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Evolution of the polarization state of an intense optical wave in uniaxial crystals
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The evolution of the po1arization state of an intense laser wave in uniaxial nonabsorbing crystals

is considered with use of analytical and numerical methods. It has been found that, depending on

the initial conditions, the polarization elhpse rotates or oscillates, changing its shape and handed-

ness. A detailed study of various cases is performed.

I. INTRODUCTION

Since the discovery of self-induced rotation of the po-
larization ellipse of an intense laser wave by Maker et al.
in 1964,' the self-induced changes of the polarization of
intense laser beams have become the object of numerous
studies in a wide class of materials. 2 '3 It was found in
isotropic media that the polarization ellipse rotates at an

angular rate dependent on the laser-beam power density
and the ellipticity of the optical wave. 2 In the absence of
absorption and stimulated scattering the ellipticity
remains constant. If the input power of the laser beam is
greater than the threshold for stimulated Raman scatter-
ing, the ellipticity tends to unitp). This phenomenon was
observed in a number of liquids.

The application of an external dc electric field to the
isotropic medium causes a qualitative change in the evolu-
tion mechanism of the light polarization. Theoretical
analysis of the propagation of an intense laser bemn

through a standard Kerr cell has shown' '6 that in this
case coupling occurs between the changes in light polari-
zation due to dc-induced birefringence and self-induced

ellipse rotation (SIER). This coupling leads directly to
anomalies in the dc Kerr effect' ' ' and causes changes
in the polarization of the optical wave'6 ' which do not
occur in the previously considered systems. ' In crys-

tals, two mechanisms were found to be responsible for
SIER, i.e., self-induced rotation and self-induced changes
in optical natural gyration. ' The latter effect occurs
in crystals in which natural optical activity is present. It
was also shown theoretically that, in magnetic crystals,
several other mechanisms exist that produce SIER.2o

However, none of the theories describing the evolution of
the polarization of the optical field in crystals take ac-
count of the couphng between SIER and the polarization
changes due to optical birefringence. Therefore, they do
not provide a correct description of the optical field polar-
ization state in anisotropic materials.

In the present paper we report results of analytical and

numerical analyses of SIER in uniaxial crystals with a
center of symmetry. As was proved previously, '9 in such
systems only the self-induced ellipse rotation and optical
birefringence of the crystals have a significant infiuence
on the light polarization.

Assuming that the optical field is a superposition of
plane waves with amplitudes slowly varying in time and
space, we have derived expressions describing the spatial
distributions of the intensity and phases of the optical
field components. We have shown both analytically and
numerically that, depending on the initial conditions, the
polarization ellipse of the light may rotate or oscillate,
changing its shape and handedness. A detailed study is
made of the conditions required for observing these new
effects in experiments.

II. FUNDAMENTALS OF THE
PHENOMENOLOGICAL THEORY

In linear optics, each Fourier component of the optical
field in uniaxial, optically nonactive crystals can be
represented as the sum of two linearly polarized mono-
chromatic waves with wave vectors, given by k", to be
found from the equation

6)k(s) +k(s) +~e(s) P). ~e(s) (l)
C

where e" are the polarization unit vectors, V(co) is the
frequency-dependent linear susceptibility tensor, and c
denotes the light velocity. If the total optical field con-
sists of a finite number of quasimonochromatic waves,
c.e.,

E(r, t) = —,
' g E(coL,r, t)exp(ical t)+c.c. ,

P(r, t)= —,
' QP(cot. ,r, t)exp(icot t)+cc.

it is possible to extend this approach to nonlinear optics.

34 351 Q~ 1986 The American Physical Society



ROMAN, KIRI.ICH, AND GAL)OMSKI

The vector P(cor, ,r, t) describing the polarization of the
medium is us)nAly represented as the sum

P(cot, ,r, t)=F'E(cor, ,r, t)+P "(cor, ,r, t) . (4)

In this case the electric field vector describing each quasi-
monochromatic wave of basic frequency coL obeys the
Maxwell wave equation 3

'2
4' . c}

VX VXE(coL, ,r, t)—,cot. +1'—P(cot. ,r, t)=0 .
C

In our considerations we analyze the case when the
quasimonochromatic wave propagating in the nonlinear
medium is a plane wave of uniform power density distri-
bution on the phase surface. Under such conditions the
complex amplitudes E(coL, ,r, t) and P(cor„r, t) become
functions of the one space variable. Further, we assume
that the rise time of the nonlinear polarization of the
medium is much shorter than the rise time of the optical
field (steady-state approximation). Taking advantage of
the assumptions mentioned above, we can write the vec-
tors describing the electric field and the related nonlinear
response in the form '2

Et, (cot. ,r, t)= g e'"A'"(l, t)exp( ik—")1),

c}A"(l,t) k(, )

c)l

PN~( c, r, t)= g 'jt." 'e "+e'j+e( 'A"'(l, t)A'j'(I, t)A' '(l, t)exp[ 1'(k—("+k'j' k'—m')1], (6)
s,j,m =1

where 1 is the length of the propagation path in the medium, J") is the fourth-rank nonlinear susceptibility tensor, iC("

and lC(2) are the solutions of (I), and 0(" and e' ' denote the polarization unit vectors related to each of these solutions.
The unit vectors 0"' and e' ' are orthogonal and one of them is perpendicular to the optical axis of the crystal.

Since the te~~. PN~(cot, r, t) describing the nonlinear response of the medium to the optical field is small compared to
the terms linear in E(coL,r, t), the functions A"'(l, t) are functions slowly varying with respect to exp[i (coL t —k"'1)].7 26

Because of this fact,

c)2A "'(l,t)
(7)

c)12

a2A"'(l, t) aA")(l, t)

21 g

With the use of representation (3) and the neglect of the terms small in the meluung of (7) and (8), Maxwell s propagation
equation (2) can be reduced to a set of partial first-order equations of the form

T

2
~@(g)k(g) it

() (g) ~(g)) 8A (l, t) r' 8 ~e(')A(')(1 t) ( lk ~t)
(s) (s) E COCOal, a~' "

2

coL, +2lcoL, g X"'.e (j)e (-)e (")A(j)(l,t)A (")(l,t)[A (")(I,t)]'exp[ —1 (k(j)+k( ' —k'"')1] .
j,m, n =1

In our analysis we assume that the medium is thin with respect to the spatial width of the laser pulse, i.e.,

c)A "'(l,t) tl o c)A "(1,t)
c)l c c)t

Therefore, we omit all terms containing time derivatives.
Now, projecting Eq. (9) on the directions given by e'" and e ' ' we get the system of two equations

(1) C)A t [y(3) A())A(1)(A(1))n+y(3) A(l)A(2)(A(2))ndna)
l tel 1122

C

+y',3)„A")A")(A"))'+X(,",„A("A("(A"))' p[2 (k'"—k"')1]I,

21'tn (2) jy(3) A (2)A (2)(A (2))n +y(3) A (2)A (1)(A (1))n
4)rCOL,

2222 2211

+y(3) A(1)A(2)(A(1))n+y(3) A(1)A(2)(A(())nex [2.(k(2) k()))1]I

where, for simplicity, we denoted ~e ~g).y(3):~(j) (k) [I)
ijkl —e (12)

m'"=k'"—(~+(l).l (A)2

(i)
Owing to symmetry relations the following relations
hold:"
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~1212 ~2121~ ~1122 ~221(s ~2112 ~1221
(3) (3) (3) (3) (3) (3) (13)

Thus, if we denote A(l)=
~

A'J'
~
e '( and introduce new

(J)

variables

l'= 4n o)L,+z)'12Col

e2m("m(2)

m(1)
(

g())
~

2yc

u =m(')
~

g(» [2yCo,

8 y(2) y())+k(2)l k(1)l

where

g =m("(A")
(

+m' '(A( ')2

and go" and A(o2' are the initial values of A'" and A' ',

respectively, we can transform the system of Eq. (11) to

(14) it obeys the relation

O&Q&1. (20)

Since Eqs. (1S)—(17) may be combined to yield a single el-
liptic integral of the form (see Appendix)

u(1 —u)sin 8—Du Mui=—F . (23)

F+DQ+MQ 1—D Q —F—M+1 u

=+21', (2l)

the function u (l') oscillates between the two biggest roots
of the equation

(F+Du+Mu )[(1—D)u —F—(M+1)u ]=0 . (22)

F denotes here the second constant of motion given by the
expression

Q
, =su sin(28),

l' =(u s)sin28—+D+2Mu,

with the Manley-Rowe constant of motion

Q+$= 1

(15)

(16)

(17)

In order to find the solutions for u (l') we first simplify
and factorize the polynomial in (21). If we choose e'"
and e'2' properly, we can always keep D &0, M &0.
Then, after omitting terms small in the meaning of (19},
we get

D FM(M+1)D u+ ——(u —ui)(u —ui)(u2 —u)=0,
M D

The constants D and M are expressed in terms of the pre-
viously used parameters as follows:

(k"'—k"))c'm("m'"

F6 ~1221~0

~1122+~(212+~1221 ~1111m(3) (3) (3) (3) (2)

+
2&1221 2&)22)m(3) (3) (1)

(18)
2222~ 1111~X(2) m'" X(2) m"'

2 2X(» m(2) '2X(» m(1)1221~ 1221~

~1221+~1212+~1122
(3) (3) (3)

~1221
(3)

where

Q3=-
D '

1 —D 4-[(1 D}2 4F—(M+—1)]'~
2(M+1)

1 —D —[(1 D)2—4F(M—+ 1)]'
2(M+1)

Fram (20) and (23) it follows immediately that

p
Q+

M D

(24)

(24b)

(24c)

(25)

As follows from (18) the parameter D can take arbitrary
values depending on the optical features of the crystal and
laser light intensity. The value of the second parame-
ter M is difficult to estimate from experimental data
available up to now. However, there are some theoretical
hints7 that in most ionic and homopolar crystals M obeys
the following relations:

(19)

HI. ANALYTICAL AND NUMERICAL SOLUTIONS

The function u(l') describes the relative intensities of
the wave described by e' ', and owing to the definition

According to (2S) the term (u+DlM F/D) '~2 var—ies
slowly as campared to the other terms in (21). With the
use of this fact one can evaluate the elliptic integral as

f ) ~2
——+2[D (M + 1)]'~2l' .

"& [(u —ui}(u —ui}(u2 —u)]'

(26)

Depending on the value of D and the boundary conditions
uo ——u (0) and 8o——8(0},Eq. (26) has various solutions ex-
pressed in terms of elliptical functions. The form of the
solutions is directly related to the sign of F.

For F &0, u(l'} oscillates between u2 and u) and is
given by

' 1/2

u =u2 —(u2 —ui)sn [D(u2 —u3)(M+1)] (l'+l)42 Q2 —Q1

Q2 —Q3

for F=0, u (l'} tends asymptotically to 0,

u =(1—D)sech f [D(1—D)]'~ (1'+l2)};

(27)

(28)
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and for E ~0, u (I') oscillates between u2 and u3,

u =ui —(u2 —u3)sn [D(u2 —ui)(M+1)] (1'+12),2 I/2

Q2 —Q)
(29)

The constants li, l2, l3 are obtained from the integral (21)
by integration over the range 0 to Qo.

The oscillation periods of u (I') are given by

Ei ———,
'

[D(u2 —u3)(M+1)]
P

1 x 1
u~ —u3

—]/2

dx (30)

if E&0andby

E2 ——,[D (u—i —u i )(M + 1)]

1 Q2 —Q3
1 —x 1 — x

0 Q2 —Q]
dx (31)

when F (0.
The variations in handedness of the elhpticity of the

optical wave are also directly related to the sign of E. The
expressions (19), (22), and (24a) show that the handedness
changes for u =@3 only. According to (25), u attains ui
if F ~ 0. In the opposite case, i.e., for F & 0, the handed-
ness remains constant.

The terms containing M introduce only small changes
in the periods and amplitudes of u (I') and have no quali-
tative influence on the shape of this function.

The system of equations (15)—{17)was also solved us-

ing numerical methods for various values of uo, 80, D,
and M (Figs. 1—4). The accuracy of these calculations
was tested each time by examining the value of F. For all
numerical calculations made, the Inaximum error was
never greater than 10 of the value of F. It should be
noted that, depending on the sign of F, a qualitatively dif-
ferent evolution of the function 8(l') occurs [Figs. 1(a),
1(c), 2, 3(b), and 4]. The results of our numerical calcula-
tions also confirm the weak infiuence of the parameter M
on the shape of u (I') and 8(1').

&. as

IV. EVOLUTION OF THE
POLARIZATION STATE OF LIGHT

As follows from the properties of the function u(l'), .

the self-action of light causes, for F&0, a periodic
transfer of energy between the ordinary and extraordinary
bellms. In the crysta1s under consideration the sdf-action
of light may cause, depending on the initial conditions, a
quahtatively different evolution of the laser-beam polari-
zation.

Since the terms containing M do not introduce any sig-
nificant changes in the shape of u (I') and 8{1'),as was
stated in Sec. III, in the present consideration we omit
these terms.

IA."t a and b be the longer and shorter axes of the laser

7.85-

FIG. 1. Changes in the intensity of extraordinary waves, (a)
and (c), and the phase difference between the ordinary and ex-
traordinary waves, (1) and (d), for F&0 and I' &0 Op=0. 2,
8p ——m/2. a, &=0.3, E~O; b, a=0.5, F)0; c, 3=0.6,
F&0; d, D=07, F&0; e, D=08, F=0 f, D=10, F~O;g,
D= 1..2, I' ~0; h, D=I.5, F &0, u2 ——ul.
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{a,)0.9

12

2'

I

12

0. 2
FIG. 3. Changes in the intensity of the extraordinary waves,

(a), and the phase difference between the ordinary and extraordi-

nary waves (b), for F & 0 and F «0; uo ——0.5, 80——m/4. a,
D=01, F pO; b, D=02, F ~0; c, D=025, F=0;
D =0.3, F &0; e, D =0.5, F &0.

light ellipse, respectively. Further, let a be the angle be-
tween u and the axis perpendicular to the optical axis of
the crystal, measured counterclockwise. Using (19) and
(24a)—(24c) we can write

a = —,'Co[1+(1 4F 4Du)'~ ]-, —

5 = —,Co[1—(1—4E—4Du)'~ ],
(32)

(33)

tan(2a) =
—[(u —ui)(ug —u)]'

1
Q 2

dA dcxl do'g

dl' dl' dl'
0

[1—4us sin 8+2D(u ——,
'

)] . (35)

Here, the tery

v us sin8
(1—4us sin 8) (36)

FIG. 2. Changes in the intensity of extraordinary waves„(a)
and (c), and the phase difference between the ordinary and ex-

traordinary waves, (b) and (d), for uo ——0.2 and 80——m/2 as func-

tions of' M. a, D=0.3, M=0; b, D=0.3, M=0.003;c,
D =0.3, M =0.009; d, D =0.3, M =0.03; e, D =1, M =0; f,
D = 1, M =0.01; g, D =1, M =0.03; h, D =1, M =0.1.

d exp

dl'
2Dv us sin8
1 4E 4Du— — (37)

describes the changes in inclination due to self-action of
Bght and
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0.4

gives the influence of linear birefringence of the medium.
As follows from expressions (35)—(37), the angle of in-

clination may decrease or increase depending on the hand-
edness of light ellipticity and on the contributions of the
mechanisms described by (36) and (37). The behavior of
the polarization ellipse may be discussed in terms of a pa-
rameter 8 defined by the initial conditions

8=1—4uc(1 —uo)sin 8&+2D(2uo —1) . (38)

If 8 ~ 0, the term in parentheses in (35) is always positive,
causing the decrease or increase in inclination to be con-
trolled by the handedness of ellipticity only. In the oppo-
site case, i.e., at 8 ~ 0, the contribution of linear
birefringence dominates, and for an arbitrary value of F
the maximum angle of inclination is given by

)
a

~

= —,
' arctan

Q(u3 —u i )(ui —us)

2
—Q3

(39)

Our detailed studies of the behavior of the polarization
ellipse have shown that the following cases occur.

(1) F ~0. The handedness of the optical wave remains
constant during propagation.

(la) 8 ~ 0. The polarization ellipse rotates at a varying
angular rate [Fig. 5(a)].

0.7 6. 3

0.35 (a)

3. 1

0. 2

FIG. 4. Changes in the intensity of extraordinary waves, (a)
and (c), and the phase difference between the ordinary and ex-
traordinary waves, (b) and (d}, for uo ——0.5 and Ho ——m/4 as func-
tions of M. a, D=0.2, M=O; b, D=0.2, M=0.002; e,
D =0.2, M =0.006; d, D =0.2, M =0.02; e, D =0.5, M =0;
f, D =0.5, M =0.005; g, D =0.5, M =0.015; h, D =0.5,
M =O.OS.

FIG. 5. Angle of inclination as a function of propagation
length if the handedness of the optical wave remains constant
(+&0): (a) & vO, (b) & =0, (c) & &0.
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handedness of ellipticity, and the linearization of the po-
larization of the laser beam. Simple rotation of the polar-
ization eihpse and the linear birefringence effect are
asymptotic cases of the presented model, which corre-
spond to D~O and D~DO, respectively. According to
these asymptotic behaviors a separation in linear-
birefringence-dominated (F &0) and SIER-dominated

CX

-0.2 2.9-

FIG. 6. Angle of inclination as a function of propagation
length if the polarization of the optical wave tends to linear po-
larization (F=0): (a) 8 &0, (b) 8 &0. (b)

(lb) B =Q. The polarization ellipse rotates at an almost
constant angular rate [Fig. 5(b)]

(lc) B &Q. The polarization ellipse oscillates [»g
5(c)].

(2) F=0. The elliptically polarized wave becomes
linearly polarized. The final polarization is perpendicular
to the optical axis of the crystal.

(2a) B &0. The function a(l') changes monotonically
[Fig. 6(a)].

(2b) B &0. The function a(1') tends to 0 [Fig. 6(b)].
(3) F &0. The handedness of ellipticity of the optical

wave changes periodically in space.
(3a) B &0. The polarization ellipse oscillates around

the optical axis of the crystal [Fig. 7(a}].
(3b} B =0. The polarization ellipse oscillates around an

axis inclined by an angle n l4 to the optical axis of the
crystal [Fig. 7(b)1.

(3c) —1 & B &0. The ellipse makes a double oscillation
around an axis perpendicular to the optical axis of the
crystal [Fig. 7(c)].

(3d) B&—1. The ellipse makes simple oscillations
around an axis perpendicular to the optical axis of the
crystal [Fig. 7(d)].

-0.7-

5

0.7

V. DISCUSSION
-O. 7

u u u U

It follows from our analytical and numerical solutions
of the Maxwell nonlinear wave equation that the coupling
of the polarization changes which result from hnear
birefringence with those resulting from SIER leads to
modulation of the well-known effects such as the light el-
11p$e rotRtlons RQci 1t lcRds to nelly phenomena such Ss
double osrillations, single osrillations controlled by the

FIG. 7. Angle of inclination as a function of propagation
length if the handedness of the optical wave changes periodical-
ly in space (F &0): (a) 8 &0, (1) 8=0, (c) —1~8 &0, (d)
8 ~ —1.
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(p ~Q) cases can be made. In these two cases a qualita-

tively different behavior of the function 8(l') occurs. In
the first case 8(1') changes monotonically, while in the
second case it oscillates with constant period [Figs. 1(b},
1(d), and 3(b}].

The results of the calculations proved that the changes
of the light polarization in uniaxial crystals cannot be
described as a trivial superposition of the asymptotic
cases. Such a superposition leads to variations of inclina-
tion angle described by a function given by

obtain in the experiment by varying the initial power den-
sity of the laser beam.
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a =sin8c(us)'~ I'

(40)

which does not agree quahtatively with our results.
Although the assumption of a lossless medium and the

application of the plane-wave approximation involve a
limitation of the light power below the appropriate
thresholds for self-focusing, Brillouin and Raman stimu-

lated scatterings, the predicted changes in polarization

may be observed by ments of experimental setups often

used in previous SIER studies. z

Let us consider the propa~~ation of a linearly polarized
laser beam of cia ——2.7X1Q" s ' (698 nm) in sapphire.
In this case 1Pz)zi -10 ' esu (Ref. 7) and
(k' ' —k'")/k'"=4X 10 . If we take D =0.5, the

power density of the laser beam as 500 MW/cm and the
relative intensities of the ordinary and extraordinary
waves as being equal, then the period of the function u is

approximately eqna& to 3 cm and its amplitude exoseds

0.33. Such intensity changes can be measured in the
Rivoire et al. experimental system'i with an accuracy of
several percent. Knowing u (I'), the phase difference can
be m~~ured directly by placing the crystal between
crossed polarizers.

As follows from our numerical calculations, we can
choose the initial values of uc and 8c in such a marmer
that the particular casei for Il &0 or E &0 can be ob-
tained by changing the value of D only. This is easy to

In order to deduce the elliptical integral (21), let us first
consider Eqs. (15) and (16) after the variable s =1—u is
eliminated:

, =(1—u}u sin(28),

d8
dl'

=(2u —1)sin 8+D+2Mu .

(Al)

(A2)

I (1—u )sinz8 —Du Mu i=E—. (A4)

Obtaining from (A4) the expression of sin 8, we eliminate
sin(28) from (Al). Then we get

du
dl'

= +2t (F+Du +Ms )

X [(1—D)u F (M +—1)u 2—] I
'~2 . (A5)

The simple separation of the variables gives us the ellipti-
cal integral in the form (21).

Elimination of the differential dl' from Eqs. (Al) and
(A2} leads to the following equation:

[( 2u —1 )sin 8+D +2MQ ]49 —( 1 —u )u sill( 28 )d 8=0 .

(A3)

Differentiating the first term in regard to 8 and the
second term in regard to u, we find it to be the exact dif-
ferential with the integral given by
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