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Reentrant isotropic-nematic transition in lyotropic liquid crystals
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%'e consider a model based on the Maier and Saupe theory in order to explain the reentrant
nematic-isotropic transition observed in lyotropic hquid crystals. By assuming a linear dependence
of the micellar shape anisotropy with temperature, we show that it is possible to obtain a reentrant
transition.

Experiments carried out on a three-component lyotro-
pic mixture of potassium laurate, l-decanol, and water
have revealed the existence of a reentrant isotropic-
nematic transition. ' This transition is not predicted by
the Maier and Saupe theoryi' in the sense that in their
theory the isotropic phase always occurs at temperatures
higher than those of the nematic phase. This situation is
what usually happens in genuine statistical models: the
more symmetrical phase occurs at high temperatures. By
genuine statistical model we mean, for example, that the
interaction between the microscopic objects does not de-
pend on temperature.

The reentrant transition is, thus, not caused by a simple
entropy effect, which would make the high-temperature
phase the disordered (isotropic) or more symmetrical
phase. It has been suggestedz that in the case of lyotropic
mixtures this transition is driven by a temperature-
dependent interaction caused by the thermal variation in
the shape anisotropy of the microscopic objects (micelles).
In this paper, therefore, we consider a model where we al-
low for the temperature dependence of the interactions in
order to explain the reentrant transition. By assuming
that the micellar shape anisotropy varies hnearly with
temperature, we show that it is possible to obtain a reen-
trant transition.

The model we consider here differs from that treated by
Chen and Deutch. s They explain the reentrant transition
by the competition between short- and long-range interac-
tions. In our model the transition is caused by the varia-
tion of the shape of the micelle with temperature. As one
lowers the temperature, the microscopic object approaches
the spherical shape giving no room for an orientational
order.

Following Freiser, we assume that the orientational in-
teraction O',J between two micelles i and j is given by

Wi ———Tr(Q'QJ),

where Q' is the moment of quadrupole matrix of micelle i
in the laboratory frame of reference. It is given by

O'=R+(P(, 8;,P; )AR (P(,8;,f; ),
where P;, 8;, and P; are the Euler angles that define the
orientation of micelle i, and R(p;, 8;,1(;) is the rotation
matrix from the frame of reference attached to the micelle
to the laboratory frame of reference; and R+ is the
transpose of R. Since we are not interested in a possible

biaxial nematic phase, we consider here only the case
where the micelles have cylindrical symmetry. Mormver,
we will treat only the case of discotic micelles for which

0 0

0

0 0 A,

where A, is proportional to a —c, c being the thickness
of the micelle and a its radius.

The molecular-field approximation may now be calcu-
lated by assuming that each micelle interacts with z
nearest neighbors. By doing that we obtain the well-
known result of Maier and Saupe. ' '6 However, since we
are interested in the qualitative aspects of the problem, we
will not follow this approach at this point. Instead, we
first simplify the model by restricting the allowed orienta-
tion of the micelles. Their orientations are restricted to be
only parallel to the three Cartesian axes of the laboratory
frame of reference. In this case the interaction
WJ = —3A, /2 if micelle i is parallel to j, and WJ =3k, /4
if i is orthogonal to j.

This simplified model is therefore equivalent to the
three-state Potts model ' which within the mean-field ap-
proximation is known to possess a first-order transition as
does the original model of h4aier and Saupe. Doing a
mean-field calculation we get the following free energy
per rnicelle:

f= ——,z)(, S + [2(1—S)ln(1 —S)
3

+(1+2S)ln(1+2S)—3 1n3],

where S is the order parameter defined by

S=—,'(3cos 8—1) .

The minimization of f gives S as an implicit function
of temperature, that is,

9 zA, S 1
l+2S

(1)
4 AT 1 —S

The first-order transition occurs at a temperature T given

by

9kgT= zi,
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At the transition, the order parameter jumps from S =0
(isotropic phase) to S = —,

' (nematic phase).
We now suppose that k depends on temperature. %'e

assume that only the thickness of the micelle varies with
temperature and that it increases linearly with decreasing
temperatures, that is,

c =co[1—a(t —1)],

with a ~0, where t =T/To, and To is the temperature at
which the ordinary first-order transition takes place. The
thickness of a disclike micelle is defined by the length of
the paraffinic chains of the amphiphilic molecules9 and it
is essentially an amphiphilic bilayer. The linear depen-
dence with temperature of the thickness of bilayers in the
case of lamellar lyotropic mixtures was determined by
Luzzati et al. ' They concluded that the thickness of the
amphiphilic bilayer increases linearly with decreasing
temperatures.

Defining the parameter r by r =a/co, that is, the aniso-
tropy of the micelle at the temperature of the ordinary
nematic-isotropic transition, we see that A, is proportional
to
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FIG. 1. Order parameter S versus reduced temperature t for
some values of a and r: (a) a=5, r =6; (b) a=3, r =4.23; (c)
a=2, r=3.3. In each case o, and r mere chosen so that
tg ——0.615.
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This equation is valid only for —, (S~ 1; that is, for
tR &t &1, where tR is the reentrant transition tempera-
ture, the nontrivial solution of

Substituting this expression in Eq. (1) and recalling that
S=—,

' at T =TO, we obtain the following equation that

relates the order parameter and temperature:

The trivial solution t =1 gives the temperature of the or-
dinary transition.

Figure 1 shows the order parameter as a function of
temperature, Eq. (2), for some values of r and a. This re-
sult is qualitatively the same result obtained from optical
birefringence measurements carried out in a discotic
nematic reentrant lyomesophase.

The numerical values of a were chosen to be of the or-
der of unity since a is the thermal expansion per degree of
the amphiphilic molecule multiplied by the temperature
of the ordinary nematic-isotropic transition. The values
of r we have used are compatible with the shape anisotro-

py of discotic micelles observed experimentally. 2 "
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