq'(oo)e "P+I"I" (y&0, A=0, Pt»1),
(51b)

fact that (A8+8A ) has some constant value which does
not depend appreciably on e, we obtain

(H)-(x/e )e 'P+y"+ye P'+ze e 'y

+(u/e2)e &~3—P+y)&+De 4—Pt+~p 2(y P)—t

(56)

where x,y, z, u, 0, itt are constants independent of e T.he
third and sixth terms grow, but by making e sufficiently
small they can be made not to exceed any agreed amount

up to a fixed time tz, greater than a time t& that satisfies
13t»&1. Then during the time interval (t, , t2) the expec-
tation value of HcK decays according to the first term in

Eq. (56). By making e~O we can make tz~oo. P&&y
gives the correct decay rate of 2y as discussed in the clas-
sical case. Similarly if y &0 the roles of A and 8 may be
reversed to obtain a decay at rate 2

I y I
.

The difficulties that we noted in the classical case are
still present: how to construct an eigenstate of the opera-
tor 8 (or A), how long to wait for decay to occur and how
well does q(t) represent damped harmonic motion? A
characteristic of damped harmonic motion is that q~O
as t~ oo and with our model we see from Eq. (41a) that
this occurs if 8=0. This is an indication that the q
motion is essentially right.

Looking back at the classical case, it is clear that if we
make 8 small rather than zero by only approximately
satisfying Eq. (53), then HCK will decay in a time interval
(t„tz) and then grow.

VI. EFFECT OF P&0

%'e have seen that, unless we prepare the system very
precisely in a state favorable to decay, a slight strangula-
tion 0&P& I y I

leads to growth. This has led us to in-

vestigate the effect of P & 0. It might happen that the at-
tempted imposition of a growth leads to decay.

We take, instead of Eq. (8)

H=e'I PI'H„, (P&O) .

Equations (31a) and (31b) still give q(t) and p(t) and Eqs.
(30b) give k ( & 0) and v (assumed not an integer}. Thus

e~ IPI y~t[AJ (ke—2IPIt)+8J (ke2IPIt)] (58a)

p =mptope' I PI+""[AJ +, (ke'I P')+8J, (ke'IPI')]

+2m, (
I p I

—y)e-'IPI -y "AJ„(ke'IPI'), (58b)

The operator A has a certain expectation value with large
dispersion

k = —
2 (~p/ I & I

) v= 2 (
I & I

—y)/ I P I
. (58c)

( A ) =A, t5.A & —,fi
I
a

I
/e for all t,

where we have used Eq. (47). It follows that

(8') =e', (A') & ,'fi'a'/e . —

(54b)

(55)

As t~ oo we need the asymptotic form of J„(z) for large

J„(z}-2(nz) ' cos(z —,
' vm. ) (v &0} . —

We square the asymptotic forms of q and p given by Eqs.
(4la} and (41b) and substitute into Eq. (49). Taking ex-
pectation values and using Eqs. (55), together with the

Then Eqs. (58a), (58b), and (59) give the following asymp-
totic forms for

I P I
t »1:
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TABLE I. Asylllptotlc behavior of q (t) slid p (t) ffonl Eqs. (41a) slid (41b}for y & 0 slid p & y F. or

y & 0 and p &
~ y ~

8 is replaced by A and the roles of q and p are interchanged.

Behavior for large values of the time (Pt »1, y&0}

General motion
. (8 =0}

Special motion
(8=0 or (8)=0, ~=e}

q~q(oo) (finite, nonzero) q~0 as for Hd;„
phoo as for HKC

q~O, q~O as for Hzc
p~p((x) ) (finite, nonzero) as for Hd;„

q(t)-2(sr ~k
~

)
' e r[A cos(ke ~ '—'vn)+—8cos(ke'I~'+ 2')],

p(t)-2rnotoo(2r
(
k

( )
'~ er'[A cos[ke I~I' ——,'(v+1)2r]+8cos[ke I~I'+ —,'(v —1)2r]

+(2A/coo)(
~ p[ —y)cos(k 'I~' ——'v2r)J .

(60a)

(60b)

H(t)-P (t)e I Pl (
~
P ~

t &&1) (61)

where E~(t) is rapidly oscillating, but bounded. Thus

P & 0 cannot lead to energy dissipation.

VII. CONCLUSION

As discussed in Sec. I, the Kanai-Caldirola oscillator
described by the Hamiltonian Hxc of Eqs. (la) and (lb)

We note that as t~()0, q~O, @~00 if y&0, or q~ao,
p~O if y&0, which is the same behavior as for the
Kanai-Caldirola oscillator or the damped oscillator. Un-
like the case when P& 0, the A and 8 terms in both q and

p have similar time dependence and we cannot prevent a
growth in H by putting either A or 8 equal to zero. Sub-

stituting Eqs. (60a) and (60b) into Eq. (49) we obtain

has the same equations of motion for q and p as the
damped harmonic oscillator, yet the cycle-averaged expec-
tation value of Hite remains constant. ' We expect this
situation to be unstable ~ith regard to time-dependent
modifications in Hite. We have studied the effect of
multiplying HKC by the factor e ', where P( &0) is re-

ferred to as a strangulation. This could be expected to in-

duce a decay in H. Unless a very special initial motion is
arranged decay occurs, in fact, only if P &

~ y ~

.
An interesting situation arises when II2'&

~ y ~

. In Table
I we compare the asymptotic behavior of q and p given by
Eqs. (4la) and (41b) in the general motion (8+0) and the
special motion (8=0) when y & 0. In the general motion

q shows strangled oscillator behavior and p behaves as in

damped harmonic motion. If we arranged that 8=0 (or
the equivalent in quantum mechanics) q goes to zero, as in

TABLE Il. Asymptotic behavior of (Hcx(t}) for
~ P ~

t &&1. Hcx=e 'Hxc, where HKc is the
Kanai-Caldirola Hamiltonian given by Eqs. (1a) and {lb). (q „)and (p2„) are given by Eqs. (50c}and
(50d).

P&0

y&O

Case A: P& ~y~

2 mo(00( q ~ ) e

Decay

Case B: P& ~y)

General motion (8&0)
—,
'

mo(0(')(q'„& e2()'-@'

Growth

Special motion ((8)=0, 68=e}
I

) e 2(t)+)')t-
2m0

(t, ~ t g t„ t2~ ~ as e~O}
Decay

1 ( 2 )e —2(t)—(r()tp e

Decay

General motion (A&0}
2 ) e2(() (

t))t-
2fPl 0

Special motion (( A ) =0, hA =e}
—2'mon)(')(q2„&e 2(s+'r("

(t 1 ~ t & t2, t2~ ao as e~O}
Decay

P&0

Kanai-Caldirola oscillator (Hxc(t}),l,(„„——const for all values of t

(HcK( t})cyt(g gy (Hcx(0 })e 'Grhowt
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damped motion, while p goes to a fuute nonzero limit as

in the case of the strangled oscillator. If y &0, then the

roles of q and Il interchange. The situation is summarized

in Table I.
Ho@eever, our primary interest is in a decaying Hamil-

tonian HCK, so that it may represent the energy. In Table
II we summarize the behavior of (HcK(t) ) for Pt »1.
For completeness we include the cases P=0 and P &0.

The surprising outcome of our investigation is that

P &
~ y ~

is necessary to ensure decay when the initial state
of the oscillator is arbitrary. A smaller value of P actual-

ly causes (H(t) ) to grow, as would a negative value of P.
If, however, the oscillator is prepared in a favorable state,
then the Hamiltonian oscillates I'cf. Eq. (1S) for HKc] and
shows a decay after a sufficient lapse of time. 'The small-

er P is, the longer we must wait for the eventual exponen-
tial decay. Obviously, there is continuity from Hxc (i.e.,
HcK,P=O} to HcK (P «cop) for finite times.

As discussed in Ref. 22, the Hamiltonian Ho; given by

Eq. (4) provides a satisfactory energy decay but Eq. (7)
shows that damped harmonic motion as in Eq. (2a) is not
followed. The Hamiltonian Hcx given by Eq. (S) with

P « y provides a more satisfactory model because accord-
ing to Eq. (10) the correct damped motion ensues for
small values of the time and, if the motion is started off in

the right way, the Hamiltonian will eventually decay to
zel o.

Jl = cos (yH —copslnH)
p 2p

Xcos(copt sinH)d 8, (A4b}

Jz = sill ( yH —copslnH )
0

X sin(copt sinH)d 8 .

We assume y & cop (undercritical damping), then the func-
tion h(8)=y8 —copsin8 has a unique maximum in (O, lr)
at Hp given by

NOCOSHO=Q .
Also

copsinHp —(coo' —y )'2 1/2

(A5)

(A6)

Xcos h(8p)+—1
(A7a)

Hence the method of stationary phase gives that for
P~O+

' 1/2

J1 „cos(copt sll18p)
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APPENDIX A: TO ESTABLISH Eg. (37)

The following proof is for Jr~ztl(cope ~'/2p); that for
J—y/2p 1s slmllar.

A well-known integral representation is 6

Similarly
' 1/2

J2 — „sin(copt sinHp)
4mp

p

X sin h (Hp) +—1

' 1/2

J1
—Jl — „„cos h (8p) +copt sinHp+-

p

(A7b)

1
J„(z)=— cos(vH —z sinH)dH

Sill( v tr)'
which gives

(A 1)

(AS)

Since h "(Hp)=copsin8p, Eqs. (A4), (A6), and (AS) give for
P~O +

' 1/2
41rp 1

cos (yHp —co)+cot+—

Also, clearly,

8J (cope '~'/2P) =I j
—sin(y~/2P)I2,

where

Il —— cos — e 'sinH 'dH,nyH co'p

p 2 2
(A3a)

QQ yIl & exp — d$=2p/y .
0 2P

Hence from Eq. (A2), as P~O+,
' 1/2

Jry2p e 2
p -zy~

(A10)

I2 —— exp
0 2P

e ~'sinhg dP . (A3b) f80—co
Xcos +cot +—

As P~O, e ~'-1 2Pt+O(P ), so that—
Il ——Jl —J2+O(P), (A4a) where Hp= cos '(y /cop), 0 & Hp & m. .

(Al 1)
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APPENDIX 8: TO ESTABLISH EQ. (46}

At all times

[q(t),p(t)] =inert .

Substituting Eqs. (31a) and (31b) into Eq. (Bl) gi~es

mpcope ~'(JQ „+i—J Q,+i)[A,B]

(81}

where ail the Bessel functions have argument ke
Since the operators A and B are time independent we can
let t~ ao and use Eq. (40). Then we find for Pt &~ 1

mpcopkv(v —1) 'e ~'[A,B]+2mp(P+y) f&,B]

=i%I (v+1)I ( —v+1) . (83)

+2 mp(p+1')JvJ „[A,B]=i%, (82) Equation (46} follows when t~ ao.
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