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Electromagnetic drift vortices
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Dipole vortex solutions are obtained for a set of nonlinear equations describing low-frequency

electromagnetic turbulence in an inhomogeneous magnetized plasma.

Recently, it has been pointed out' that electromag-
netic solitary dipole vortex solutions often contain discon-
tinuities in the perturbed magnetic field 8 and the parallel
(to the external magnetic field BP) current density J.
The origin of the discontinuity lies in the oversimplified '

relation

where a and b are constants, between the scalar potential

P and the z component A of the vector potential. Because
independent inner (regular at r =0}and outer (vanishes as
r ~ ao ) solutions must be obtained separately and
matched at a certain radius (say ro), a solution which is
everywhere continuous in P need not be continuous in
8= —zXVA and J=—(c/4tr)V A, since both a and b
have different values inside and outside of r =ra. It has
been suggested that sometimes 8 and ViA can still be
made continuous at ro by allowing for specific amplitude,
velocity, or angle of propagation, etc., by Axing the given
parameters. More satisfactory solutions to this problem
were recently reported by Mikhailovskii et al. ,

2 Petviash-
vili and Pokhotelov, and Liu and Horton. These authors
considered the drift-Alfven modes and retained the exact
relation between P and A instead of the ansatz (1), and
solved an equivalent fourth-order linear partial differen-
tial equation. Their solutions are free from discontinuities
up to the second derivatives, and therefore do not require
invoking surface currents at r =ro in order to ensure con-
tinuity of the physical quantities. Using a similar ap-
proach, we show in this paper that the set of reduced
magnetohydrodynamic equations describing low- (com-
pared to the ion cyclotron frequency 0;=ego/trt;c) fre-
quency electromagnetic turbulence also admits modon
solutions which have continuous physical quantities.

We start with the following equations describing low-
frequency electromagnetic turbulence: '

(a, +qn, a, )V'y+ga„(p, +qp, )

+zXV(p+gp ) VV'p+b VV'A =O (2)

where ri is the temperature ratio T;/T„ ltt——p, a„(lnpjo) is
the normalized drift velocity, g= —2p, a„(luego) is the
normahzed curvature, and b V=a, —zXVA V. In Eqs.
(2)—(5), we have normalized P, A, pl, V—=Vi, a„and a,
by T, /e, co&, T, /e0;, Ploy, ', cd;/c, and 0;, resPectively

Equation (2) is from the conservation of the charge densi-

ty, Eq. (3) follows from the Ohm's law, and Eqs. (4) and
(5) represent the equations of state for the electrons and
the ions. For the derivation of Eqs. (2) to (5), we refer the
reader to Refs. 3 and S. These equations describe drift-
Alfven waves, ballooning modes, electrostatic and elec-
tromagnetic drift waves, as well as nonlinear tearing
modes. They have often been used for considering general
problems of low-frequency turbulence in magnetized plas-
Hlas.

To obtain the modon solutions, we first define a two-
dimensional quasistationary coordinate system (x,g), with
g=y+az —Mt, where a and M are constants. Further-
more, we introduce the Kadomtsev scalar potential9
its= P MA /a and —let

p, =g—«, (P —P}/M, (6)

[P Mx, f+G(y —1)P—yV (()]=0-,
[/ f Mx, g (ct 5—/M—)V (Q ——P)]=0, (9)

where G =g/M ~~ 1 has been used. We have also defined
5=(1+«, /M )

' and y =5(1 rite; /M ). The —Poisson
bracket is given by

[f„f,]—=a„f,agf, —a„f,ay, .

Clearly, Eqs. (8) and (9) are satisfied if

p; = tc;Q/M, —

so that Eqs. (3) and (5) are satisfied exactly. Equations (2)
and (4) can then be written in terms of the Poisson brack-
ets

(at —&,as)A+1 Vg=b. VP, ,

(a, +&XVQ V)p, —n, a„y+b VV'A =O,

(a, +*XV/ V)P; «;arg=o, —

(3)

(4) and

(5)

f—yV' $=[6(1—y)+C/M]P —CX,

1b=(a 5/M )V (P —P),

(10)
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where C is a constant. We note that Eq. (11) is the sim-
plest choice, such that if f and V P are continuous, V2$ is
also continuous. It is clear from Eq. (9) that more general
choices are possible.

Ehminating f in (10) and (11),one obtains

Pi ——(a —1)ly+M2/a 5,
Pi ——aPi/C =aM /ai5y,

P,„,=[BiEi(Air)+B2Ei(A2r)]cos8, (13)

where Bi and Bq are constants, and cos8=x lr. We have
also defined

~i,z= i [—Pi+(Pi —4Pz)'"l

for Pi &0, Pi &4P2&0, and C =0. Thus, the outer solu-
tion decays very rapidly as p~ cc ~

For the inner region r & ro, we have C+0. The corre-
sponding solution of (12) is

P;„=[B3 J i (Air )+B4Ii (Aqr )+ (133/P2)r )cos8, (14)

where

~i,4= i [(Pi—4') '"+Pi]

for Pi&0, and C+0. The Kadomstev potential g then
follows from Eqs. {10),(13), and (14).

The five integration constants Bi, B2, Bi, B4, and C
can be determined from the condition that P, r),P, V 4, g,
and B„g must be continuous at r =ra. The procedure is
straightforward but tedious. ' The results are cumber-
some and do not yield any further physically interesting
points, and shall thus be omitted here. Note, however,
that the current density (~ V A ) is also continuous at ro
because of Eq. (11)and the definition of P.

The solutions given by Eqs. (13) and (14) represent a
well-locahzed vortex structure with P~r '~ exp( —A,zr)
as f—+co.

It is of interest to point out that if the curvature van-
ishes (g~0), Eq. (12) for the outer region becomes

a =6{1—y)+C/M .
Equation (12) is a fourth-order linear inhomogeneous

partial differential equation for which no uniformly valid
well-behaved analytic representation of the solution is
known. However, piecewise well-behaved analytic solu-
tions can be obtained in an inner region containing r =0
and an outer region containing r~ oo, where r =x +g,
and then joined at some intermediate location r=ro,
under the condition that all physical quantities must be
continuous.

Accordingly, we proceed to obtain the solutions of Eq.
(12) in the inner (r & ro) and the outer ( r & ro) regions. In
the outer region, the localization condition requires

Pq ——C=O, so that Eq. (12) becomes homogeneous. The
appropriate solution is

vi ——CM/a 5y .

Thus, the outer and inner solutions are given by~'

P,„,=[3i Ei (~v~r )+Ai lr ]cos8,

y;„=[a,J,(z,r)+a,l, (a,r)+ Mr]cos8,

where for vi&0and v3&0,

~s,6= g [(v2 —4v»'" +—v2]

(19)

We note that the constant C is related to A,5 and its by

C/M =(A,g
—A6)y+ 1 —M y/5a (20)

The Kadomtsev potential f can be obtained from Eqs.
(10) with G=O, (18) and (19). Again, continuity of P,
B,p, V p, f, and 8„1( at r=ro determines the five can-
stants Ai, A2, A3, A4, and C. Here, we have P~r ' as
r~oo, so that the vortex is not well localized. The
present solution (g=0) is a generalization of Liu and
Horton to include finite ion temperature effects. ' On
the other hand, for g=O, T; =0, and aj ~oo, one finds
that our basic system of equations (10) and (11) describe
nonlinear shear Alfevn waves' in a uniform plasma.
Note that Ref. 10 has briefly addressed the issue of the
solitary Alfven vortices without presenting any specific
results for the vortex profiles.

In this paper, we have shown that the set of nonlinear
reduced magnetohydrodynamic equations describing low-
frequency plasma motion admits dipole vortex solutions
without discontinuities in the magnetic field and the
current density. The drift-Alfven vortices in a warm plas-
ma are found to be not well localized. Inclusion of mag-
netic curvature effects gives rise to spatially well-localized
electromagnetic ballooning vortices. In contrast to our
previous studies, ' the present solutions are free from
discontinuities in the physical quantities, such as the vor-
ticity, the perturbed magnetic field, and the parallel com-
ponent of the current density. The electromagnetic vor-
tices discussed here satisfy the conditions Pi &0 and

pj & 4p2& 0 for the ballooning mode case, and vi &0 and
v3 & 0 for the drift-Alfven case. These conditions are con-
siderably different from those for the corresponding elec-
tromagnetic vortices with discontinuities in the magnetic
field and current density perturbations. ' The latter vor-
tices are based on an ad hoc P —A relation such that P
satisfies a second-order (rather than fourth-order) dif-
ferential equation, similar to that of the hydrodynamic
Rossby" and the electrostatic Hasegawa-Mima vor-
tices.

The present calculation makes use of the local approxi-

where vi ——1/y —M /a 5. On the other hand, for the
inner region, we have

V"P+v2V P+vq(P —Mx)=0,

w~ere

v2 ——(C/M+M y/n 5—1)/y,
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mation which is valid for vortices whose dimension is
much smaller than the density gradient scalelength and
the radius of curvature of the inhomogeneous magnetic
field.

The stability of the vortex discussed here, as well as the
statistical behavior of an ensemble of such electromagnet-
ic vortices, are important for the understanding of
anomalous particle and heat transport in a magnetically
confined fusion plasma. However, these topics are outside
the scope of this Brief Report.

At present, there do not exist any experimental observa-
tions which conclusively verify the existence of dipolar
vortex motion in plasmas. However, there have been a
few numerical experiments"'6 which support the ex-
istence of vortex motion in a magnetized plasma. First,
Horton' has carried out numerical investigation of the
Hasegawa-Mima equation' and his results indicate the

existence of drift wave monopolar and dipolar vortices.
Secondly, Bekki and Kaneda' have numerically analyzed
the basic system of Eqs. {2)—{4) assuming g =0 and

Ji; =0. The results of their numerical simulation show the
formation of three-dimensional electromagnetic vortices.
In view of the above studies, we conclude that the present
as well as earlier investigations' ' ' related to vortex
motion involving various kinds of wave motion are neces-
sary in order to understand their existence region and
propagation characteristics. Furthermore, the existence of
large scale motion in both laboratory and space plasmas is
also an indication of vortex interaction, which often leads
to coalescence of the vortices. '
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forschungsbereich Plasmaphysik Bochum/Jiilich.
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