
VOLUME 34, NUMBER 5 NOVEMBER 1986

Hyperpolarizabilities of closed-shell atoms and ions in the local-density approximation

G. Senatore and K. R. Subbaswamy
Department ofPhysics and Astronomy, Uniuersity ofKentucky, Lexington, Kentucky 40506

(Received 2 June 1986)

The local-density approximation (LDA) of density-functional theory is applied to the computation
of static hyperpolarizabilities of rare-gas atoms. It is found that simple LDA predicts cubic hyper-
polarizabihties y that are too large by approximately a factor of 2. It is argued that the excessive
deformability of the electronic clouds in atoms predicted by LDA is an artifact of the way this ap-
proximation treats the tail of the electronic distribution. One of the causes for the poor performance
of LDA in the tail region of an atom is ascribed to the presence in such a scheme of interactions of
the electrons with themselves. Therefore, a modification of the LDA is considered in which self-

interactions are subtracted. %hen applied to He, the method yields both linear and cubic dipole po-
larizabilities in reasonable agre&ment with experiments. The modified scheme is also applied to
heavier rare gases and to some negative ions (H „F,Cl ). Difficulties that are encountered in

dealing with atoms (ions) with more than two electrons are overcome by limiting the self-interaction
corrections to the unperturbed atom problem. A systematic reduction of the discrepancies between

the calculated static hyperpolarizabilities and those inferred from recent finite frequency measure-

ments is found.

I. INTRODUCTION

The local-density approximation' (LDA) to the
density-functional theory of Hohenberg and Kahn con-
stitutes the most popular technique for studying the prop-
erties of a many-electron system. s'" One of the reasons
for this success lies in the simphcity of the associated
computational scheme. This, in fact, only requires the
solution of Hartree-like equations, in contrast with the
more complex form of Hartree-Fock equations which in-
volve a nonlocal potential. The present availability of the
"exact" exchange and correlation energy of the homogene-
ous electron gas, as obtained by Monte Carlo simulations, '
eliminates the only additional source of approximation
present in the LDA.

In principle, the LDA should work well in situations in
which the electronic density is slowly varying. However,
it has turned out to be successful in a much larger number
of physical situations ranging from atoms and molecules
to surfaces and bulk solids. The quality of the results
depends largely on the nature of the quantities under con-
sideration. Integrated properties such as total energies of
atoms, for instance, are reproduced in most cases within
1%. On the opposite end, atomic correlation energies,
which depend on the details of the electronic distribution,
are off by about a factor of 2.

In the case of the atomic dipole polarizability a, it has
been found that LDA predictions for closed-shell atoms
agree with experiments within a few percent. ' ' The
helium atom constitutes an extreme case with a discrepan-
cy of 17%. In principle, an amplification of such errors
would be expected in the calculations of higher polariza-
bilities due to the increasingly important role played by
the tail of the electronic distribution, which in turn is not
well treated in LDA.

In this paper we study the ability of the local-density
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In writing Eqs. (1)—(3) only a partial use has been made
of the symmetry of the unperturbed atom. In fact, the
two tensors appearing in Eqs. (1) and (3) can be written in

terms of one constant each. One explicitly has
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approximation to describe the nonlinear response of atoms
to an applied electric field. The motivation for such an

investigation is not only one of principle. A.tomic hyper-
polarizabilities have been measured, with a variety of tech-

niques, i3 i7 for all rare gases up to xenon, whereas ab ini

tio calculations have been performed only for lighter
atoms, within the Hartree-Fock scheme. 's Also, hyperpo-
larizabilities are important for describing Raman scatter-
ing in ionic solids such as alkali halides. '9 Of course, in

this latter case in-crystal hyperpolarizabilities are need-

ed 20

Here, we limit our study to the case of closed-shell

atoms or ions in a static uniform electric field. With F
denoting the external field, the induced dipole moment of
the atom reads"

1P„=~Ft + 6 1't items ttFrFs+

and the ground-state energy shift is given by

hF. = ——,aF —,4 y prsFaFttFrFs+

The presence of the electric field also induces a quadru-

pole moment,
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All the other components of the tensors are zero.
In the following, we report on LDA calculations for the

static hyperpolarizabilities y and 8 in some atoms and
ions. The more general case of the nonlinear response to
an oscillating field is at present under investigation and
will be presented elsewhere. The main reason for this is
that for the time-dependent problem we have found it
convenient to use the response function technique, '

whereas a straightforward expansion of the Kohn-Sham
equations is employed here. " A preliminary study of
helium along these lines has already appeared.

The outline of the paper is as follows. In Sec. II we
briefly describe the expansion of the Kohn-Sham equa-
tions and of the total energy in powers of the perturbing
field. This yields simple formulas for 8 and y. Modifica-
tions of the above scheme to take into account self
interaction corrections along the lines proposed by Perdew
and Zunger are also outlined. In Sec. III we examine the
numerical consequences of adopting the simple LDA for
the calculation of 8 and y for rare gases. This is done
through a detailed comparison with both the most recent
and reliable experimental data and the results of other cal-
culations. The effects of self-interaction corrections on
the calculated hyperpolarizabilities are then critically ex-
amined in Sec. IV. Implications of these results on the
present form of self-interaction corrections are also dis-
cussed. Section V presents the results of calculation of
a,8,y for three negative ions, i.e., H, F, and Cl
These calculations are only performed in the scheme with
self-interaction corrections, since the bare LDA does not
predict binding for negative ions. ' Section VI finally
summarizes the main conclusions of our analysis. Some
details on the angular decomposition of Kohn-Sham equa-
tions are given in the Appendixes.

II. HYPERPOLARIZABILITIES FROM
THE PERTURBATION EXPANSION

OF KOHN-SHAM EQUATIONS

It has been shown by Kohn and Sham' that the total
density of a system of N electrons in an external potential
can be represented as

In terms of the quantities introduced above, the ground-
state energy of the electron system reads

—f d r n(r)V„, (r) . (9)

For an atom placed in a static electric field F the exter-
nal potential is

2Z +fr cos8, (10)

where Z is the nuclear char~e and f=I'/I'0 is the field in
our units, with F0 ——e/(2a0). The effect of the electric
field is to cause changes of the electronic density and
ground-state energy with respect to those of the isolated
atom (f=0). If these changes are written as an (asymp-
totic} expansion around f =0,

n (0)+fn (1)+f2n (2)+f3n (3)+
E(0)+fE(1)+f2g(2)+f3g(3)+f4g(4) +. . .

the polarizabilities a, 8, and y may be expressed in terms
of the appropriate moments of the density changes as

Q= — f p? i 7" cos8,

8 = —2 f d r n' '(r)r P2(cos8), (14)

+= —f d r n' '(r)r cos8 .
6

%e notice, at this point, that a and y may also be written
in terms of the energy shifts,

(16)

tances in Bohr radii. The exchange and correlation poten-
tial is obtained from the exchange and correlation energy
functional U„,[n],

5U„,
V„,(r) =

5n r

with the one-particle orbitals 1(; satisfying the self-
consistent equations

[—V + V(r)]g;(r) =e;g;(r),
where the local self-consistent potential

V( r) = V,„,(r)+2 f d r'n (r')/
~
r —r'

~
+ V„,(r}

is determined by the external potential, the Hartree term,
and exchange and correlation interactions. Above and
throughout this paper, energies are in rydbergs and dis-

I

g(0)+ff( 1 ) +f2y(2) +f'3q(3)+f4y(4)+

(0)+f (1)+f2 (2)+f3 (3)+f4 (4)+

V V(0) +fV(1)+f2 V(2) +f3 V(3 I +f'4 V(4) +
(19)

(20)

By substituting Eq. (11) and Eqs. (18)—(20) in Eq. (6) and
collecting all the terms of the same order, one obtains

Thus, the calculation of a, 8, and y requires the
knowledge of n"', n' ', and n' ' or E' '. This, in turn,
may be achieved in a straightforward way by expanding
all quantities appearing in Eqs. (5)—(7) and Eq. (9) in
powers of f. In particular,

(0 e(0))y(1)+( V(1) (1))y(0) ()

(H e(0))@(2)+(V(1) (1))y(1)+(V(2) (2))y(0) ()

(21a)

(21b)

(2 1c)
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(~ (0))y(3)+ ( V(1) ( l ))y(2)+( V(2) e(2) )P( i) + ( V(3) (3))P(o) (}

(~ (0))y(&)+( V()) (i))y(&)+( V(2) (2))y(2)+( V(3) (3))@(()+(V(4) (4))y(0) (}

(21d)

(21e)

In the above Ho = ——V + V' '(r), and

V (r)= —50 +5) rcos8(j) 2Z

(j)
(22)

The exchange-correlation term V'„j,'(r) can be explicitly
obtained by expanding V„,(r) in a functional series

around n' '(r) and collecting all the terms of order j in f.
If the local-density a proximation is made, then
V„,(r) =v„,(n(r)) and „j,'(r) can be expressed through
derivatives of v„,. For instance, in LDA one has

V'„,"(r)=v„',(n' '(r)}n'"(r), (23)

V,",'(r)= '..(n' '(r)}n'"(r)

+ —,
' v.".(n"'(r))[n"'(r)]'.

In the above equations, v„',(n) and v„",(n) are, respective-
ly, the first and second derivatives of v„,(n) with the
respect to n Expre. ssions for the densities of the various

I

I

orders may be obtained by substituting Eq. (18) in Eq. (5).
The sets of equations (21a)—(21e} need to be solved in se-

quence and under the condition that the orbitals remain
suitably normalized at each order in f . Thus, in first or-
der with a perturbation that behaves as cos(g) such a con-
dition is automatically satisfied. In second order one has
to impose it explicitly:

3 (1) r 2 + (0)* r (2) r

+P,'"(r)g';" (r)]=0. (25)

Also, each one of the sets of differential equations
(21a)—(21e) must be solved in a self-consistent manner.
The potential V(j), in fact, contains n(j) and this in turn
contains all of the f;'j', i = 1,%.

So far, it would seem that the calculation of y requires
the knowledge of f,'j's up to the third order, at least.
However, by using the alternative definition of y given in

Eq. (12) it can be easily shown that this is not the case.
The fourth-order energy only requires the knowledge of
P';j' up to second order,

E' '= —' f d r g f (
gI"(r)

~

V' '(r)+[/,'" (r)g,' '(r)+c.c.]V"'(r)—eI '( i}rI"(r)
~

i=1

+—,', f[n'"(r)] v„",'(n' '(r))+6n' '(r)[n' '(r)] v„",(n' '(r))I

To obtain Eq. (26},one proceeds as follows. First, Eq. (9)
is expanded in powers off to obtain the coefficient off,
i.e., E' '. This contains the e,' 's. By taking a suitable
combination of Eqs. (2 la)—(21e) one obtains an expression
for e'; ' that contains f', ' and gI

' only implicitly through
V' ' and V' '. This expression is then substituted back in
E' ' and advantage is taken of the explicit definition of
V(j) in Eq. (22). One finds that all the terms containing

((t,' ' and f,' ' cancel. We notice that Eq. (25) has been
written in LDA only for convenience. One obtains a simi-
lar result for any U„,[n] with symmetric second-order
functional derivatives. The only difference with the LDA
expression (25) is the presence of functional derivatives of
V„,(r, [n]) instead of derivatives of v„,.

It is clear from the above discussion that the computa-
tion of a, 8, and y only requires the solution of the first-
and second-order problems, in addition to the ground-
state one. %'e notice at this point that c; vanishes by
symmetry and

e' '= f d r[
~

P'; '(r)
[

V' '

(27)

Details of the angular decomposition of Eqs. (21b)—(21c),
which are useful for practical applications, are given in
the Appendixes.

with V(j) still given by Eq. (22) and

n,(j)(r')
S V,'J'= —2

)r—r'/

Above, n,(j) is the coefficient offj in the expansion of

n;(r)= ~()(;(r) ~'

and within the LDA,

5 V'„,";(r)=v „',(n; '(r))n;"'(r),

(29}

(30)

(31)

The computational scheme that we have described in
the foregoing paragraphs can be practically implemented
when a choice for V„,(r) is made. In the following we
shall use the local-density approximation. For the
exchange-correlation potential of the homogeneous unpo-
larized electron gas, we utilize the Ceperly-Aider Monte
Carlo results as parametrized by Perdew and Zunger.

The above computational scheme is simply modified to
correct the LDA for self-interactions, in the manner pro-
posed by Perdew and Zunger. We just list, here, the
necessary changes. The potentials of Eqs. (21a)—(21e) be-
come orbital dependent,

V(jl V(j)+5V(j)
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5 V'„,';(r) = U „',(n '(r})n '(r)

+ —,
'

u „",(n '(r))[nI "(r)] (32)

geneous polarized electron gas. The fourth-order energy
is changed to

Eslc =E +5E (33)

with u„,(n) the exchange correlation potential of a homo- with E' ' still given by Eq. (26), and

(I)5E' '= —,
' I d r g [ fg';"(r)

f
5V '(r)+[@,'" (r)rP'; '(r)+c.c.]5V;"'(r)

+ —,', I [n "(r)] 0 '„",(n '(r))+6n '(r)[n;"'(r}]iv „",(n '(r)) I ] . (34)

For U„, in the application of this modified scheme, we
shall consistently use the parametrization " of the results
of Monte Carlo simulations. ~

Before turning to the analysis of the predictions of
LDA and self-interaction-correlated LDA (SIC-LDA} for
hyperpolarizabilities, it is worth noting that the present
formulation is easily extended to the spin-density-
functional theory to treat open-shell systems. However,
such an extension requires an additional approximation—
that of spherical averaging over magnetic quantum num-

rs.

III. I.DA HYPERPOI. ARIZASII. ITIES
OF RARE GASES

Solutions to Eqs. (21a)—(21c) have been obtained by us-

ing the Numerov method. For the ground-state problem,
self-consistency in energy within one part in 10 was
readily achieved. First- and second-order equations were
then solved, requiring an accuracy of one part in 10"on a,
8, and y, respectively. Values of a,B,y calculated from
Eqs. (13) and (14), Eq. (17), and Eq. (26), are given in
units of ao, ao/e and ao/e, respectively.

We have first performed calculations with the
Gunnarsson-Lundquist parametrization of U„, to repro-
duce the published values for the dipole polarizability a of
rare gases. '0 '2 After this preliminary result all subse-
quent calculations were performed using a suitable param-
etrization~ of the "exact" Monte Carlo results for U„,.

l

This choice was motivated by the obvious consideration
that, to assess the accuracy of LDA, one should avoid any
additional approximation. We find, in fact, that the use
of the exact U„, increases the value of the dipole polariza-
bility of rare gases between 2% and 4%, compared to
those obtained from the Gunnarsson-Lundquist U„,. This
makes the agreement with experiments a little worse,
yielding relative discrepancies ranging from a minimum
of 5% for Xe, to a maximum of 20% for He.

Our results for the static dipole hyperpolarizability y of
rare gases from He to Xe are reported in Table I. Four
sets of experimental data are also shown. The experimen-
tal static hyperpolarizabilities reported in Table I have
been obtained by extrapolation from the original data,
which were at finite frequencies, in the range between
4880 and 10550 A. For this purpose, the measured
dispersion of y(co) for Ar, Kr, and Xe as observed by
Mizrahi and Shelton' and Shelton, '6 was used. Also, the
one-resonance model put forward by Shelton' was uti-
lized to transfer the dispersion of y(co) from the first data
set to the other ones. Such a model is expected to have an
accuracy' of only 10—20%. This should be enough for
our present purposes. The dispersion of y(ro) for He was
taken from the accurate variational results of Sitz and
Yaris. zs These results are commonly quoted as having a
relative accuracy of 1%. In addition, they were used in
the electric-field-induced second-harmonic generation
(ESHG) experiment of Mizrahi and Shelton, ' to get abso-

TABLE I. Hyperpolarizability y/6 of rare gases. Comparison of local-density-approximation results
with experiments. All numbers are in units of 10 39 esu. The experimental static hyperpolarizabilities
(with footnote indicators (a—d) have been obtained by extrapolation from finite frequency measure-
ments. For details about the extrapolation and meaning of the symbols see text.

LDA
ESHG'
THG'
FWM'
dc Kerr'

He

7.40
3.58'
3.5+0.4
3.0+0.7
4.4+0.3

17.7

5.9+0.6

8.0+0.6

y/6 (10 esu)
Ar

156
92+2
72+7

105+19
91+6

Kr

332
188+4
174+17
229+41
202+14

769
404+8
403+40

489+38

'Reference 16.
Reference 17.

'Reference 15.
Reference 14.
Accurate theoretical value by Sitz and Yaris (Ref. 28) used as reference value in the electric-field-

induced second-harmonic generation (ESHG) measurements (Ref. 16).
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lute values for y/„(0)). The measurements for Ar of these
workers were in fact relative to yH, . Similarly, Shelton'
measured the ratios yx, /yz, and yx, /yz, . For Ne we
took an ESHG dispersion coefficient lying between those
of He and Ar. We notice that if one chooses either ex-
treme (He or Ar) one would still obtain for Ne numbers
agreeing with those of Table I, within the reported uncer-
tainties. We should also add that in the uncertainties re-
ported for the last three data sets [third-harmonic genera-
tion (THG), four-wave mixing (FWM), and dc-Kerr] no
allowance was made for the uncertainties due to the use of
the one-resonance model. In spite of this, if we restrict
ourselves to the most recent experiments, i.e., ESHG,
THG, HVM, we find agreement within the quoted uncer-
tainties for all the rare gases, with the exception of the
THG value for Ar. This gives confidence in the reliability
of these latter experimental data.

The comparison of the LDA predictions for y with the
experimental values from four different kinds of measure-
ments presented in Table I clearly shows a systematic ten-
dency of the theory to overestimate y by about a factor of
2. This appears as a large amplification of the discrepan-
cies previously found in the case of the dipole polarizabili-
ty a. We have found that the use of the Gunnarsson-
Lundquist parameterization only lowers the LDA values
of Table I by about 10'Fo, leaving the substantial disagree-
ment shown in Table I unchanged.

Thus, LDA makes atoms too easy to deform. It is
tempting to argue, that such a failure of LDA is due to its
deficiency in describing the tail of the electronic distribu-
tion. The ground-state LDA tential approaches zero
exponentially rather than as r . One clear mark of such
a failure is the large values of the LDA energy of the up-
permost occupied atomic orbital. Also, the LDA
values for the second density moment (r ) are too large
A simple modification of the LDA, which has proven
successful in dealing with the above problems, is due
to Perdew and Zunger. " They have proposed a new
scheme for the subtraction of self-interactions from ap-
proximate density functionals. We shall study the appli-
cability and the effect of such self-interaction correlations
(SIC) in the calculation of atomic hyperpolarizabilities in
the next section.

The calculated values of the quadrupole hyperpolariza-
bility 8 turn out to be negative, ranging from
—5.75X10 esu for He to —421X10 esu for Xe.
One would expect them to be too large in absolute value,
in analogy with the results of a and y. However, no ex-
perimental data are available for this hyperpolarizability.
We notice that the value of 8 for He reported in Ref. 23
should be multiplied by —2.

IV. THE EFFECT OF SELF-INTERACTION
CORRECTIONS QN THE POLARIZASILITIES

OF RARE GASES

Self-interaction corrections may be taken into account
in the LDA with simple modifications, as we have dis-
cussed in Sec. II. For closed-shell atoms or ions they
amount to having shell-dependent potentials in the
Kohn-Sham equations. This causes the complication that

one should explicitly impose the orthogonality for orbitals
with the same angular momentum. However, it has been
found that the degree of nonorthogonalization is very
small. Also, the changes in orbital energy resulting
from the orthogonalization are practically negligible2

for isolated atoms. Since we are looking for major
changes in our calculated hyperpolarizabilities, ~e mill

completely neglect the orthogonalization problem in the
following. With such a choice numerical computations
proceed essentially as for the bare LDA, apart from the
need of calculating a potential for each shell at each itera-
tion of the self-consistent equations (21a)—(21c).

In the case of He, however, the orthogonalization prob-
lem does not arise due to the presence of the 1Sshell only.
On the other hand, in the case of heavier rare gases a
much more serious problem is encountered in the applica-
tion of the self-interaction-corrected LDA (SIC-LDA). It
is found, in fact, that the self-interaction corrections as

proposed by Perdew and Zunger cannot be consistently
carried out beyond the isolated-atom problem. They
would yield, in fact, first- and second-order potentials
with divergences at the locations of the zeros of the
isolated-atom orbitals. This is easily understood. Near a
zero of the density n, the exchange-correlation potential
of the homogeneous electron gas has a leading term that
behaves as n'/. The first- and second-order potentials
[Eqs. (23) and (24) and Eqs. (31) and (32)] will then have
terms like )2 (1)/'(r) (0))2/3 and )2 (2)/(n (0))2/3

(n"') /(n' ') ', respectively. In bare LDA this does not
cause any problem. The total density vanishes only at in-

finity where n") and n' ' also vanish. In SIC-LDA, on
the other hand, the zero-order orbital densities appear ex-
phcitly. This yields denominators that vanish near a
node. Unless the first- and second-order orbitals vanish at
the same point in a suitable manner, the corresponding ex-
change and correlation potential blows up. We have not
found any reason for such a vanishing of higher-order or-
bitals, nor have we have found it in numerical calcula-
tions.

Because of the difficulties discussed above, in the case
of heavier rare gases we have corrected the LDA for self-
interactions only in the zero-order problem. Thus, to gain
some orientation as to the effects of such partial correc-
tions, we first discuss below the case of He.

In Table II we report a,8,y from two different calcula-
tions for He. The calculation labeled SIC was carried out
taking into account self-interaction corrections in all or-
ders according to the formulas given at the end of Sec. II.
The results labeled partial SIC (PSIC) were obtained by
dropping such corrections from the first- and second-
order problem, namely, neglecting 5V" and 5V '. It is
clear that at least for helium, the major effect of self-
interaction corrections are reflected in the polarizabilities
through the modification of the free-atom orbitals. Let us
first consider the dipole polarizability a. The experimen-
tal value for He is 0.205 X 10 cm, whereas LDA gave
0.246)&10 cm . As expected, the effect of the self-
interaction subtraction is to make the atom more rigid.
The value of a decreases by 27%, improving the agree-
ment with experiments from + 20% to —7%. The effect
of changing from SIC to PSIC has an effect of only 2%.
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SIC
PSIC

(10 cm )

0.191
0.195

—2.82
—3.03

y/6
(10 39 esu)

2.77
2.92

TABLE II. Effect of full self-interaction correction (SIC) and

partial self-interaction correction (PSIC) in the calculation of the
polarizab111tlcs 0!,8,g for He.

tions.
The only other ab initio calculations of the hyperpolari-

zability y for rare gases appearing in the literature have
been carried out at the Hartree-Fock level. Here, we refer
to the most recent calculation due to Sitter and Hurst. '
Their values for y/6 are 3.02 X 10 cm for He,
3.52X10 cm for Ne, and 84.8X10 cm for Ar.
These show roughly the same degree of agreement with
experiments as the PSIC results.

TABLE III. Hyperpolarizabilities y and 8 for heavier rare
gases; the calculations were performed with parti@1 self-
interaction correction (PSIC).

Xe

y/6 (10 esu)
8 (10 esu)

7.18
—6.95

112
—81.2

The comparison of the values of y reported in Tables I
and II reveals a much more dramatic effect. Changing
from LDA to SIC, the discrepancy with the accurate
value of Sitz and Yaris changes from 107% to —23%.
Again, dropping the self-interaction corrections in the
first- and second-order equations has an effect of only
4%. Similar changes are found for B. The overall effect
of self-interaction corrections, in the LDA calculation of
He, is to make this atom a little more rigid than experi-
mentally found. This is also refiected in the fact that the
SIC-LDA total energy of He is lower than the experimen-
tal one. The agreement with experiments, however, is
substantially improved over that of bare LDA.

In Table III, results for the hyperpolarizability y of
heavier rare gases are recorded. They were obtained with
partial self-interaction corrections. The values of the
quadrupole hyperpolarizability 8 are also shown. Com-
pared to the LDA values of Table I, a systematic lowering
of y is found. This improves the agreement with the ex-
perimental data. However, the relative effect of the self-
interaction corrections becomes smaller for the heavier
atoms as expected. Thus, for Ne and Ar a reasonable
agreement is now found with the experimental data, with
discrepancies reduced to -20%. On the other hand the
PSIC values of y for Kr and Xe are still too large. They
overestimate the experimental data by -40% and —70%,
respectively.

An important difference has to be noticed between
LDA and PSIC hyperpolarizabilities of rare gases. The
local-density approximation consistently predicts in all
cases atoms that are too soft. The effect of our partial
self-interaction correction is to make them more rigid. It
appears as if the size of the correction becomes progres-
sively smaller in moving from He to Xe. While there are
reasons to expect this we feel that one cannot rule out the
possibility that this is an artifact of the present form of
self-interaction corrections; in particular, because of the
fact that for heavier atoms it is not possible to fully
correct for self-interactions in the higher-order calcula-

V. POLARIZASII. ITIES OF SOME
FREE NEGATIVE IONS

Negative ions represent a very difficult test for atomic
theories. The bare LDA does not give any binding unless
the ion is artificially placed in a spherical box. ' Hartree-
Fock predicts binding energies that are too small, in
some cases, and fails completely in other cases, such as for
H . It has been found, however, that with the inclusion
of self-interaction corrections LDA is able to predict bind-

ing for negative ions, yielding binding energies that are
in good agreement with experiments.

Here, we shall examine the predictions of the SIC-LDA
for the polarizabilities a,B,y of three free negative ions:
H, F, and Cl . %'e stress that the present results
should not be compared with polarizabilities obtained
from measurement on ions in crystals. Large differences

are, in fact, to be expected in the two cases, due to
crystal-field and overlap effects. ~'

The results of the present calculations are shown in
Tables IV and &. We draw attention to the fact that foi
F and Cl only a partial account of self-interaction
corrections was feasible, for the same reasons discussed at
length for rare gases. However, for H the predictions of
both full and partial SIC-LDA are reported. The results
for the dipole polarizability a are compared with the pre-
dictions of full (or coupled) Hartree-Fock (CHF) with and
without many-body perturbation (MP) corrections. It is
found that the present modified LDA yields predictions
that are comparable to those of CHF. In fact, they are
somewhat better. The present value of a for Cl practi-
cally coincides with that of the corrected Hartree-Fock
calculation. For H, results of a variational calculation
provide exact upper and lower bound for the dipole polar-
izability, a=30.5+0.4. A comparison with the values in

Table I&, shows a substantial underestimate of a for H
by the SIC-LDA. As in the case of He, the present form
of self-interaction corrections make the ion H too rigid.
It is illuminating, in this respect, to look at the value of
the uppermost (which in this case is also the first) Kohn-
Sham eigenvalue. It has been shown that this coincides
with the negative of the ionization potential of the atom
or ion" in question and determines the long-distance de-
cay of the electronic density. We find that in the SIC-
LDA calculation of H the Kohn-Sham eigenvalue is
more than twice larger, in absolute value, than the mea-
sured ionization potential (which in the present case is the
same as the affinity of the hydrogen atom). We also no-
tice that for He a discrepancy in the same direction was
found: it was, however, of only 5%.

The results of the present calculation for 8 and y are
recorded in Table V. Vfe notice that for F in Hartree-
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PSIC'
CHF'
CHF+ MP"

12.0 4'10.8) 1,80
1.58
2.48

5.47
4.66
5.49

'The value in parentheses is from a full SIC calculation.
bResults from full Hariree-Pock calculations (Ref. 31) with and
without many-body perturbation corrections (MP). The many-

body perturbation corrections were included up to second order.

Fock it was found ' that y/6&836X10 esu. This
agrees with the present value of 1200X10 cm. Also,
we argue that our values of 8 and y for H should pro-
vide, respectively, an upper and lower bound for the true
values.

UI. SUMMARY AND CONCLUSIONS

In this paper we have investigated the adequacy of the
local-density approximation in describing the static
response of an atom or ion to an applied electric field.
We have shown that the calculation of nonlinear polariza-
bilities represents a very severe test for the theory in that a
greater sensitivity to the details of the approximate
description arises. In particular, it has been found that
the LDA largely overestimates the cubic dipole polariza-
bility of rare-gas atoms.

In all at'tcnlpt to conlpcnsatc fof thc cxccssivc softllcss
of LDA atoms, we have considered the effect of self-
interaction corrections to LDA. We have indeed obtained
a systematic reduction of the calculated polarizabilities of
rare gases. However, severe difficulties related to the
present form of self-interaction corrections have been en-
countered. These, in turn, pose some questions about the
general vahdity of self-interaction corrections as proposed
by Perdew and Zunger. Calculation in this modified
LDA scheme have been carried out also for the very deli-
cate case of negative ions.

The comparison of the results of the present study with
those of other ab initio calculations shows that the present
modified LDA scheme yields polarizabilities and hyper-
polarizabilities that overall are of a quality comparable to

TABLE V. Hyperpolarizabilities 8 and y for negative ions
from local-density approximation with partial self-interaction
correction.

TABLE IV. Dipolar polarizability a of negative ions from
local-density approximation with partial self-interaction correc-
tions. All numbers are in unit of 10 ~ cm .

o, (10 cm)
F-

that of Hartree-Fock calculations. This is obtained, how-
ever, with a fraction of the effort required for the solution
of Hartree-Fock equations.
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APPENDIX A: ANGULAR DECOMPOSITION
OF THE FIRST-ORDER KOHN-SHAM EQUATIONS

The dipole perturbation is obtained by choosing M =1
and g))t(r) =r

In the isolated atom the orbitals are labeled by
i=(n, l, m, o) Howe. ver, in the following we shall drop
the spin-projection quantum number and introduce fac-
tors of 2 in the sums over occupied states. The explicit
form of the unperturbed orbitals is

(r)= I'I (0),(0) R~) (r)

and the corresponding unperturbed density is

n' '(r)=2 g ( g„t (r) ~'
n, l, m

OCC

l g (2l+1)R„((r) .
27Tl"

(A3)

Since the magnetic quantum number m is conserved with

a perturbation like that in Eq. (A1), we can write

(1)

(A4)
T

It immediately follows that

n")(r)=4 g Re[/„', ' (r)P„",' (r)]
n, l, m

= g n), "(r)PI,(cos8),

The special cases of s-, p-, and d-shell ions have been
considered by Mahan. " The discussion given in this ap-
pendix is not only for any general l, but also paves the
way for the more complicated higher-order equations.
We consider the first-order equation (21b) in the case in
which the closed-shell atom or ion is perturbed by a po-
tential of the form

V'(r) =fglt (r)Plt(cos8) .

8 (10 esu)

y/6 (10 esu}

—0.242 @10' —318
—0.179@10"

0.288@10' 0.120X 10'
0.196~ 10"

'Results of a fu11 SIC calculations.

—0.168~ 10'

0.723~ 104

nh"(r)= g C(lj, m
(
h)R„)(r)U„'t" (r) .

r nlmj
(A6)

Above, the coefficient C(jl, m
~
h) originates from the

decomposition of the product of two spherical harmonics
and can be written in terms of signer 3-j symbols as
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C(lj, m
~

Ii)= ( —1) [(2I+1)(2j+1)]' '

l j h l j h

Notice that it is invariant both under the interchange of I

with j and of m to —m. From Eqs. (22) and (23) and Eq.
(A5) one easily gets

V"'(r) = g V„"'(r)P„(cos8), (AS)
h

with

Vi, "(r)= 5i, ~g))r(r)+ dr'r' ni, "(r')
2h +1 p"+'

( H~() —e~„( ) U„i J
——R„ig C (jI,m

~
Ii )(5J is„i)', —Vj,

' ),
h

&gIiI = dr R~((r)ViI (r) .
0 (A12)

Equation (All) can be put in a simpler form by noting
that o»( a particular linear combination of the U„'&'J
enters nI, ". This suggests setting

U "iij = g [~ (Q)]i U.'i"J (A13)

(Al 1)

for the radial functions U„'i'~J. For arbitrary M the first-
order energy appearing in Eq. (Al I) is defined as

+u„',(n (r})ni',"(r) (A9)
with

and r & (r & ) the greater (the smaller) of r and r'. We also
define

m —m 0
I

[A (Ij)]g =(—1) (2h +1)'~ (A14)

H = — + +V' '(r)
dr r

(A10)

In terms of the quantities defined above, Eq. (21b) be-
comes equivalent to a set of equations

The matrix A (Ij) is orthogonal, as can easily be checked
using the known properties of the 3-j symbols. 26 There-
fore, one can work with the functions U„'ij'i, 's. They obey
the equations

I j h
(Ho enl )U n/h~

——[(21+1)(2j+ 1)/(2h + 1)]'
() () R„i(51is'„'la —ViI") . (A15)

l j M000+0
which requires that j=I+M, I+M —2, . . . , ~

I —M ~.
One can further write

(A16)

I j h
U„"iij.=[(2I+1)(2j+1)&(2Ii+1)] () () () ~n&)~5i,~

I

(A17)
where, for the allowed values of j, U„'ij' satisfy the equa-
tion

(Ho &"i')U'ij'=R. i(5j,i—&'Nr V~") . —
In terms of the new radial functions one has

U„'i'. ——C(lj, m
( M)U„ij'

(A18)

U(1)
n)', "=5))~ g [(2I+1)(2j+1)]' C(IJ',0

f
M)

n, lj m.r

An important feature of such equations is that they are
"diagonal in h." This means that V),

"only contains func-
tions U'„'J, J with Ii'=h. One immediate consequence of
this property is that the radial functions U„"JJ with h&M
do not depend in anyway on the external perturbation g~
and, therefore, they must vanish. For the same reason
when h =M the only nonzero radial functions are those
for which

It should be noticed that for 2I &M and M even, j can
take the value I. In such a case the conditions
U„'ii'(0) = U„'it'( ao ) =0 do not corn letely fix U„'&~'(r ). One
has the fraxiom of adding to U„'ii a function of the form
CR„i with C being a constant, since R„i is a solution of
the homogeneous equation which is obtained from Eq.
(A18) by putting the right-hand side to zero. The normal-
ization of the orbital (nlm}, however, requires U„'i' to be
orthogonal to R„). This condition fixes U„'ii' completely.

The results of the present decomposition of the first-
order Kohn-Sham equations (21b} are equivalent to the
explicit forms for s, p, and d shells given by Mahan. "
However, our formulas are valid for any I and M. Also,
the present analysis is preliminary to that of the more in-
volved second-order equations. We notice that the coeffi-
cients C(lj, m

~
M), defined in Eq. (A7), can be easily cal-

culated from tables of 3-j syinbols such as those by Roten-
berg et a1.

APPENDIX 8: ANGULAR DECOMPOSITION
OF THE SECOND-ORDER KOHN-SHAM EQUATIONS

%e start by writing the second-order orbitals as

U(2)
1('„i' (r)= g ~™

Fk (Q) .
k

(A2()) Hence, the second-order density reads



34 HYPERPOLARIZASILITIES OF CLOSED-SHELL ATOMS AND. . .

n")(r) = y I2
~

y(„',.)(r) ~

'+4Re[y(p,."(r)y(2)(r)]
I

n, l, m

= g nk '(r)Pk(cos8), (8
h

where

n 'k2)(r) g BM(ljj '
~
h) U„"()~(r)U„')J'(r),

2'PTER
gg I J J'

n (ki)=, g C(lk, m
(
h)R„)(r)U„'i'k(r)

n, l, m, k

(84)

(85)

nk '(r) =n k '(r)+n k '(r), (83) The new coefficient in Eq. (84) has the explicit expression

I j M I j' M
B (Ijj '

~

h}=(—I )'+'+J (21 +1)(2j+1)(2j'+1)

where the last symbol on the right-hand side of Eq. (86) is a 6-j symbol. "'
V' '(r}=g Vk '(r)Pk(cos8},

h

with

j j h M M h M M h

0 0 ()
' . t I

'
& (86)

Equation (82) implies

'h

Vk '(r)= f dr'r' nk '(r) k, +v„',(n' '(r))nk '(r)+ ,'v'„', (—n' '(r))[n"'(r)] C(MMO) h) .

For future reference, we notice that last term on the right-hand side of the above equation has a nonvanishing coefficient
only for h =0,2, . . . , 2M.

In analogy with the first-order case we now write the equation obeyed by UJ' k.

(&p &nl )Unrmk= C(Ik m IM)C(11 m
I
M)&n'(MUn(mk g C(Jk m IM)C(Ij m

+ Iik, l g «11 m
I
h} f «RnlVk +~n M g C(IJ m

I
h)C(Ij m

I
M) f dr RnlUnlj ~M Rnl

1

—R„i QC(lk, m
~
h)Vk '. (89)

h

The third term on the right-hand side of the above equation is the second-order energy, which has been written explicitly.
We then consider the orthogonal transformation

U '„'uk = g [8 (Ik) ]k~ U„'i~k ~ (810)

where the matrix A (Ik) has been defined in Eq. (A14). The equation for the new radial functions reads

(Ifp sn'I')Un'leak= —&kki[(21+1)(2k+1)~(2h+I)]'" () () () «11 m
I
M)s's'laUnIk

g [A(lk)]k C(lj, m ~M)C(jk, m ~M) V(i)U(() ~ I'"d„R U(()V(i)
M nlj k, l J 0

~ nl ed M

+[(21+1)(2k+1)/(2h+1))' () () () Rk) 5k) f drR„(Vk ' —Vk
'

J
l

(811)

We note that for (p p p) =0 the first and third terms on
the right side of Eq. (811) vanish. It can be shown that
the same happens to the second term. Thus, for
(p p p) =0 and k&1 the functions U „&kk must vanish. In1 k h ~ (2)

the particular case in which (p p p)=0 and k =I, one
would get a solution of the form U'„Ihk ——CE.„~. However,
the normalization condition for the Kohn-Sham orbitals
in second order forces C =0. One condition on the in-
dices k and h in order to obtain nonvanishing solutions to
Eq. (811}is

1 k h

0 0 0 +0 o

L

Because of the condition (812) one can define

(812)

1 k h
U „Ihk = [(21+1)(2k + 1)l(2h + 1)]'

() 0 Unlhk

(813)

and, in terms of the new functions U „'(kk, write Eq. (811)
as
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(&o —e.i ) U'ihh = 5h, hr«II rr)
I
M)&."isa U.'ih

D M( ~

Ik
i
k ) V] ] ) U] I )

j
+(~i,h &'ih —Vh")~.i . (814)

B (Ijj '
~
Ii)&0

5h AC(ll, m ~M)@0,

(822)

(823)

(2h+1)B (j,lk ~
I))

(2k +1)'"(2l+1)'"C(lk,O
i
Ii)

(815)

enlh d" ~nl Vh
(2) 2, (2)

0

+ f «~„,V~" QD~(j, II
I
I)}U„'&g'.

We also notice that

U'l" h=«Ik
I »U'lhh

n h '(r)= g [(21+1)(2k+I)]'~ C(lkO~ I))
e, l, k

Rni(r) ]i)U nihh(r»
Kf

(817)

(818)

and that the normalization condition for the Kohn-Sham
orbitals is equivalent, in second order, to

f drn rU'„at= ——,
' XD ]j ll

J

h& I dr [V'g~]
J

or

C(MM, O
i
h)~0

In order to fully determine the values of k and Ii for
which U lhh does not vanish, we make the following ob-
servations. Equation (814) is diagonal in h. The depen-
dence of the second-order radial functions on the pertur-
bation potential is present on the right-hand side of Eq.
(814) explicitly through Vhi' and implicitly through the
first-order orbitals, which also appear in e'„ih and Vh '.
This implies that for nonvanishing Un'ih'h, k and Ii must
satisfy one of the following conditions in addition to that
given in Eq. (812):

(820)

where j and j' take the values I +M,
I+M —2, . . . ,

~

I —M ~. Using the explicit expression
for the coefficients appearing in the above equations, one
finds that to satisfy any one of the conditions in Eqs.
(820)—(822) it is necessary that I) takes one of the follow-

ing values: 0,2, . . . , 2M. This, in turn, is sufficient to
have C(MM 0

~
h}&0and B (Ijj '

~
h)&0 for some jj '.

The condition given by Eq. (823) can be satisfied only
when M is even 2I &M, in which case it does not yield
any new value for h. In conclusion, the nonvanishing ra-
dial functions U ',ihh

's are those for which
h =0,2, . . . , 2M and for given Ii, k = I +I),
I+I]]—2, . . . , ~

I —Ii ~, to satisfy the condition in Eq.
(812).

Before turning to the explicit form for the fourth-order
energy change, in terms of the working functions intro-
duced in this appendix and Appendix A, we would like to
make one comment about the numerical solutions of Eqs.
(814) and (A18). We have employed a straightforward
Numerov method. If U is one radial function we have to
solve for, one has U(0)=U(ao)=0. Inward integration
from a large value of r (r„) and outward integration
from r =0 are performed with arbitrary slopes, say, A

and B. The matching of U and its first derivative, at a
suitably chosen intermediate distance, allows us to deter-
mine A and 8. However, this is not a1ways true. Equa-
tions (816) and (A18} are linear nonhomogeneous integro-
differential equations. It can be easily shown that, when-
ever the associated homogeneous differential equations al-
low a solution (R) with the same boundary condition that
we have specified above for U, the conditions of the con-
tinuity of U and its first derivative become degenerate.
On the other hand, in such cases it also happens that the
normalization condition for the Kohn-Sham orbitals is
not satisfied automatically through the vanishing of the
angular integral, One has to impose it in terms of
the value of f drRU. This provides the second in-

dependent condition that, together, say, with the continui-
ty of U, fully determines A and B. In these particular
cases, in order not to "see" the round-off error of the nu-
merical integration it is safer to use, in the higher-order
differential equations, the same matching point that was
used in the solution of the zero-order equation.

Finally, we give below the fourth-order energy in terms
of the functions defined in the Appendixes:

—(3) —(2) M
E' '=m f dr r 2 V)i'{r)+2 g Vz, '(r)+u'„", (n' )(r)}[nhi'(r)] g C (MM, O

~

2s)2M+1, 4s +1 0 6(2M+1}

s=0 2M+1 n, Ij
(824)
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In the above

~ B~(j,x ~h)v"'U"'
2

n, I,j,k, h

lt.t, = f, «[U'i&'(«)l'

'„i' —gB (j,ll ~
h) f d R„tVt', '

h
0

+gF (ljj') f, «R.tU'i, '&~'.

The new coefficient F (ljj ') is defined by

(826)

and

l j M l j' M
FM(1 jy) m —m 0, m —I 0

M J 1 3f
(4s+1)

O O 0
' l j M

s=0 M M 2s

(829)

F (ljj ') = (2l + I )[(2j+l)(2j'+I)]'

X C(lj,o
~

M)C(lj', 0
~

M)F (Ijj '),
The last symbol on the right-hand side of Eq. (829) is a
9-j coefficient. s's
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