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Solitary waves in ferroelectric liquid crystals
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The dynamics of bulk molecular reorientation in ferroelectric liquid crystals (FLC's) are
modeled by a continuum of elastically coupled, overdamped, massless ferroelectric dipoles under
the influence of an external electric field. Numerical solution of this system's equation of motion
in one dimension shows that reorientation in response to an applied field step can proceed via the
propagation of a solitary wave of universal shape and velocity. Application of the model to an ini-

tially helixed configuration shows that solitary waves reorient the bulk only if the applied field is

strong enough that its relaxation length is shorter than 3'0 of the helix pitch. Comparison of our
calculations with previous experimental study of the optical response of an FLC indicates that the
experimental results cannot be explained by these solitary ~aves.

I. INTRODUCTION

There is a growing interest in exploring nonlinear
behavior of physical systems. The correspondence be-
tween experimental observations and the solutions of non-
linear equations of motion has lent support to the concept
of solitons and solitary waves as real, useful physical enti-
ties. In recent years, the propagation of director waves in
nematic and ferroelectric smectic-C' liquid crystals has
been studied as a solitary-wave-type phenomenon. Direc-
tor orientation couples strongly with polarized light allow-
ing these waves to be observed directly in a light micro-
scope. In 1982, Zhu' reported the propagation of director
waves in a sheared nematic sample. These results were in-
terpreted by Lin, Shu, and Shen2 as soliton motion. It was
pointed out by Wangi that under certain circumstances
the motion of the director in these samples could be under-
stood in terms of traveling-wave solutions to nonlinear dif-
fusion equations investigated theoretically by Aronson and
Weinberger. s That solitary waves might be important
in ferroelectric liquid crystals (FLC's) was first suggested
by Cladis, Brand, and Finn5 based on observations of
electrically driven reorientation in the smectic-C'
decyloxybenzylidene - p' - amino - 2 - methylbutylcinnamate
(DOBAMBC). s In their model the ferroelectric polariza-
tion retains the helical configuration intrinsic to the smec-
tic C' phase, but under an applied electric field the regions
of unfavorable polarization become very smalL When the
applied field is reversed in direction these small regions
then have the favored polarization, and they expand by the
motion of walls that are identified as sine-Gordon solitons.
Other instances of solitary waves in liquid crystals are re-
viewed by Lin, Shu, and Xu.

In this paper, we report the results of numerical solu-
tions of the equation of motion for elastically coupled,
overdamped ferroelectric dipoles under the influence of an
external electric field, a model appropriate for director
motion in surface-free samples of FLC's. The calculations
show that dipoles initially at an orientation of unstable
equilibrium in an applied field can be reoriented by the
propagation of a solitary wave, with the same asymptotic
wave shape and speed resulting from a variety of initial

conditions, in excellent agreement with the theory of
Aronson and Weinberger. If the region of unstable orien-
tation into which the wave would propagate is infinite in
extent, this solitary wave eventually forms and propagates
for arbitrarily small applied field. In contrast to this situa-
tion, an initially helixed configuration (appropriate for the
model of Cladis et al. ) is reoriented by this wave only for
fields above a threshold; below this the reorientation is
nonpropagating. We calculate the time required for this
reorientation as a function of applied field strength both
above and below this threshold. W'e compare our calculat-
ed times with the experimental measurements of Cladis et
al. 5 and find significant discrepancies that lead us to con-
clude that this solitary wave does not govern the optical
response of helixed FLC's to applied electric field changes.

II. EQUATION OF MOTION

FLC's have their molecules arranged in layers, with the
average orientation of the molecular long axes (defining
the unit vector fi) tilted an angle yo from the layer normal
(z axis). The ferroelectric polarization P is locally normal
to both n and z.s An electric field E applied in the plane of
the layers produces a torque PE sing (where the azimuth p
is the angle between P and E) which can cause easily ob-
served motions of the director on the tilt cone. The config-
uration of aw FLC with the lowest elastic energy has a uni-
form twist of P along the layer normal, i.e., P qz, where
the pitch p of this helixed configuration defines q =—2tt/p.
For a uniformly layered ferroelectric liquid crystal, the
free-energy density F is

F ,'IP, + 2K(p, ——q)2—PEcosp,

where I is the moment-of-inertia density for azimuthal ro-
tations, and K is the elastic constant. We have neglected
differences between elastic constants, variations in the tilt
angle yo, coupling of the applied field to dielectric aniso-
tropy, flexoelectricity, and the self-field of the ferroelectric
polarization; the applicability of these approximations is
discussed elsewhere. Variation of Eq. (1) gives the equa-
tion of motion, which, with the inclusion of viscosity ri that
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damps azimuthal motion of the director on the tilt cone, is

r)y, - I—y„+Ky„—PE sing. (2)

In all that follows, we shall neglect inertial torques,
since they are smaller than viscous torques for reorienta-
tions that are slower than the characteristic time I/q. I is
of order ( —,', )pl sin ye, ~here p 1 g/cm3 is the mass den-

sity of the liquid crystal and I 30 A is the molecular
length. Measurements of the dynamics of thermal director
fluctuations in DOBAMBC indicate g 0.19sin ye g/cm
s 0 the motions we find all will be seen to be much slower
than the I/i) 4& 10 '4 s these constants define.

Dividing both sides of the equation of motion (2) by PE,
with I set to zero, gives

O

0
C0
0 foal

I i I

0 fo

P„—sing,

where z' z/g, g —=K/PE, and t' t/r, r=r)/PE. This is
a nonlinear diffusion equation, of the type investigated in a
comprehensive paper by Aronson and Weinberger. ~ They
predicted the qualitative behavior of solutions of Eq. (3),
and showed that an initial disturbance bounded between
two states, one stable and one unstable, whose motion
obeys Eq. (3), has as its solution at long times a solitary
wave propagating at speed c' where

1/2 1/2
d(aint'),

2 sing

dp
(4)

(the quantity in the square brackets on the right means
"the largest value of sing/hatt for p in the closed interval
from 0 to 1"). Both limits are equal to 2, giving a unique
result for c'.

To be able to observe the evolution of the traveling dis-
turbance in time we transform to a coordinate frame
(moving at the wave speed) z z —vt, and obtain

P t~P ««+ vP « —sinttt (5)

If we choose an initial configuration of ferroelectric dipole
orientations such that the asymptotic orientations at very
large negative and very large positive z" are those of stable
and unstable equilibrium, respectively, then we expect to
see the disturbance evolve into a solitary wave traveling
with v +2.

FIG. l. %ave-shape evolution in an infinite, unhelixed sam-
ple. The electric field favors the orientation p 0, so dipoles with

x are at unstable equilibrium and the wave front moves to the
right. (a) Steep initial shape, (h) more gentle shape. The curves
are displaced along the abscissa for clarity; the bar shows the
scale. The final plot in each sequence shows the same solitary
wave traveling at the same speed (v 2).

By comparing solutions obtained using various N, we
determined that solving Eq. (5) with N 1200 and

0.05 would give a solution essentially unaffected by
the boundaries and yet not liable to catastrophic collapse
at long times. '

We observed the evolution of initial states, where p
linearly changed from one asymptotic value to the other
over a region of varying length, to a solitary wave with
constant shape and speed. The final shape was unique and
the wave speed asymptotically approached v 2, in excel-
lent agreement with the predicted behavior and demon-
strating that the FLC equation of motion (3) does have a
solitary-wave solution. Some typical sequences are shown
in Fig. 1.

III. NUMERICAL SOLUTION: HELIX-FREE
INITIAL STATE

We approximated Eq. (5) using the semi-implicit
Crank-Nicolson finite difference scheme. " We used N
mesh points spaced by M", with values of p at the two op-
posite end points fixed. At each time step a set of N simul-
taneous (but, fortunately, tridiagonal) equations was
solved by the Newton-Raphson method. We solved the
equation with N in the range 400-1800. This had the ef-
fect of solving the problem over different sized domains:
Spatial resolution and hence the width of the wave were
kept the same, but the boundaries were further removed
from the wave front with increasing N. The wave front
was constrained to remain in the center of the domain by
continual adjustment of the frame velocity v.

IV. NUMERICAL SOLUTION: HELIXED
INITIAL STATE

We next considered the evolution of an initial state with

p varying with z to model the helixed configuration actual-
ly found in bulk samples of FLC's. Although the helix can
be unwound by the applied field, the unwinding is a topo-
logical process, and requires either reorientation at the
boundaries or the introduction of topological defects. We
allowed neither of these in the case we considered: In this
instance the heHx does not unwind, the periodicity of the
orientation field remains fixed under apped fields, and
the structure of an infinite ferroelectric can be inferred
from the structure of one half-period. The boundary con-
ditions then are p(z 0) 0, and p(z p/2) z. To in-
vestigate switching behavior induced by an alternating
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FIG. 2. Dipo1e reorientation in a helixed sample under the influence of three different electric field strengths: (a) weak field
(E 2S), (b) intermediate field (E 400), and (c) strong field (E 14400), where E is in units of K/(piP). The system is initial]y
in the stable state for a negative applied field. At t' 0 a positive field is applied and the dipoles begin to reorient. Each plot shows
different stages in the system's evolution towards the final stable state for a positive field.
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FIG. 3. Optical response time vs electric field. The experi-
mental measurements (&) are reproduced from Ref. S. The
lower curve (~ ) shows the results of our computer calculations
modeling bulk reorientation. The response time plotted is the
time for the midpoint to achieve 90% of its total reorientation.
Three characteristic reorientation times are sho~n for compar-
ison: r 2.3(2x) rip /E, the field-independent limit for weak
fields; r 2.3'/(PE) for bulk reorientation with no solitary-wave
formation; and r (—,)re(PER) ' for reorientation achieved

by solitary waves alone.

electric field, we chose as the initial orientation that p(z)
which satisfies the above boundary condition and which is
the configuration of stable equilibrium in a negative ap-
plied field. This initial orientation was easily calculated
since in the steady-state (p, 0), Eq. (3) has an exact
solution in terms of Jacobian elliptic functions. The evolu-
tion of this initial state in various positive applied fields is
shown in Fig. 2.

For weak applied fields (p/g(&1), the reorientation is
small, and is characterized by the time to= q/(K—q2) For.
larger fields (p//+30), the reorientation is large and the
dynamics depend on applied field strength, with the ap-
proach to equilibrium governed by the time constant

g/PE. At still larger fields (p/g & 30) the reorienta-
tion proceeds by the motion of a wave, whose resemblance
to the above found solitary wave increases as the applied
field increases. For the purpose of comparison with exper-

iment we "measured" the time required for the midpoint
lp(z p/4)l to complete 90% of its reorientation. This
time as a function of applied field is shown in Fig. 3.

Scaling these times to allow comparison with the mea-
sured times of Ref. 5 was accomplished by using the in-
dePendent measurements on DOBAMBC, with yo as
sumed equal to 17', of ri 1.6 cP, P 10.8 statvolt/cm, '

and K 1&.10 7 erg/cm. 's Further, taking the pitch
p 1.75 pm (Refs. 14-16) yields K/(p2P) 0.11 V/12
pm and rip2/K 4.9 ms.

V. DISCUSSION

It is clear from Fig. 3 that the experimental data cannot
be construed as evidence for reorientation by solitary-wave
propagation of the kind proposed by Cladis er al. s and ex-
hibited in the present work by the numerical solutions of a
corrected dynamical equation. First, the experimental
measurements differ from the calculated times by an order
of magnitude. Further, our calculations show the forma-
tion of these solitary waves from the helixed initial state
only for p/g )30, i.e., when E )900 K/(Pp2). This cor-
responds, using the previously mentioned scaling param-
eters, to 100 V applied across a 12 imam thick DOBAMBC
specimen. Only three of the experimental measurements
fall above the field threshold to be candidates for the
modeled solitary-wave reorientation. As mentioned above
the calculated and measured times differ by an order of
magnitude. More importantly, while the curve of calculat-
ed times versus applied field shows a slope on the log-log
plot that asymptotically increases to the value of ——,

' ex-
pected from the solitary-wave velocity being proportional
to E'/, the curve connecting the experimental measure-
ments has a slope that decreases with increasing field, and
is everywhere less than ——,'. On these bases we conclude
that the experimental observations of Cladis er al. cannot
be explained by the proposed solitary-wave switching.

However, we are not surprised by the discrepancies be-
tween the calculations and measurements since the calcu-
lations are based on a model that neglects several impor-
tant physical features of FLC switching. First, the model
assumes that all the LC director reorientation is one di-
mensional. In fact, the electric field coherence length g
can be small compared to the sample thickness, allowing
significant orientation changes in the previously ignored
direction parallel to the applied field. The observations of
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Glogarova, Fousek, Lejcek, and Pavel'7 on thick
DOBAMBC specimens show that, at least for slowly vary-
ing applied fields, the helix may be completely unwound,
and that significant changes in director orientation do
occur along the direction parallel to the applied field. Fur-
ther, our dynamical equation (2) ignores thermal fluctua-
tions. Since (42) will be of order kT/(Kl), which is of or-
der unity, the calculations, which have assumed that varia-
tions in p will be as small as a r/~, are unlikely to
represent the real reorientation processes in FLC's.

In conclusion, we have shown that a one-dimensional
continuum of elastically coupled, overdamped, massless
ferroelectric dipoles can be reoriented by an applied elec-
tric field by the propagation of a universal solitary wave, in

agreement with theories of nonlinear diffusion. This
solitary-wave model does not explain previous measure-
ments on applied-field-induced reorientation in ferroelec-
tric liquid crystals.
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