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A prototype model of nonlinear driven oscillators with a limit cycle is studied. In the fast-
relaxation limit dynamics can be reduced to a one-dimensional mapping. The systematics of

periodic orbits is investigated.

Recent interest has focused on nonlinear oscillators.!~?

It is well known® that in a fast damping situation the re-
turn map exhibits “dimensional reduction” from d=2 to
d=1, and the state of the system may be determined by a
single variable, say the phase angle 6. Then a circle map
0, +1=/(6,) might be defined. In particular, the sine cir-
cle map has been investigated in great detail,’ and the
behaviors indicated by this modal, such as mode locking
and the transition to chaos, have been found both in nu-
merical simulation and in real experiments for a wide class
of physical systems, for example, the Josephson junction,
the damped driven pendulum, and so on.

A different kind of circle map, however, occurs in anoth-
er wide class of models and physical systems, such as the
forced Brusselator® and some electronic oscillators.* This
class is characterized as follows: (i) The free nonlinear os-
cillator has a stable limit cycle, which encloses an unstable
stationary point. (ii) The external force is such that above
and below a critical strength the circle map f(6) exhibits
topologically different properties. Two examples are
shown in Figs. 1(a) and 1(b). Notice that the nonanaly-
ticity must take place when the external force has the criti-
cal strength. These driven oscillators display behaviors
different from that of the sine map. The most interesting
one is the coexistence of ordering of periodic orbits by the
U sequence in strong force situations and mode-locking
behavior with rational winding numbers in weak-force sit-
uations. However, the connection between these two ways
of categorizing periodic orbits has apparently never been
discussed. The reason is simple: The connection is too
complicated to be revealed by direct solution of the dif-
ferential equations, and the corresponding simple circle

map has up to now never been proposed.

In this Rapid Communication I introduce a prototype
oscillator and claim that it contains the essential features
of a wide class, and is thus representative. The external
force is assumed to be impulsive. Furthermore, the limit
of fast relaxation is taken, by which the dimension of the
return map is reduced from d=2 to d=1. Numerical ex-
perience shows that a finite relaxation rate apparently
gives results close to the limiting case. With these simpli-
fications, the dynamics can be discussed in a fairly trans-
parent manner, and one is, in particular, able to make the
connection between a ‘“‘devil’s staircase” region with
mode-locking behavior® to a region with a unimodal map-
ping via a more complicated region of parameter space.
Besides, in this intermediate region new sequences of
periodic orbits occur, and their pattern may be explored
systematically.

Since the shape and the location of the limit cycle may
be changed by a transformation of variables, a prototype
two-dimensional nonlinear oscillator with a stable limit cy-
cle is, in properly scaled polar coordinates,

F=sr(1—r2), 6=1.

(D

The parameter s is a measure of the inverse relaxation
time for perturbations off the limit cycle »r=1. This oscil-
lator is subjected to a periodic force in the x direction, with
the following evolution equations

x=sxu—y+2aY 8§(t —2znp) ,
n

2)
y=x+syu ,

with u =1—x?—y?, and integer n. We make a strobo-

56 V=07 =03
/ /ozus
0=0.60 A
o o] | o 5
w \ ..... |: o=,
(a) (b) ©
en en en

FIG. 1. Circle maps 6,+;=f(6,) for three models. (a) The forced Brusselator x =2—9x +x2y +F, y =8x —x2y, F =aq if
10n <t <10n+5, or F=0if 10n+5 < < 10(n +1), with integer n. The critical strength here is a. = 0.58. (b) An electronic oscil-
lator (see Ref. 4) X +(20x2 —1)x +0.52x (50x* —10x2+1) =V ¥, 5(t —4n). The critical strength here is V.= 1.0. (c) Three to-

pologically different versions of the prototype map (3) with §=0.4.
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scopic map of the dynamics, focusing on the values x,, ya,
and 6, of x, y, and @ immediately after the nth kick at
time ¢t =2znB. In the fast-relaxation limit s — oo we will
have regained r=1 before the force is applied, hence
Xn+1=2a+cos(8,+2xB) and y,+=sin(8,+2x8). By
immediate radial relaxation a one-dimensional iteration
6, +1=1(6,) results, viz.,

sin(0, +2x8)
2a+cos(0,+27B)

(3

tanb, +; =

Without loss of generality we may assume a=0,
0<pB=<1, and —n<8,<nr Besides, Eqs. (2) guarantee
the uniqueness of the iteration by the implicit require-
ments that sin6,+; and sin(8, +2x8) have the same sign.
The iteration, shown in Fig. 1(c), has completely different
properties in the three cases a <+, a=+, and a> +
The map is invertible for a < 4+ (weak force), piecewise
linear for a=-+% and noninvertible for a> <. The
nonanalyticity of map (3) is by no means unphysical. It is
universal for a wide class of driven oscillators, since this
nonanalyticity corresponds to a force just sufficiently
strong to displace the oscillator into the unstable station-
ary point (the origin in the present model). Note also that
since the mapping (3) is symmetric about g = it suffices
to discuss =<+

The discussion will be centered on superstable orbits,
periodic orbits that start at an extremum of the mapping.
For the strong-force situation > +, the function f(8)
has a maximum 6, =f(r-) and a minimum —6,,
=f(74) for 7+ =n—2xBxcos '[1/(2a)]. The super-
stable orbits are therefore of two types: Class 1 starts
from 7, while class 2 starts from 74+. It is also useful to
define nonperiodic orbits, called pseudo orbits, of two
types: Class 1 starts from 7— and ends at 74, while class 2
starts from 7+ and ends at 7—. I associate a point of an or-
bit with a letter L, M, or R according to whether it falls to
the interval (—x,7-), (v—,7+), or [74+,z]. Therefore,
each periodic orbit or pseudo orbit corresponds to a word
constructed of L’s, M’s, and R’s. The word of class 1 or-
bits start with L, while that of class 2 start with R. The
words of class 1 pseudo orbits start with L and end by — R,
while those of class 2 start with R and end by —L. The
part of a word before the first M is called the prefix. As
a— + from above the branch M becomes vertical and
both 7 and 74+ tend to v=(1 —28)r, so that the word of
any orbit reduces to its prefix.

The simplest part of the parameter space is a<+, in
which the system displays quasiperiodic or periodic
behavior (Fig. 2). In the latter case mode locking with ra-
tional winding numbers P/Q takes place. The widths of
the mode-locking intervals (the Arnol’d tongues) increase
(from zero) when a increases. At the boundary of this re-
gion, i.e., at =, [ use [P/ Q] to denote the region of
where mode lockmg with winding number P/Q takes
place. If P/Q=1/IN,+1/(N,+ ---)] with positive in-
tegers N;, and the fractions P;/Q;(j =1,2,...) are the
successive approximants, respectively, the corresponding
intervals [P;/Q;] are called for jth level, and the words for
the superstable orbits at both end points of the intervals
[P;/Q;] can be determined. For example, it is easy to
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FIG. 2. Location of some periodic (the numbers inside circles
indicate the length) and chaotic regions for the map (3). In the
intermediate region, marked by dashed lines, the state of the sys-
tem may depend on the initial condition.

show for the first level that the words W, for the left end
points and the words W, for the rlght end points of [1/N 1]
are W,;=RL M= and W =LRL" 2, respcctlvcly
Moreover, one can show’ that the width of the region P/Q
is rg=1/[2(22—1)]. Then the total measure of the
mode-locking regions at a=-'2- is S=%,r06(Q), where
¢(Q), Euler’s ¢ function,® is the number of positive in-
tegers less than Q and relative prime to Q. The L10uv1llc
formula,® ¥ o(M)x™/(1 —xV)=x/(1 —x)?, with x =+
glves that S=1. The devil’s staircase is thus complete at
The dimension of the remainder set is D-O exact-
ly, in contradiction to the critical sine circle map.®

For a> 4 the system displays more complicated
behavior. Let us denote the line in our parameter space
(a,B) for which a superstable orbit (pseudo orbit) of a
given type exists, for a trajectory (pseudotrajectory). I use
the same word to denote the orbits (pseudo orbits) and the
corresponding trajectory (pseudotrajectory). Superstable
periodic orbits will only occur for + <g=<+.

Consider first the uppermost region a > a,, where a; is
the pseudotrajectory L — R, i.e., &, =1/[2sin(3-—g)x]. In
this region the iterates will be confined to a region where
/(6) is unimodal [the dotted square in Fig. 1(c)], and thus
all the superstable orbits of the U sequence® are found.
Note that our notation differs from the notation in Ref. 9,
since the relevant branches in our cases are L and M, and
the initial point of the superstable orbit is also mcluded in
the notation. Thus, these words start with LMLY 2, with
some N;=2. To have the ordering given by the universal
sequence one must follow directions in parameter space
that intersects each trajectory once [see Figure 3(a)l,
along a,(B) for instance.

In the intermediate region 5 < a < q, the transition be-
tween the unimodal mapping and the mode-locking
behavior takes place. To see the transition let us consider
trajectorles with words LML ™M ... in the unimodal
region a > a,. When a is lowered, leaving the unimodal
region at a =q,, the first iterate crosses over from branch
M to branch R. As a result the words will have the prefix

a-—
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FIG. 3. (a) Some trajectories of class 1 for superstable orbits
of U sequence (solid lines). Numbers inside circles indicate the
period. Dot-dashed lines indicate pseudotrajectories. (b) The
pentagon connected to the interval [1/3]. The dashed lines are
trajectories of class 2 which do not belong to the U sequence.

LRL™ "? below a=a,. When a =+ only the prefix sur-
vives; thus the period becomes N, and all these trajec-
tories terminate at the right-hand end points of [1/N,], an
interval of the first level. Figure 3(a) bears this out.

In the intermediate region many new sequences of
period orbits occur. Some of them are shown in Fig. 3(b).
From these periodic orbits one will also find period-
doubling bifurcations with the usual Feigenbaum conver-
gence rate!® §=4.6692.... In order to explore the pat-
tern of the new sequences of trajectories in this intermedi-
ate region systematically, we consider the trajectories
which terminate at the intervals of the first level, [1/N,].
The Npseudotrajcctories LRLM ™ —R RL™ ™ —L, L—R,
RLV! —L, and the interval [1/N,] enclose, as sketched
in Fig. 4, a “pentagon” in parameter space. As an exam-
ple, the pentagon for N; =3 is shown in Fi%ir 3(b). At the
point of intersection between L — R and RL 172 —L, asu-
perstable orbit must necessarily be present, and thus the
trajectory LRL™ ™2 of class 1, and that of class 2,
RL™ ™' must also pass through this point. The period of
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FIG. 4. (a) Pentagons connected to intervals of the first level
(sketched only). (b) Blowup of the pentagon immediately above
the interval [1/N].

\/ (/N

the corresponding orbits is clearly N;. As a— + these
two trajectories terminate at the right and left end point of
[1/N,], respectively. They divide the pentagon into three
triangular areas A, B, and C (Fig. 4). All the trajectories
of class 2 in 4 have words with prefix RLN‘_I, and they
must terminate at the left end point of [1/N,]. Corre-
spondingly, all the trajectories of class 1 in C have words
with prefix LRL™ —2, and they must terminate at the right
end point of [1/N,]. There is no trajectory in the middle
area B at all.!!

So far I have not discussed trajectories of class 1 in 4
and of class 2 in C. When they leave these regions they
will enter small pentagons of second order. These second-
order pentagons are constructed on second-level intervals
[P,/Q,] in a similar way as the above first-order penta-
gons were constructed on first-level intervals. This process
will continue, and the set of pentagons corresponding to all
intervals [P/ Q] will thereby form a hierarchy in parame-
ter space. The words of the trajectories in successive levels
have longer and longer prefixes. A more complete discus-
sion, in which also the nature of the new sequential order-
ing of periodic orbits is given, will be published else-
where.'!
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