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Improved adiabatic calculations of the vibrational-rotational states of HD+
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Potential curves have been calculated for the ground electronic state of HD+ within the frame-
work of an improved adiabatic approximation. Both the I=0 and J=1 rotational states have been
examined in detail using the new approach. This formulation takes into account the symmetry-
breaking effects due to the unequal masses of the two nuclei, in contrast to the standard adiabatic
approximation. The technique is found to yield significant improvement over the standard adiabatic
approach for the highly excited vibrational states of HD+.

I. INTRODUCTION

In a previous paper' a new adiabatic approximation
which exhibits the correct dissociation limits for diatomic
molecules with unequal masses was formulated. This ear-
lier study contained a minimal basis-set calculation for
the systems HD+ and dtp. The present work contains an
accurate calculation on HD+ which has been performed
using a slightly modified version of this new adiabatic ap-
proximation. Potential curves have been calculated for
the J =0 and J=1 rotational states of the 1 so electronic
ground state. Splittings for the J=1 2pn states, of in-
terest with regard to A doubling, have also been calculat-
ed.

Earlier investigations of the vibrational-rotational levels
of HD+ near the dissociation limit have noted that in or-
der to obtain accurate results it is necessary to take into
account the symmetry-breaking effect of the unequal nu-
clear masses. Hunter, Yau, and Pritchard observed the
dissociation error inherent in the usual adiabatic pro-
cedure for HD+ and noted that the problem could be
overcome on a nonadiabatic level by using a pair of cou-
pled differential equations to obtain the vibrational-
rotational spectrum. Carrington and Kennedy ' have ob-
tained correct dissociation by coupling the is(re and 2pcr„
Born-Oppenheimer wave functions together using matrix
elements of the complete (nonadiabatic) Hamiltonian.
The resulting matrix is then diagonalized to yield effective
potential curves which can be integrated to yield the
vibrational-rotational levels. Wolniewicz and Poll utilize
the lsog and 2po„stites to construct approximate nona-
diabatic wave functions which are obtained by integrating
a pair of coupled differential equations. The resulting
wave functions are then used to construct zeroth-order
eigenfunctions in a perturbation scheme to obtain accurate
energies.

Macek and Jerjian have discussed the adiabatic hyper-
spherical scheme in which the zeroth-order Hamiltonian
Ho (8) acts upon the Hilbert space of the angular coor-
dinates 0, with the hyperradius R appearing only as a pa-
rameter. This adiabatic approximation leads to potential
curves which take Into account the syIGmetry breaking;
however, the eigenvalue equation associated with Ho (R)
requires the evaluation of matrix elements which are non-

standard, and a complete solution to the hyperspherical
adiabatic approximation has not yet been attempted. Ma-
cek and Jerjian managed to rewrite Ho (R) as a Born-
Oppenheimer Hamiltonian (for a one-electron molecule
with unequal charges) plus a perturbation term and have
performed a calculation which neglects both this pertur-
bation term and the lowest-order nonadiabatic diagonal
correction.

The adiabatic approximation discussed in the present
work manifests the symmetry-breaking behavior which is
required to obtain correct energies and wave functions
near the dissociation limit. It leads to potential curves
which may be used to obtain vibrational-rotational levels
as well as for other applications not considered here. The
vibrational-rotational levels obtained from the method are
variational upper bounds to the true nonadiabatic ener-
gies. The equations encountered using the present pro-
cedure generalize to the many-electron problem and may
be solved using the standard quantum-chemistry comput-
er routines. Moreover, the phenomenon of A doubling ap-
pears without having to resort to perturbation theory.

The organization of this paper is as follows. Section II
contains a discussion of the theory, in order to indicate
how the formulation of the theory for the present calcula-
tion differs from that presented in Ref. 1. Section III de-
scribes the computational method used here for the adia-
batic calculation. The new potential curve results are
presented in Sec. IV. The vibrational levels for the J=0
1 scr curve are reported and discussant in Sec. V. Section
VI contains the conclusions of this work.

II. THEORY

p2 +
2m,

' E.
1 1

After separating the center-of-mass motion, the Hamil-
tonian of HD+ is expressed in center of mass of the nuclei
(c.m.n. ) coordinates (in units where fi=e =1) as

H= — Vg-l l
V„+H, ,

2p 2(rn, +mb)
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p, =m, m&/(m, +m&), r is the electronic coordinate vec-
tor measured from the c.m.n. , R is the internuclear
separation vector, and the proton, deuteron, and electron
are taken to be particles a, b, and c, respectively. Equa-
tion (1) may be rewritten in terms of LR, the relative an-
gular momentum of the nuclei, as

on the space of functions of r (the electronic coordinates)
and R (the internuclear orientation). From the usual ar-
guments concerning the completeness of eigenfunctions of
a Hermitian operator, the eigenfunctions P„(r,R;R} of
Ho(R) for a fixed value of R, satisfying

1 8 2 8 ~R

2fc QR i R BR 2@R

1 2

It is convenient to regroup terms in Eq. (3) according to

H =H(i(R)+H',

(3)

Ho(R )P„(r,R;R ) = U„(R)P„{r, R;R ),
form a complete set of functions of r and R for each
value of R. Hence the total wave function xp(r, R) may be
expanded in this set according to

4(r,R)=+X (R){{t (r,R;R)

=gX.(R)
~

and

2

Ho(R) =
2pR

V„'yH,
2{m, +mb)

where
~
m;R) is an electronic-internuclear orientation

ket, parameterized by R. Inserting Eq. (9) into HxP =Ex'
and multiplying on the left by (n;R

~
gives the coupled

equations

y (n;R
~

[Ho(R)+H']
~
m;R )1 {R)

1 8 2 8
2p QR2 R BR

=Eg (n;R i m;R)X (R) (10)

Note that the Hamiltonian Ho(R) in Eq. (5) operates only Using Eqs. (5)—(7},one obtains the system of equations

1 (3 2 8 1 8
~

+— +U„(R)—n;R, n;R) RX„(R)—

a a
m;R X (R)+ n;R —,+— m;R)X (R)

1 8 2 8

where Eq. (11) has been written such that all off-diagonal
terms in the equation appear on the right-hand side.
Equation (11) has been derived by noting that terms of the
«rm (n;R [ &/&R

~
n;R ) and (n;R

~

(1/R)~/~R
( n;R )

are zero (this result requires that these matrix elements are
real and that the

~
n;R ) are normalized to unity for all

values of R; this is, in fact, the standard convention and
does not impose any computational difficulties). Follow-
ing Born, the adiabatic approximation is obtained by
merely neglecting the off-diagonal terms. Therefore, the
adiabatic approximation to the system of Eq. (11) is given
by

1 8 2

2p gR~ R R

1—n;R nR X„R =EX R
2p M

(12)

where the quantum number v has been added to indicate
that once U„(R) and (n;R

~
(1/2p)B /M

~
n;R ) are

known, an entire vibrational spectrum may be obtained.
For future reference, the above approximation will be
designated as the "improved adiabatic" (IA) approxima-
tion.

The IA approach differs from the usual method in that
the "standard adiabatic" (SA) approximation ' assumes
the expansion

xP(r, R)=~ (R)P (r;R ), (13)

where the (t) (r;R ) are eigenfunctions of the Born-
Oppenheimer (BO) Hamiltonian H„while the IA method
assumes the expansion of Eq. (8) where the {t) (r, R;R ) are
eigenfunctions of Ho(R) defined in Eq. (5). One would
expect little difference between the results obtained apply-
ing the two methods to a J=0 state of a symmetric sys-
tem such as Hz+. However, for a system with unequal
nuclear masses, such as HD+, the SA approximation has
serious problems with respect to the dissociation energy
rvhich are corrected by the IA approach. As discussed in
Ref. I, the I z operator appearing in the Hamiltonian
Ho(R), and the 8 /M operator appearing in Eq. (12),
because they are applied in c.m.n. frame (as opposed to
the geometric center of nuclei frame), have the effect of
breaking the symmetry. For example, as R ~~, the elec-
tron in a Isa state goes to a Is state on the heavier nu-
cleus (the deuteron), while the electron in a 2po state goes
to a 1s state on the lighter nucleus (the proton).
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The "best adiabatic" (BA) approach described in Ref. I
is an effort to go beyond the IA approach just described.
It is an attempt at an approximate solution to the BA
equations of Pack and Hirschfelder" by utilizing the im-
plicit R dependence of an electronic basis situated on the
two nuclei. The BA approach leads to physically appeal-
ing values of the energy as R~oo [e.g., the lscr curve
goes to exactly —, m—bm, /(mb+rn, ), where b is the
heavier of the two nuclear masses, which for HD+ be-
comes ——,m&/(m&+m, ) a.u. , the energy for a ls-state
electron on the deuteron]. However, our calculations indi-
cate that the potential curves using the BA approach are
less reliable than the SA or the IA approach for smail and
intermediate values of internuclear separation. Calcula-
tions of the low-lying vibrational levels using the BA
curves lead to somewhat poorer values of the energy than
do the SA and IA curves when compared to accurate
nonadiabatic results. ' ' Overall, the IA approximation
seems to work better than our attempts at a BA approxi-
mation, and we will thus concentrate on the IA approach
in the rest of this paper. For purposes of calculation, the
masses of the nuclei have been taken to be m, =mz
=1836.152m, and mb ——ms ——3670.481m, and the elec-
tron mass m, =m, is used to scale the atomic units.

It should be noted that, as R~ I)0, the IA lscr curve,
with H' included through first-order perturbation theory,
goes almost exactly to —, mbm, /—(mb+rn, ). This is a
substantial improvement over the SA iso curve, which
asymptotically goes to —,

'
rn, +(m, +—mb)m, /4m, mb,

owing to its failure to break symmetry. The improvement
in the IA approach comes about because the La operator
in Ho(R) causes the zeroth-order IA wave function

~
n;R ) to move to the heavier nucleus as R~ ao. How-

ever, the wave function is slightly distorted from the ls
shape due to the type of kinetic energy terms contributed
by the La operator. The 82/M operator in Eq. (12) sup-
plies the additional kinetic energy terms required for
spherical symmetry, but it does so only in a perturbative
fashion. Hence, the asymptotic limit of the IA lscJ curve

agrees with the D-atom ground-state energy through first
order in the perturbation H' For the m.asses used here
for HD+, the D-atom ground-state energy is

—0.4998638152 a.u. , while the SA and IA asymptotic
limits are found to be —0.499 795 734 7 a.u. and
—0.499 863 8144 a.u. , respectively. For computational
and experimental purposes, it appears that the difference
between the D-atoxn ground-state energy and the IA
asymptotic limit can safely be neglected.

As shown in Ref. 1, the P„(r,R;R ) may be expanded in
terms of body-fixed wave functions kIr„"(r;R) of definite A

(angular momentum along the internuclear axis) accord-
ing to

$„(r,R;R)=gD re(gg, 8a,0)4„"(r;R), (14)

where J is the total angular momentum and J, is the
body-fixed ele:tronic angular momentum as measured
about the c.m.n.

Using Eq. (15) and the properties of the Wigner D func-
tions, the required Hamiltonian matrix elements may be
expressed in terms of body-fixed basis matrix elements.
Note that a general basis term in the expansion of
p„(r,R;R) is given by Dz br(err, Ore, 0)fk(r;R). For con-

venience, this mill be revrritten in Dirac notation as

~

JMAk)-
~
k;R),. One obtains, as the general matrix

R
element,

where the coefficients are Wigner D functions; J and M
label the total angular momentum of the system and its
space-frame z component, respectively, and A ranges
from —J to J. Once the desired J, M, and R have been

fixed, the obvious method of determining the eigenfunc-
tion Eq. (14) of the Hamiltonian Ho(R) is to expand the
kIr„"(r;R) in terms of any electronic basis (e.g., Slater,
Gaussian, or elliptic orbitals), then perform a linear varia-
tional calculation to determine the eigenenergies and
eigenstates. For the required Hamiltonian matrix ele-

ments, note that the electronic operators in Eq. (5) (i.e.,
H, and the mass polarization term) act only upon kir„,

without affecting the D functions. The Lit /(2 R 2)

operator acts upon both the D functions and the kIr„and
may easily be evaluated by using the relation

Lg ——J —2J +J —J J —J J

II R
)

IJMAi
)
Hg(R)

) JMAg ) )k R ),=AA, A, (I R -— )I,+H, k;R)
1

+,(5,, „„I[J(J+1)—2A,'](1;R ~k;R)+(1;R
~
J,'~k;R)I

Ark, A i[J(J+1)——Ak(Ak+1)]'r (1;R
i J, ik;R )

&r,, A, +i[J(J+1)——Ak(Ak —1)]'r2(1;R
~
J,+ ~

k;R )) . (16)

Note that the matrix elements are independent of the value of M.
The only J values to be considered in detail in the present work are J=0 and J=1. Equation (16) becomes somewhat

simpler for these two special cases: for J=0,
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2

((R (
(000(HO(R) [ 000}-( k R),= I R — V, +H, + kR')

2(m +m )
" ' zpRi

and, for J=1,
(i;R [ &IWA, ~H, (R) ) lmA, )„[-k;R),

2

=0„„(;R — '
V,'+H, + ', k;R)

2(m, +ms) " ' 2pR~

+,f4, ,~,(2—2Ak)&i R Ik R& —4,,~, -ii 2&i R IJR Ik;R& —4, ,A, +ii 2&i;R IJR+ Ik;R&I.1

p
(18)

Once these matrix elements have been evaluated for some
choice of basis, one performs a matrix diagonalization, as

usual, to obtain the eigenfunctions (t, „(r,R;R) and eigen-
values U„(R).

'For J=0 states once all matrix elements appearing in
Eq. (17) are known, performing an IA calculation requires
essentially the same amount of labor as a SA calculation.
The only difference between the two calculations is that,
in the SA approach, only the & I;R ) H,

~
k;R ) matrix ele-

ments are involved in the diagonalization, while the

(;R — V+9, /(2 0R~ ( k;R)
1

2 m, +ms

contribution is perturbatively added to U„(R) afterwards.
Therefore, for J=0, the SA and IA approaches require
diagonalization of the same size matrix. It should be
noted, however, that the SA correction terms calculated
for a single diatomic molecule are proportional to the
corrections for any of its isotopes, because the SA zeroth-
order eigenfunctions are independent of nuclear mass.
Hence the SA correction terms for Hi+ may be scaled by
the appropriate mass factors to obtain the corrections for
HD+, Di+, ddt„dt's, etc. Of course, this is not the case
with the IA approximation, because the zeroth-order
eigenfunctions are inherently nuclear-mass dependent; a
separate calculation must be performed for each isotope.

For J&0, Eq. (16) indicates the occurrence of nonzero
matrix elements between basis terms for which
Ak ——Ai+ I, resulting from the presence of the J,+ opera-
tors. These coupling operators, of course, do not appear
in the zeroth-order Hamiltonian for the SA approach,
which is just H, . Hence, performing a SA calculation
with a basis in which AI, ranges over —J& A~ &J is sim-
plified because the Hamiltonian matrix factors into blocks
between basis terms for which Ak ——Ai, while in an IA
calculation using the same basis, no such simplification
occurs. Therefore, for J&0, performing an IA calcula-
tion requires the diagonalization of larger matrices than
performing a SA calculation with the same basis set.

Methods for reducing the size of the required matrices
are clearly of importance, and two such techniques have
been utilized in the calculations performed here for J= 1.
The first approach is a rigorous method for factoring the
matrix obtained from Eq. (18) into two uncoupled blocks,
using a unitary transformation. This approach requires

that the basis g; be constructed according to the procedure

g(=D A, w(A ~.a o)f «'R»

where, to satisfy the form of Eq. (14), one demands

J~f;(r;R)= Af, (r;R) .

The ordering is such that

A;= —I for i =1, . . . , ni,
A;=0 fori =ni+1, . . . , no+ni,
A;=1 fori =no+ni+1, . . . , no+2ni

with the f; satisfying

f;+„+„,(r,e,p;R )=f;(r,e, —(t(;R )

(19)

(20)

0 )) -Ho)
T T

Ho) Hoo H p)

0 Hpi

where Hei is an noXno matrix, Hoi is an ni Xno ma-

trix, and H I~ is an n&Xn& matrix. Note that all the
above matrices are real. Superscript T has been used to
denote the transpose. The special form of H allows the
transformation to a block-diagonal form by the unitary
transformation

v'1/2I „, 0

(23)

where l„and I„are the no/no and n& /n& identity

matrices, respectively. The transformed Hamiltonian
H'= UHU ' is

for i =1, . . . , n, . (21)

Except for the ordering, the only restriction this prescrip-
tion imposes on the basis is that the A= —1 and A=+1
states be treated symmetrically, certainly a reasonable re-

quirement. Note that the basis consists of no o'-type
terms and ni of each of the two orientations of ir-type
terms. Given this form for the basis, the Hamiltonian
matrix is found to have the structure
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H = V2Hoi

The new basis set is given by

1
g,'= ~ (g;+g;+„+„,) for i =1, . . . , ni

fol l =n i + 1, . . . ,no+ni

1
"0

(25)

(26}

for i =no+ni+1, . . . , no+2ni . (27)

It is clear that the basis terms in Eq. (25) span the space
of states denoted in the BO approximation as the n+
states (symmetric with respect to reflection through any
plane containing the two nuclei). Similarly, the basis
terms in Eq. (26) span the space of cr+ states and the basis
terms in Eq. (27) span the space of ir states (antisym-
metric with respect to reflection). Hence, the form of the
Hamiltonian matrix in Eq. (24) indicates that the n.+

components of the m-+ doublets interact with the o+
states, while the m components do not. This interaction
gives rise to the small splitting of the ndoub'-let known
as A doubling. In the usual treatment of A dou-

bling, ' ' ' the splitting is calculated using second-order
perturbation theory, while here the eigenfunctions of the
zeroth-order Hamiltonian exhibit the splitting. Hence, the
transformation to the Hamiltonian matrix of Eq. (24) has
not only reduced the size of the secular equation but has
also elucidated the phenomenon of A doubling. It should
be noted that the parity-do:oupling procedure described
above for the J= 1 case can be performed for any value of
g 16

We next examine the second approach to reducing the
size of the required Hamiltonian matrix for the J=1
case. In this procedure, one continues to use the basis
given by Eqs. (25)—(27), with the associated Hamiltonian
matrix of Eq. (24}. However, one makes the approxima-
tion that the off-diagonal blocks in Eq. (24}, which couple
the n+ terms with the cr+ terms, can be neglected. While
this approach does not manifest the A doubhng behavior,
it has the advantage that one can construct the J=1 cr+

potential curves by merely adding the centrifugal term
(iMR )

' to the J=0 cr+ potential curves, as one would do
in the SA approximation. Note that this method is still
an improvement over the SA approach for unequal nu-

clear masses because this procedure leads to correct disso-
ciation, while the SA approach does not.

The two methods described above for factoring the
I=1 Hamiltonian matrix into blocks represent the two
extremes in the precision which may be obtained. The
transformation to the basis given by Eqs. (25)—(27) is
trivial, yet perfectly rigorous, so any approximation
method should start from this point. The second ap-
proach of ignoring the coupling terms completely is the
least-precise procedure that can be used, and between
these two extremes there are other possibilities, such as
second-order perturbation theory or variation of basis size

(e.g., omitting some of the m. + basis terms if the cr+ states
are of primary interest). However, the present formula-
tion allows one to obtain a higher degree of precision than
the SA approach, if this is desired. Finally, note that
while only the J=0 and J=1 rotational states have been
discussed explicitly, it is relatively straightforward to ap-
ply these ideas to higher rotational states.

Having obtained the eigenfunction
~
n;R } and

the eigenvalue U„(R) of the Hamiltonian Ho(R) by the
above variational procedure, one gets the IA poten-
tial curve by adding the correction term
(n;R

~

—(1/2p, )c} /c)R
~
n;R } appearing in Eq. (12). In

the SA approach this term can be calculated either nu-
merically or analytically. The numerical technique' 's re-
quires performing two (or more) calculations of the BO
electronic eigenfunction for closely spaced values of the
internuclear separation about the R of interest and numer-
ically computing the derivative. The analytical approach,
suggested by Kolos and %'olniewicz, ' relies on the virial
theorem for the BO Hamiltonian, given by

dEao =—(1/R )[(&p)„+2(@'x)„] (2&)

t

= —' (v&+2(- ' v,'), (29)

where 8'p is the potential energy, 8'x is the kinetic ener-

gy, and V is the potential energy operator. Note that the
relation remains true whether or not the internuclear
repulsion term 1/R is included. With the virial theorem,
dE&oldR is obtained in terms of readily available matrix
elements computed at one value of R. This information
can then be used in a system of inhomogeneous equations
(obtained by differentiating the secular equation)
and the solution allows the computation of
(n;R

~

(1/2p)c) /c}R
~
n;R ) from matrix elements

evaluated at just one value of R.
For the IA approximation, the numerical approach can

also be used in the evaluation of the (1/2p)c} /c}R matrix
elements. The present calculations have been performed
in this manner; for the problem considered, a two-point
differentiation scheme„with an interval on the order of
10 a.u. , yields sufficient accuracy. It is interesting to
note, however, that the virial theorem can be extended to
apply to the Hamiltonian Ho(R} of Eq. (5) and one finds
that the derivative of U(R) defined in Eq. (7) is given by

(v)+2 — v„' — v„'
dR R 2m,

"
2(m +mi, )

(30)

The only difference between the right-hand sides of Eqs.
(29) and (30) is the inclusion of the mass polarization and
Ln/(2pR ) operators in the kinetic energy term. Since
these additional operators do indeed arise from kinetic en-

ergy operators, this difference is to be expected. Numeri-
cal computations performed here have confirmed Eq. (30)
to the accuracy of the calculation and this relation may
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serve as a useful computational check. The existence of a
virial theorem for the IA approximation may also allow
the computation of the 8 /BR matrix elements analyti-
cally, from matrix elements evaluated at a single value of
R. Investigation of this possibility has been left for future
%'ork.

III. COMPUTATIONAL METHOD

The wave functions obtained in this paper have been
constructed using a two-centered Slater orbital basis of the
forin

(31)

where the c; denote the center (a or b) on which the orbi-
tal has been situated, the remainder of the notation being
standard. Previous calculations' ' ' ' ~ of energies
and adiabatic corrections of Hz+ and HD+ have been per-
formed using a basis consisting of functions of elliptic
coordinates, because this type of basis is most appropriate
for the solution of the BO eigenfunctions. However, as
discussed in Ref. 1, matrix elements of the I.x and
B~/BR operators, applied in the c.m.n. frame, are espe-
cially easy using a two-centered basis, and not as straight-
forward if an elliptic basis is used. In addition, a Slater
basis having correct behavior for large R (e.g., one con-
taining basis terms that are adequate to describe the iso
state going to a Is state on a deuteron} is simple to con-
struct, while this may prove difficult with an elliptic
basis, depending on how fiexible the elliptic basis func-
tions have been chosen to be.

The simplest wave function examined here is the J=0
isa state. The basis for this wave function consists of 34
Slater orbitals on each of the two centers. The basis set
contains terms with n; ranging from 1 to 9 and I; ranging
from 0 to 5, with many of the higher n;+1; values within
this range excluded. The value of rn; is required to be
zero as is clear from Eq. (14}for a J=0 iso state. Note
that the Slater basis tends to become the appropriate basis
at the united-atom limit and for large values of A. How-
ever, for the small to intermediate values of internuclear
separation, the Slater basis is less appropriate and achiev-
ing high accuracy requires including a large number of
powers of r and multipoles in the basis. To make better
use of the basis in this difficult region, an optimization of
the nonlinear parameters a; was performed for a subset of
the basis at 8 =1.0 a.u. For a basis this large, adding
higher powers of r and higher multipoles proved to be
more effective than adding terms redundant in powers of
I and multipoles with different exponents. Table I con-
tains the basis terms used to calculate the J=0 1so. state,
along with the values of the nonlinear parameters a; ob-
tained from the optimization at R = 1.0ao.

For the J= I 0 and m. states, one includes not only the
previous set of Slater orbitals used for the J=0 o. states
but also a basis set which is adequate to span the electron-
ic m states. The m-state basis set has been obtained by tak-
ing the previously described Slater basis for o states, de-

TABLE I. Slater-orbital basis (situated on each of the two
centers) used for J=0 u-state calculations.

1

2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

27
28
29
30
31
32
33
34

0
0
0
0
1

1

0
1

2
0
1

2
3
0
1

2
3
4
0
1

2
3
4
5

1

3

1

0
1

2

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0

0

0

0

1.03000
0.50000
0.984 32
0.50000
1.12945
0.50000
1.948 31
1.006 57
2.861 05
1.01101
1.01101
1.01101
1.01101
1.03205
1.03205
1.03205
1.03205
1.032 05
1.198 84
1.19884
1.198 84
1.198 84
1.00000
1.00000
1.322 91
1.322 91
1.322 91
1.322 91
1.322 91
1.32291
1.322 91
1.322 91
1.32291
1.322 91

leting the I;=0 terms and changing all m; from 0 to l.
The resulting basis consists of 23 orbitals on each center.
Note that the Hamiltonian matrix elements involving the
m; = —1 terms are the same as those for the m; =1 terms,
as seen from Eq. (22), so the m; = —1 terms need not be
included in the basis.

Given the above basis, it is straightforward to evaluate
all matrix elements of the J=0 and J=1 states using
Eqs. (17) and (18) and standard Slater-orbital matrix-
element routines. All matrix-element evaluations have
been performed to double precision on a Cray 1 (28 di-
gits). For small enough R, the above basis will, of course,
lead to numerical linear-dependence difficulties. In order
to eliminate this problem, a transformation to a new basis
is performed by diagonalizing the overlap matrix and dis-
carding all eigenvectors associated with eigenvalues less
than some specified (positive) threshold value. Although
the overlap matrix is positive definite by construction, nu-
merical inaccuracies can lead to negative eigenvalues. The
eigenvectors associated with negative (or extremely small
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positive) eigenvalues of the overlap matrix are, of course,
the least numerically reliable basis terms, so this pro-
cedure is an effective approach for eliminating linear

dependence problems.
Before utilizing the basis to calculate the IA potential

curves, the basis was tested by usiilg it to perform SA cal-
culations and comparing the results with previous accu-
rate calculations' '2' i (which used functions of elliptic
coordinates for the basis). Note that in order to observe
the quantitative differences between the SA, IA, and
nonadiabatic (i.e., exact) approaches to the solution of the
HD+ energies, it is desirable to be able to calculate poten-
tial curves to within an accuracy of 1X10 a.u. The BO
potential curve was calculated using the 68-term Slater-
orbital basis and found to be not quite as accurate as
desired at small and intermediate internuclear separations,
although the accuracy becomes progressively better as R
is increased. As an indication of how deficient the basis

is, the error in the potential curve at some selected values

of internuclear separation was found to be 1.0)&10 a.u.
at 1.0ao, 3.9&10 a.u. at 2.0ao, 1.6&(10 a.u. at 5.0ao,
and 9.2)&10 a.u. at 10.0ao. All these errors are due to
the computed energy being too high, as expected froin the
variational nature of the calculation. Although this accu-
racy appears to be inadequate for R less than 5.0oo, the
accuracy problem can, in practice, be sidestepped, as will

be discussed below. Next, the perturbative corrections
which must be added to the BO curve (in order to obtain
the SA curve) were evaluated using the BO electronic
eigenfunctions constructed from the 68-term Slater basis.
These correction terms were found to be in excellept
agreement with previous high accuracy results, ' ' with
errors less than 1X10 a.u. for all internuclear separa-
tions greater than R =0.7ao. For the internuclear separa-
tions equal to and smaller than 0.7ao this accuracy was

achieved after reoptimizing some of the exponents at each
value of R examined.

Despite the slight deficiency in the Slater basis, one can
nevertheless use this basis to compute the IA potential
curves to the needed accuracy if accurate BO curves can
be obtained from some other source. The calculations in-

dicated that the BO energy was somewhat inadequate,
while the perturbative correction terms were more than
accurate enough. Note that the primary difference be-

tween the SA and IA approaches is that the IA approach
includes the mass polarization and L~ operators in the
zeroth-order Hamiltonian exactly, while the SA approach
treats them only to first-order perturbation theory. How-

ever, one would expect first-order perturbation theory to
work extremely mell, unless the 1sog potential curve is in

a region of R where it is close to another potential curve
corresponding to a state with which the 1sog state has
nonzero coupling. In other words, the IA approach
should yield substantially different results from the SA
approach only when BO potential curves become degen-
erate or nearly degenerate. Examining the 1sog potential
curve and the 2po„curve, whose corresponding states be-

come coupled when one takes into account the unequal
masses of the nuclei, one finds that the curves become ap-
preciably close only beyond 5ao. Therefore, within 5ao,
the somewhat inaccurate value of the IA potential curve

can be improved by subtracting out the 1sog BO curve
obtained from the Slater basis, then adding the correct BO
curve. Beyond 5ao, recall that the accuracy already ap-

peared to be almost adequate; however, even this region
can be corrected by the subtraction-addition procedure if
both the 1so. and 2@a„BOcurves are in error by essen-

tially the same amount, as is found to be the case in the
present calculation.

The above procedure has been used to calculate the IA
iso potential curve and appears to yield potential curves

which are accurate to within 1)&10 a.u. (which is about
an order of magnitude more accurate than is really neces-

sary to adequately compare the various adiabatic ap-

proaches with the exact nonadiabatic results). In addition,

the shifts due to the o+-n.+ coupling for the J=1 iso
state and the J=1 2@m+- sphtting have been calculated, in

order to indicate the strength of the coupling. Since these

values are shifts, they are essentially perturbative correc-
tions and should be valid to the number of digits present-

ed. The Slater basis for the ir states was tested by utiliz-

ing the basis to calculate the 2pn BO curve and associated

SA corrections, then comparing the results with previous

accurate calculations. ' ' The errors found were only

slightly worse than those found for the iso calcula-

tions. The basis was also used to compute the

(2pir„~il»
~
2pcr„) matrix elementw, hich appears to be

in good agreement with previous calculations;i 'z howev-

er, accurate comparison is difficult because these earlier

calculations are displayed only in graphical form.
The computational approach taken here appears to be

an effective procedure for obtaining the potential curves

to the necessary accuracy, though perhaps not as elegant

as one might wish. Some of the basis problems experi-

enced here for small and intermediate values of R could

be eliminated if an elliptic basis was used instead. How-

ever, the necessary matrix elements of the B~/M and La
operators, as applied in the c.m. n. frame, are nonstandard

for tHe case of unequal nuclear masses.
The present calculations indicate little difference be-

tween results obtained using the IA and SA approaches
for small and intermediate R. Hence, for other states of
HD+ (and, indeed, other systems) it might be adequate to
utilize previously calculated SA results for the smaller R
region, then perform the IA calculation, with a two-

centered basis (Slater or Gaussian orbitals), for larger R.

IV. POTENTIAL-CURVE RESULTS

Results for the J=0 iso state are presented in Table
II. The table includes not only the IA potential curve but
also the BO and SA potential curves, for comparison.
The BO potential curve has been computed using the al-
gorithm described by Wind ' and is in good agreement
with previous high-accuracy calculations' ' ' at those
values of R for which comparison is possible. Also note
that both the SA and IA potential curves have been calcu-
lated using precisely the same matrix elements; the differ-
ence between the computations arises from how the ma-
trix elements are partitioned between the zeroth-order
Hamiltonian (i.e., involved in the diagonalization) and the
perturbation term The expres. sion for the BO energy is
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TABLE II. Electronic potential curves obtained using the Born-Oppenheimer, standard adiabatic,
and improved adiabatic formulations for the J =0 1so state of HD+. To obtain total potential energy,
add 1/R.

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
2.10
2.20
2.30
2.40
2.50
2.60
2.70
2.80
2.90
3.00
3.20
3.40
3.60
3.80
4.00
4.20
4.40
4.60
4.80
5.00
5.25
5.50
5.75
6.00
6.25
6.50
6.75
7.00
7.25
7.50
7.75
8.00
8.25
8.50
8.75
9.00
9.25

(a.u. )

—2.00000000
—1.978 242 06
—1.928 620 30
—1.866 704 08
—1.800 754 06
—1.734 988 00
—1.671 484 71
—1.611 19627
—1.554 48009
—1.501 381 60
—1.451 786 31
—1.405 502 78
—1.362 307 86
—1.321 971 39
—1.284 269 24
—1.248 989 87
—1.215 937 22
—1.184931 56
—1.155 809 19
—1.128 421 57
—1.102 634 21
—1.078 325 42
—1.055 385 08
—1.033 71349
—1.013220 31
—0.993 823 51
—0.975 448 58
—0.958 027 66
—0.941 498 86
—0.925 805 63
—0.910896 20
—0.883 242 56
—0.858 201 68
—0.835 487 07
—0.814852 59
—0.796084 88
—0.778 99744
—0.763 425 87
—0.749 22409
—0.736 261 45
—0.724420 30
—0.711034 84
—0.699049 69
—0.68829911
—0.678 635 72
—0.669 928 S5
—0.662 061 62
—0.654 932 S1
—0.648 451 15
—0.642 538 68
—0.637 126 30
—0.632 154 17
—0.627 570 39
—0.623 33003
—0.619394 25
—0.615 729 44
—0.612 306 56
—0.609 10047

8~" (au)
—1.999 591 47
—1.977 830 60
—1.928 213 25
—1.866 31024
—1.800 378 14
—1.734 631 57
—1.671 147 58
—1.610877 38
—1.554 17802
—1.501 094 82
—1.451 51332
—1.405 242 16
—1.362 058 34
—1.321 731 79
—1.284 038 51
—1.248 767 06
—1.215 721 48
—1.184 722 13
—1.155 60S 37
—1.128 222 75
—1.102 439 83
—1.078 13496
—1.055 19808
—1.033 529 54
—1.01303900
—0.993 644 50
—0.975 271 55
—0.957 852 30
—0.941 324 90
—0.925 632 82
—0.910724 30
—0.883 071 86
—0.858 031 45
—0.835 31669
—0.814681 54
—0.795 91276
—0.778 823 92
—0.763 250 68
—0.749 047 09
—0.736082 50
—0.724 239 37
—0.710851 43
—0.698 863 88
—0.688 11104
—0.678 445 53
—0.669 73645
—0.661 867 81
—0.654 737 17
—0.648 25449
—0.642 340 87
—0.636 927 49
—0.631 954 50
—0.627 37001
—0.623 12903
—0.619 192 73
—0.615 527 47
—0.612 10423
—0.608 897 83

8'i, (a.u. )

—1.999 591 55
—1.977 830 79
—1.928 21340
—1.866 31038
—1.800 378 26
—1.734 631 69
—1.671 147 69
—1.610877 49
—1.554 178 12
—1.501 094 91
—1.451 51341
—1.405 242 25
—1.362 058 43
—1.321 731 88
—1.284038 59
—1.248 767 15
—1.215 721 56
—1.184 722 21
—1.155 605 46
—1.128 222 83
—1.102 439 91
—1.078 13504
—1.055 198 17
—1.033 529 63
—1.01303908
—0.993 644 59
—0.975 271 64
—0.957 852 39
—0.941 324 99
—0.925 632 91
—0.910724 40
—0,883 071 96
—0.858 031 55
—0.835 31681
—0.814681 66
—0.795 912 89
—0.778 824 06
—0.763 250 83
—0.749 047 24
—0.736 082 67
—0.724 239 55
—0.710851 64
—0.698 864 11
—0.688 11129
—0.678 445 82
—0.669 736 78
—0.661 868 19
—0.654 737 62
—0.648 255 02
—0.642 341 50
—0.636 928 24
—0.631 955 41
—0.627 371 10
—0.623 13035
—0.619 19432
—0.615 529 41
—0.612 106 57
—0.608 900 65



IMPROVED A.DImATIC CM.CUI.&TIONS OF THE. . . 3613

9.50
9.75

10.00
10.25
10.50
10.75
11.00
11.25
11.50
11.75
12.00
12.25
12.50
12.75
13.00
13.25
13.50
13.75
14.00
14.25
14.50
14.75
15.00
15.50
16.00
16.50
17.00
17.50
18.00
18.50
19.00
19.50
20.00
20.50
21.00
21.50
22.00
22.50
23.00
23.50
24.00
24.50
25.00

prao ( )

—0.606089 36
—0.603 254 29
—0.600 578 73
—0.598048 27
—0.595 650 25
—0.593 373 54
—0.591 208 32
—0.589 145 87
—0.587 17844
—0.585 299 10
—0.583 501 64
—0.581 78048
—0.580 13056
—0.578 547 31
—0.577 026 57
—0.575 S64 56
—0.574 15779
—0.572 803 09
—0.571 497 52
—0.570 238 40
—0.569 023 21
—0.56784966
—0.566 71561
—0.564 558 12
—0.562 536 38
—0.560 637 83
—0.558 851 47
—0.557 167 57
—0.555 577 52
—0.554073 66
—0.552 649 15
—0.551 297 86
—0.55001426
-0.548 793 39
—0.547 63075
—0.546 522 27
—0.545 464 25
—0.544453 31
—0.543 486 37
—0.542 560 63
—0.541 673 50
—0.540 822 62
—0.540005 80
—0.50000000

TABLE II. (Continued. )

~SA ( )

—0.605 886 47
—0.603 051 17
—0.600 375 44
—O.S97 844 81
—0.595 446 67
—0.593 16986
—0.591 004 55
—0.588 942 03
—0.586 974 53
—0.585 095 14
—0.583 297 64
—0.581 576 44
—0.579 926 49
—0.578 343 22
—0.576 822 46
—0.575 36043
—0.573 953 64
—0.572 598 93
—0.571 293 35
—0.570034 22
—0.568 81903
—0.567 645 47
—0.566 S1140
—0.564 353 91
—O.S62 332 16
—0.560433 60
—0.558 647 23
—0.556 963 33
—0.555 373 28
—0.553 869 42

0 552 AAA 91
—0.551 093 61
—0.549 81001
—0.548 589 14
—0.547 426 50
—0.546 31802
—0.545 259 99
—0.544 249 05
—0.543 282 12
—0.542 356 37
—0.541 469 24
—0.540 618 36
—0.539 801 54
—0.499 795 73

~IA ( )

—0.605 889 84
—0.603 055 17
—0.600 380 13
—0.597 850 22
—0.595 45276
—0.59317651
—0.591 01159
—0.588 949 25
—0.586 981 93
—0.585 10321
—0.583 307 67
—0.581 59041
—0.579 946 51
—0.578 370 71
—0.576 857 71
—0.575 402 79
—0.574001 97
—0.572 651 98
—0.571 35002
—O.S70093 62
—0.568 88049
—0.567 708 47
—0.566 575 57
—0.56441963
—0.562 398 80
—0.560 500 80
—0.558 71476
—0.557 031 07
—0.555 441 14
—0.553 937 36
—0.552 512 90
—0.551 161 63
—0.549 878 05
—0 548 657 19
—0.547 494 56
—0 546 38609
—0.545 328 06
—0.54431712
—0.543 350 19
—0.542 424 45
—0.541 537 32
—0.540 686 44
—0.539 869 62
—0.499 863 81

IV„(H)=(lssss H, ——)ssss),R
(32)

Q2
+2 2+ 2.

2(m, +mt, ) 2p M 2pR
(34)

where H, is the BO Hamiltonian and
~ lsog )

eigenstate. The expression for the SA energy is
)'

IV&,
"(J=0; H)=(000 ()sos H, ——+Hs„

R

is the BO The expression for the IA energy is

W'i, (J =0;R ) = iso,J=0 Ho ——— 2

2p BR'

X 1sog, 000 -, (33)
1su,J=0 (35)

where Ho is defined in Eq. (5) and
~

iso,J=0) is the
electronic-nuclear orientation eigenstate for this zeroth-
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order Hamiltonian. The internuclear repulsion term 1/R
has not been included in the definition of the W s, in or-
der to make the results better behaved (and monotonically
decreasing) for purposes of both interpolation and discus-
sion of the small-8 behavior of W. The values given have
been found to be sufficiently closely spaced in R such that
cubic-spline interpolation is capable of yielding additional
points which may be needed (e.g., for vibrational calcula-
tions) to the necessary accuracy. These values have been
used for the calculations of the vibrational levels present-
ed in Sec. V. Including additional calculated points be-
tween those listed in Table II failed to change the vibra-
tional levels (to the accuracy considered in this work).
The values should be adequate for other possible applica-
tions, such as dynamics or multiphoton processes for
HD+. Energies are all given in Hartree atomic units and
are believed to be accurate to within +1 in the last digit,
i.e., to + I.OX 10 a.u.

The results listed in Table II indicate that the J=0 iso
IA potential curve lies lower than the J=0 iso's SA po-
tential curve for all internuclear separations. Between
R =0 and R =5.0ao the SA and IA curves differ by less
than 2X10 a.u. Note that the»os and 2po„BO
curves lie within 4X10 a.u. of each other at 8.0ao and
asymptotically approach one another as R goes to infini-

ty, so one expects a significant difference between the SA
and IA curves for this region of R. Indeed, from Table II
one finds that beyond 8.0?io the IA and SA curves begin
to separate significantly, reaching a difference of
6.417X 10 a.u. by 15.0ao. At 25.0ao the difference has
reached 6.808X10 a.u. , which, to the accuracy con-
sidered, is the asymptotic value of the difference. Beyond
25.0ao, the SA and IA potential curves may be obtained
by adding 2.0427 & 10 a.u. and 1.3619& 10 a.u. ,
respectively, to the BO electronic potential curve, which
will yield results accurate to within 1X10 a.u. The BO
electronic potential curve may be obtained to the neces-
sary accuracy beyond 25.0ao by the asymptotic expan-
sion

(rr?~ + rr?b )rr?q
lim (»os

~
HsA I »&s) =

R —+0 2Plg fPZI

(38)

Therefore, at the united-atom limit the SA potential curve
for iso goes to

2
(r??a +????,)???c8'?, (J=0;R~O)= —2m, +

277lg Ply
(39)

= —1.999 59147 a.u. (40)

for HD+.
The united-atom limit of the IA potential curve is also

of interest and can to a certain extent to be treated analyt-
ically. Examining the equal nuclear mass case m, =mb,
it appears that the function exp I

—[2m, m, /(2m,
+m, )]RA, I should serve adequately for small R as the
ground-state eigenfunction of Ho(R) defined in Eq. (5).
Using this function to evaluate the required matrix ele-
ments, one finds that at the united-atom limit, the IA po-
tential curve assumes the value

2
IA 2mc

W?,~(J=0;R~0)= 2m—,+
2m, +m,

(41)

for equal nuclear masses. The unequal mass case presents
additional analytical difficulties and it appears to be im-
possible to obtain the united-atom limit in closed form.
However, an approximate solution can be obtained, which
yields a result where the reduced nuclear mass of Eq. (41),
m, /(rr?, +m, ) (=??r?, ), has been replaced by the re-

duced nuclear mass r??,mb/(rr?, +rr??, ); i.e., for unequal
nuclear masses,

2(m +mb)m
8'i, (J =0;R~O)= —2???, +

4p? g rrl b + ( pl g + rr? b )r??~

IIr80(R) 1 R i 9R 4 ?5R 6 ??3R
= —1.999591 55 a.u. (43)

(36)

The united-atom limit of the SA potential curve is of
interest and previous discussions of the SA approximation
for one-electron diatomics' ' ' have not indicated that
this limit can, in fact, be obtained analytically. It is
convenient to introduce the elliptical coordinates
A, =(r, +r?, )/R and p=(r, rb)/R, where —r, and r?, are
the separations of particle c from particles a and b,
respectively. Evaluating the necessary matrix elements,
one finds that the function exp( —m, RA, ), after normali-
zation, forms a sufficiently accurate small-R approxima-
tion of the BO eigenfunction

~

1so.z) to yield the correct
expansion of the BO energy through order R, i.e.,

8' o(R)= —2+ —,R ——,R +. a.u.

Hence, the function should be adequate to evaluate the SA
correction terms in the limit as R~0. After performing
the necessary integrals, one finds

for HD+. The result of Eq. (43) is in agreement with the
variational calculations performed here to the accuracy re-

ported, so apparently the approximation is quite good.
Table III contains potential-curve shifts resulting from

the o+ ?r+ coupling -that are pertinent to the calculation
of the J =1 Is?T and 2p?r curves. Values have been com-
puted not only for HD+ but also for H2+, since these cou-
pling effects are of interest for all systems, whether the
nuclear masses are equal or unequal. The shifts listed in
Table III are inerely the difference in energies obtained by
retaining, then omitting the Ho~ coupling terms in Eq.
(22). Since the 2p?r state is not affected by the coupling,
the 2p?r shift in Table III is the difference between the
2p?r+ and 2p?r potential curves, responsible for the A
doubling discussed earlier. Values presented in Table III
are not adequately dense in R to allow interpolation but
are given only to indicate the strength of the coupling as a
function of R. A more thorough investigation of the
J= 1 states has been left for future work

From Table III it is seen that the 2@m shifts are similar
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TABLE III. Energy shifts duc to J,+ coupling for J =I
states (1G hsrtrcc I.Q.).

0.5
1.0
1.5
2.0
2.5
3.0
3.5
40

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4,0

HD+
—6.93x10-'
—1.05x 10-'
—1.5x10-'
—1.1x10-'
—8.7x 10-'
—7.3x 10-'
—6.5 x10-'
—5.8x 10

H2+
—1.586x 10-'
—1.98x 10
—1.3x10-'
—1.1x 10-'
—1.0x 10-'
—9.4x10-'
—8.8x 10-'
—8.4X10-'

+ 2.0986x 10-'
+ 1.4933x10-'
+ 1.2399x 10-'
+ 2.114x10-'
+ 5.09x 10-'
+ 1.45x 10-'
+ 4.3x 10-'
+ 9.0x10

+ 4.2325 X 10
+ 2.7218x 10-'
+ 2.2170X 10
+ 3.767x10-'
+ 9.06x 10-'
+ 2.57x 10-'
+ 7.5x 10-'
+ 1.6x10-'

for HD+ and H2+, the H2+ shifts being a factor of about
1.8 larger than the HD+ shifts for mcxit values of R, due
to reduced mass effects. Note that the primary contribu-
tion to the 2pir shift comes from 2pcJ-2pn coupling,
which acts essentially the same way for both HD+ and
H2+. On the other hand, the ratio of the iso shifts for
Hz+ and HD+ varies from about 1.0 to 2.3. The differ-
ence is apparently due to the fact that for HD+ the I scr
state can couple to the 2@m state, since neither state is of
strict g or u symmetry, while for H2+, exact g and u

symmetry apphes, and the closest state with which the
1scrs state can couple is the 3dns state.

Although the shifts listed in Table III become signifi-
cant for smaller R, they should not have any substantial
effect on the bound vibrational state energies of the J=1
iso and Zpm curves. From BO potential curves one finds
that the lscr curve attains its minimum at approximately
R =2.0ao and the region of R less than 1.0ao is classical-
ly forbidden for all bound vibrational states. From Table
III note that, over the classically allowed region of R, the
1scr shift due to the cr+-ir+ coupling is less than 2 X 10 '
a.u. , which for most purposes can be neglected. For the
2@m state, one finds that the BO curve attains its
minimum at approximately R =8.0ao and the region of R
less than 4.0ao is classically forbidden for bound states.
Table III has not been extended beyond 4.0ao into the
classically allowed region because of the smallness of the
2pn shift here (less than 2X10 ' a.u.); the A-doubling
effect would appear to be too small for experimental ob-
servation, for this particular state. Hence, to a very good
degree of approximation, the shifts for the two states can
be neglected entirdy, which simplifies the treatment re-
quired. It should be noted that A doubling grows with in-
creasing J, so for high enough J the sphtting will become
too important to neglect.

The effect of cr+-ir+ coupling can lead to substantial

~
2pir„) =R[(A, —1)(1—p )]'~

X exp( —m, RA, /2)e px(+i((}),

which yield the correct expansions of their respective BO
energies, through order R . The IA results were ob-
tained by replacing m, in the above expressions by
2m, m, /(2m, +m, ) to obtain approximate IA eigenfunc-
tions for the equal-nuclear-mass case which are valid for
small R. These results for the equal-nuclear-mass case
can then be used to carry over to the unequal-mass case by
adjusting the nuclear reduced mass as was done to obtain
Eq. (42}. The analytical expressions obtained below are in
substantial agreement with results from the variational
calculations performed in this work. In the SA approxi-
mation, adding the adiabatic corrections and the centrifu-
gal term to the BO value leads to the limiting behavior

W +(J= I;R~O)~ a.u.Zpa+ pR

for the 2pa+ state and

(44)

Wzp~(J =1;R—+0)~
2

a.u.
pA

(45)

for the 2pn. states. In these expressions W„(J=1;R) is
the obvious J= 1 analogue of Eq. (33) given by

W„(J=1;R}

1MA„n 8,——+HsA n - 1MA„
1

R 5

(46)

where A„ is the component of the angular momentum
along the internuclear axis of the BO state

~
n ). Howev-

er, in the IA approximation, the 2pcr+ and 2pm+ terms
become coupled and analytical arguments (confirmed by
numerical calculations} can be used to show that

W' +(J=1;R~0)=-—
4m' ms + (m~ +mb )mq

for the 2pcT+ state, where W„(J=1;R) is the obvious
J=1 analogue of Eq. (34}. As with Eq. (42), this equa-

differences between the SA and IA potential curves for
small R. As discussed above, these differences do not ap-
pear to cause significant changes in the bound vibrational
energies obtained for the J= 1 1scT and 2@m states. How-
ever, the behavior in this region may be of importance for
some dynamics problems, so the small-R behavior of the
low-lying curves is of interest.

For H2+, the most interesting difference in the behavior
of the low-lying potential curves involves the 2pc7+ and
2pir+ curves. In the BO approximation, both these
curves have the limit —0.5 a.u. as R~O, not including
the nuclear repulsive energy. Note that the following SA
and IA results were obtained in a manner similar to Eqs.
(38)—(43) by using the small-R approximations

~
2po„) =Rpk, exp( —m, RA/2)
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tion is exact for the case of equal nuclear masses, but is
only approximate for unequal masses. In addition, an
avoided crossing of the 1scr+ curve with the 2pcr+ curve
(which occurs for HD+ but not for Hz+, because of sym-
metry breaking) complicates the identification of Eq. (47)
as the limit of the 2po+ curve; for the unequal-mass case,
Eq. (47), in fact, becomes the limit of the 1scr+ curve.
For simplicity let us just consider H2+. If the 2pcr+-
2pir+ interaction is dominant, one finds for the 2@m+
curve that

+(J=1;R~0)~ a.u. , (48)
2p& pE,

although this behavior eventually breaks down because of
an avoided crossing with the 3po+ curve. Since the
2@m state remains uncoupled, it behaves according to
(pR ) ', as before. The main point of interest, however,
is that in the IA approximation the 2@0+ and 2pn. +

curves interact to yield a curve which goes to the united-
atom 2p-state energy of a Z =2 one-electron "atom" with
nuclear mass 4m, mb/(m, +m&) (exactly for m, =m&,
approximately for rn, &mb —with the above caveat that
for unequal nuclear masses the 1so+ curve complicates
the identifications), as opposed to the characteristic
(pR )

' behavior one obtains from the SA approxima-
tion.

The J=1 1so+ curve does not become degenerate with
any corresponding m+ curve in the BG approximation as
R~O. Hence, the SA and IA approximations for this
curve lead to the same small-R behavior of

This equation is merely Eq. (12) (and its SA analogue)
rewritten in a form that makes use of the data in Table II.

Many numerical methods exist for the solution of this
equation. The technique used in the present work is
Numerov integration. After making an initial guess for
E„ the resulting differential equation is integrated out-
ward from small R and inward from large R to some ap-
propriately chosen matching point. The discrepancy in
the logarithmic derivative at the matching point is then
used to provide a corrected estimate of the energy E„.
The algorithm is applied iteratively and has been found to
be quickly convergent for the problem under considera-
tion. For the accuracy required in the present work, the
algorithm requires the potential curve at values more
closely spaced than those provided by Table II. As stated
earlier, cubic-spline interpolation is used to obtain addi-
tional values of W from the table, then the 1/R term is
added to the interpolated value. This procedure has been
repeated with more closely spaced ab initio points than
given in Table II and no difference, to the accuracy re-

ported, is found in the calculated vibrational levels.
Tab1e IV contains the vibrational-level results in terms

of dissociation energies measured relative to the ground
state of the D atom, —md/2(mq+m, ) a.u. , for both the
SA and IA levels. This method for tabulating the vibra-
tional energies allows easy comparison of the results ob-
tained by the two methods. The alternate choice of listing
the SA levels relative to the SA curve limit and the IA
levels relative to the IA curve limit does not appear to be

Wi,~(J =1;R~0)= 8'i,~(J =1;R—+0)—+ a.u.
pR

Note that this curve does not interact with the 2po+ state
of Hi+ since 1 so is of g symmetry and 2@a+ is of u

symmetry. However, for HD+, the symmetry is slightly
broken, leading to a very sharp avoided crossing of the
isa+ curve with the 2pcr+ curve.

Therefore, if the IA approach is used for dynamics,
care must be taken concerning the small-8 behavior,
which is considerably different from that obtained using
the SA approach. Some features of the IA approach may
be advantageous, while others, such as sharp avoided
crossings may lead to numerical difficulties in the dynam-
ical calculations.

V. VIBRATIONAL SPECTRUM FOR THE J=0 1so.
ROTATIONAL-ELECTRONIC STATE

Using the values of both 6'i,~(J =0;R ) and
W'I", (J =0;R) listed in Table II, the vibrational levels
may easily be obtained by solving for the eigenvalues of
the equation

l 8 2
2 +— + Wi,~(J =0;R)+—X„(R)

I

=E„X„(R). (&0)

0
1

2
3

5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

21 515.91
19602.78
17 785.80
16062.10
14429.20
12 884.98
11427.66
10055.86

8768.50
7564.93
6AAA 82
5408,27
4455.79
3588.33
2807.35
2114.83
1513.36
1006.20
597.31
291.32

92.89
2.24

—14.13

21 515.92
19602.80
17 785.82
16062.12
14429.22
12 885.00
11427.68
10055.88

8768.53
7564.96
6AAA 85
5408.30
4455.82
3588.36
2807.39
2114.87
1513.42
1006.28
597.43
291.55
93.55
8.76
0.32

TABLE IV. Dissociation energies (relative to D-atom
ground-state energy) of the vibrational levels obtained using the
IA and SA potential curves for the J=0 1scr state of HD+ C'in

cm-').

IA
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a reasonable form for presentation because this causes the
low-lying levels of the two methods to appear to be sub-
stantially different. In fact, there is little difference be-
tween the energies of these states, when measured relative
to the configuration where all particles are infinitely
separated with zero kinetic energy. From the viewpoint
of spectroscopy„only the transitional frequencies between
the levels hsted are of interest, so the zero of the energies
is of httle physical importance. Energies are presented in
cm ', where the conversion 1 a.u. =219474.635 cm
has been used. Note that the SA potential curve asymp-
totically approaches the value ——,

'
+(m~+md )m, l

4m~mq a.u. For the mass values used, the difference be-
tween the SA curve limit and the D-atom ground state is
6.809X10 ~ a.u. (14.94 cm '), which in high-resolution
spectroscopy is a significant discrepancy.

Both the SA and IA potential curves are found to have
23 bound states. However, because of the dissociation er-
ror of the SA approach, the highest bound state obtained
using this curve is actually higher than the dissociation
hmit used, hence the negative value of the dissociation en-

ergy listed. The v=22 bound state of the SA and IA
curves are extremely weakly bound. To ensure that the
integration had converged for the highest state, it was
necessary to extend the SA potential curve out to 50ao
and the IA potential curve out to SGuo.

Wolniewicz3 has shown that the SA vibrational ener-
gies are upper bounds to the exact eigenvalues of the com-
plete Hamiltonian. This proof is easily extended to the
case of the IA approximation; therefore the presence of
the v=22 bound IA vibrational state answers the question
that has hen posed of whether the J=0 1scr state has 22
or 23 bound states. This conclusion, of course, applies
only to the nonrelativistic Schrodinger equation, and rela-
tivistic and radiative corrections may raise this level above
the dissociation threshold. In order to determine if the
physical state is actually bound, one must take into ac-
count relativistic, radiative, and nonadiabatic corrections.
We have investigated including the relativistic corrections
computed by Bishop ' in the manner suggested by Wol-
niewicz and Pollz and found that while the dissociation
threshold is lowered by 1.4610 cm ', the energy of the
v=22 state is lowered by 1.4607 cm ', essentially the
same amount. Hence the v=22 state continues to be
bound by 0.32 cm ' after relativistic effects are included
using this p'rocedure. The technique Wolniewicz and Poll
have suggested for including the radiative corrections
shifts the highest state and the threshold upward by the
same amount, 0.2720 cm '. Hence including both the
relativistic and radiative corrections in this manner does
not change the binding energy of the v=22 level from the
original value of 0.32 cm ', to the accuracy of the present
calculations. It thus appears extremely likely that this
23rd level does exist in the physical (nonadiabatic, relativ-
istic, radiative) system. Franck-Condon factors will make
transitions between this state and other levels extremely
difficult to detect experimentally.

The vibrational levels listed in Table IV indicate that
the IA levels are all deeper than those levels obtained
from the SA approach. Since both of these adiabatic ap-
proximations are upper bounds to the true nonadiabatic

TABLE V. Energies (in hartree a.u.} obtained for the low-

lying J=0 levels of HD+ using approximate [Born-Oppen-
heimer (BO), standard adiabatic (SA), improved adiabatic (IA),
aud the attempt at a best adiabatic (BA') proposed in Ref. 1]
aud exact [nonadiabatic (NA)] formulations.

Level

'Reference 12.
bReference 13.

BO
SA
BA'
IA
NA'
BO
SA
BA'
IA
NA'
BO
SA
BA'
IA
NA'
BO
SA
BA'
IA

Energy

—0.598 090 8
—0.597 897 5
—0.597 893 8
—0.597 897 6
—0.597 898 0
—0.589 371 8
—0.589 )807
—0.589 1773
—0.589 1807
—0.589 181 8
—0.581 091 1

—0.580901 9
—0.580 898 7
—0.580 902 0
—0.580903 7
—0.573 235 7
—0.573 048 1
—0.573 045 2
—0.573 048 2
—0.573 050 6

levels, this means that the IA approximation has led to
more accurate energies for all the levels, as expected.
While the lower levels are not appreciably changed, the
highly excited levels indicate that the traditional SA ap-
proximation is not appropriate for these states. Note that
the shift in the vibrational levels is simply a refiection of
the shift in the potential curves discussed earlier. The IA
potential curve was only slightly lower for the small to in-
termediate range of R, so the lower vibrational states, sen-
sitive to only this part of the curve, are also slightly lower.
However, the IA potential curve was significantly lower
for large R, so the higher vibrational states, which are
very sensitive to the potential curve at the outer classical
turning point, are also significantly lower.

For extremely accurate comparison of the HD+ levels
with experiment, it is necessary to include nonadiabatic
corrections (along with relativistic and radiative correc-
tions). Large-scale fully variational calculations are useful
for the determination of accurate energies only for states
of low-vibrational quantum number'2'~ (typically
v=0—3). For these low-lying states, the SA and IA
values are compared with the BO, the nonadiabatic, and
the BA' (the attempt at a best adiabatic as formulated in
Ref. I) values in Table V.

The higher excited states are also of experimental in-
terest, but the fully variational procedure has not proven
to be effective for accurately calculating these energies.
Wolniewicz and Poll' have suggested a procedure that
utilizes the framework of the SA approach to calculate
the nonadiabatic energies by perturbation theory. To ob-
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tain the symmetry-breaking behavior, they have applied
this technique using approximate nonadiabatic wave func-
tions constructed from coupled lstrs and 2pcr„states
and examined the first 22 states of HD+. If this type of
calculation were performed within the framework of the
IA approach, it would not be necessary to couple states
into nonadiabatic wave functions in order to obtain the
symmetry-breaking behavior, Also note that the present
calculations indicated the presence of a 23rd state for this
system; it may be of interest to calculate nonadiabatic
corrections for this state.

VI. CONCLUSION

The IA approximation yields more accurate variational
bounds on all vibrational levels than the customary SA
approach. For systems with unequal nuclear masses, such
as HD+, the SA approximation is inadequate to describe
any physical state which is significantly affected by sym-
metry breaking, such as the highly excited vibrational
states near the dissociation limit. It is clear that the IA
approach is better suited to describe such systems.

In addition, the IA approximation requires about the
same amount of computational labor as the SA approxi-
mation for the J=0 states (if a two-centered basis is used,
as will usually be the case). For rotational states with

J&0, the IA approximation is able to describe the A dou-
bling in a very natural way, and if this splitting is not im-

portant, the computational effort can be reduced to essen-
tially that which is required in the SA approximation.
Furtbermore, all the calculations required to implement
the IA approximation can be performed using currently
existing quantum-chemistry computational procedures.

Finally, the implications of the IA approximation
should be examined for other applications, such as multi-
photon processes and collisions. The IA approximation
opens up the possibility of investigating the quasibound
states of HD+, which has not previously been attempted
because of the dissociation error of the SA approach.
Work is underway at this laboratory to utilize the frame-
work of the IA approximation to construct a basis for a
nonadiabatic calculation for the states of dt's, , a molecular
system for which the mass ratios are such that no adiabat-
ic approximation can be expected to yield precise results.
The molecular viewpoint has proven useful for many
physical problems, and the variation on that approach
presented here may have additional advantages, depending
on the particular problem.
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