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A general theory of spin-glass-like neural networks with a Monte Carlo dynamics and finitely
many attractors (stored patterns) is presented. The long-time behavior of these models is determined

by the cquilibriuxn statistical mechanics of certain in6nite-range Ising spin glasses, ~hose thermo-
dynamic stabihty is analyzed in detail. As special cases we consider the Hopfield and the Little
model and show that the free energy of the latter is twice that of the former because of a duplication
of spin variables which occurs in the Little model. It is also indicated how metastable states can be
partly suppressed or even completely avoided.

I. INTRODUCTION

There are deep connections between the behavior of
complex biological systems and the physics of spin
glasses. ' Intriguing properties such as learning and un-

learning, fault tolerance with respect to internal
failures and input-data errors, ' and information storage
and retrieval6 have been related to the existence of at-
tractive sets (equihbrium states) in the phase space of an
Ising spin glass. More specificall, many of these neural-
network models have been shown to behave like auto-
associative memories. They can be used in the context of
pattern recognition and in the design of VLSI (very-
large-scale integration) chips. The memory mechanism
can be succinctly explained as follows.

A large, neural network consisting of many nonlinear
elements is simulated by an Ising spin glass with Monte
Carlo (MC) dynamics. For the sake of defimteness we as-
sume that the temperature T equals zero. Then a spin is
flipped only if energy is gained, the attractors are associ-
ated with the ground states, the basins of attraction with
the energy valleys, and the spurious states with local ener-

gy minima, i.e., metastable states.
Noise can be simulated' by taking T ~ 0. The previous

arguments still hold, with energy replaced by free energy,
and attractive fixed points now become attractive sets
where the equilibrium states (ergodic components) live.
Therefore, the collective long-time behavior of the neural
network is governed by the equilibrium statistical
mechanics of the underlying Ising spin glass.

This paper addresses the problem of providing the exact
free energy and explicit stabihty criteria for a large class
of model Hamiltonians (cost functions). The method of
solution is quite general and not restricted to Ising spins,
and may be of interest in other contexts, too. It is also in-
dicated how metastable states can be partly suppressed or
even completely avoided.

II. NEURAL NETVfGRKS AND SPIN GLASSES

A neuron may be modeled by a two-state, threshold
element with several inputs {synaptic junctions} and one
output (the axon). Each neutron is located at a specific

site, say i, and its state may be described by an Ising spin
variable S(i) which assumes the values +1. The input
signal to the site i is written g JjS(j) and the Jj are
called bonds.

The phase space Q of lid neurons (=spins) is the set of
all 2 Ising spin configurations ( S(i)=+1;1&i&NI. In
the Hopfield model one assumes threshold zero and takes

p random configurations g' =If;, 1&i &N), 1&a &p,
where the g;a are independent, identically distributed ran-
dom variables which assume the values +1 with equal
probability. In general, the g, belong to a probability
space. Only in the Hopfleld case they may be identified
with an Ising configuration [S(i)=g;, 1 &i &NI in Q.
Note that they have fixed values, randomly chosen ac-
cording to their distribution.

The p random configurations g' are then stored in, the
bonds,

P
Jij=J l g kiakja&

a=1
1&i,j&X,

and a T=O MC spin-flip dynamics is introduced in Q by
requiring that a spin be flipped only if energy is gained.
Here the Hamiltonian (energy or cost function) is given by

H~ H~(S) depends——on the specific spin configuration S
and, therefore, is a function on Q. One starts with a cer-
tain configuration So, a so-called key pattern, which some-
what resembles one of the g, and tries to retrieve the
original pattern, say g'r, by following S, as it converges
under the system's dynamics to one of the attractive fixed
points in phase space. The hoped-for fixed point is g'r but
there are also spurious states or ghost patterns and other

to which the system may converge. If So is not in the
right basin of attraction„ there is no hope for retrieval of
the original pattern.

Another complication one has to take care of is the
noise. A noisy system may be described by a finite
—T (T &0) MC dynamics. ' Whatever the temperature,
the MC dynamics always converges to one of the equili-
brium or metastable states of the Hamiltonian (2). Their
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stability is determined by the free energy and, hence, by
the equilibrium statistical mechanics of the underlying
Ising-spin system. In case (1), the JJ- have mean zero
(i &j ) and, accordingly, one might argue that (2) strongly
resembles a spin-glass Hamiltonian. For p =2, it does not
contain frustration, however.

As was already pointed out by Peretto, there is a close
analogy between the Hopfield model and a certain spin-
glass model. '~ ' Both mere proposed at the same time
(early 1982) and independently of each other. The spin-
glass model is the simplest one that contains both ran-
domness and frustration and whose predictions have been
verified not only by experiment but also by more recent,
large-scale MC simulations' of the three-dimensional +J
model. I took"-"

J,J JN '——((;rb+ g) g; ), (3)

It has to be constantly borne in mind that, as N~ 00,
for a fixed p-vector p, there may be several, sometimes
very many, spin configurations S such that (5) gives
m(S)=p. For instance, for "most" spin configurations
m=0. These dominate the high- T behavior. As the tem-
perature is lowered, special configurations take over; cf.
Eq. (8) below.

The Hamiltonian (2) is nothing but a quadratic form in
the order parameters,

HN is extensive ( ~N) whereas the m~~ are intensive
[O(1)]. Since'

N 'gg; g;„=O(N '
), a&y

where the g's and i)'s are independent, identically distri-
buted random variables which only have to satisfy the re-
quirement that they have mean zero and variance one.
The independence is convenient but not necessary. Ergo-
dicity suffices. ' " It could be shown (see Ref. 13 for full
details) that the stable and metastable states of this model
correspond one-to-one to attractive fixed points in a low-
dimensional order-parameter space. Moreover, the phase
diagram and, consequently, also the stability of the
ground states depend on the probabiiity distribution. 's I,
therefore, think that this "lack of universahty" does occur
in memory models specified by Eqs. (1) and (2).

Throughout what follows p in (1) is a fixed but finite
positive integer. As compared to Hopfield, a scaling by

' has been added so as to make the thermodynamics
of the model well defined as N~ oo. We now rewrite (2)
by using (1),

N

H~= ——,'lN $ X ' g i;Q(i)
a=1 i=1

and define the order parameters (1 & a &p},

m~~ N' g g;Q——(i) .

and 1 for a=y, one easily verifies that the p stored pat-
terns g~ are ground states of (6), i.e., the p-spin configura-
tions

tS(l}=g. , 1&i &NJ, 1&a&p (8)

minimize Hn P.lainly, if g'~ is a ground state then —g'~ is
another one.

In this paper a general theory is developed to describe
the behavior of spin-glass-like neural networks with Ham-
ilton function

HN ——N—F(min, m2~, . . . , mph )= N—F—(mN ), (9)

where F(m) =F(m i, . . . , mz} is a convex function of the
variables m . A special case is (6}. The convexity re-
quirement is not really necessary but greatly facilitates the
stability analysis. The g;~ are random variables whose
probability distribution is assumed to be even around zero.
This is convenient but by no means necessary. The
method works equally well for more general distributions
with nonzero mean. Without loss of generality we may
take the variance one. Since the system is endowed with
an MC dynamics, our first task is to evaluate the free en-

ergy exactly. This will be done in Sec. IIIA. A general
stability analysis is presented in Sec. III B. In Sec. IV we
study a family of models that comprises the Hopfield
model and show how to some extent one can eliminate the
spurious states. The relation between the Little and the
Hopfield model is clarified in Sec. V. Finally, a discus-
sion of the results is given in Sec. VI. Though neurons are
suitably described by Ising spins, the present considera-
tions are, up to some trivial modifications, equally valid
for Heisenberg spins and other, more general n-vector
models.

III. GENERAL THEORY

To evaluate the free energy of the Hamilton function
(9) we have to perform the trace, a sum over all 2+ Ising
spin configurations. We would like to make a change of
variables to new coordinates min, . . . , m~~, and to this
end we determine something like a Jacobian'2 ' (Sec.
III A). The final answer is obtained through the solution
of a fixed-point equation in the p-dimensional order-
parameter space. We introduce a dynamics in this space
and show that the attracting fixed points can be put in
one-to-one correspondence with the stable and metastable
stationary states of the free-energy functional. So we have
two dynamics: An MC dynamics in the phase space and
another, much simpler one in the order-parameter space.
As a corollary we obtain a simple stability criterion (Sec.
IIIB). Then the previous results are applied to a simple
example (Sec. III C).

A. The free energy

The free energy per spin f (13) at the inverse tempera-
ture P is defined by

Pf(P)= lim [N 'lnTrex—p( PHN)] . —
%~ ce

For the sake of convenience we divide the trace Tr ( ) by
2 and consider henceforth the normalized trace, denoted



SPIN-GLASS MODELS QF A NEURAL NET%'ORK 3437

by tr ( ). Then the Ising spins are independent, stochastic
variables with mean zero and the normalized trace is their
expectation value. By (9) we get

Pf—(P}= lim I N 'intr
N-+ co

)& exp[NF(m iiv, m2n, . . . , mph )]I,

m= (g'tanh[g'. VF(m)]) .

Suppose ls is a solution of (18). Then

p, = (Is f tanh( ) )

& ((p, Ie)~)' i(tanh2( )}'~'

&((p t)')'"= g p

(18)

c'(m) = sup [m t —c(t)] (13)

of the c function

c(t(= ((m N '(n(rexp g tg,i;Q(()
N-+ oo a=1 i =1

=I ln cosh t g
/ (14)

a=1

The function c(t) is convex and so is its Legendre
transform c'(m). The second equality in (14}is obtained
by exploiting the ergodicity2' of the g; so as to reduce an
expression with pN random variables, the fixed g;N, to a
single average over p random variables gN, 1 &a &p. This
average is denoted by angular brackets.

Combining (11)—(14) we find, using the Laplace
method,

Pf(P)= lim— N 'ln j dmexpN[F(m) —c'(m)]
N-+ oo gP

= sup [E(m)—c'(m)] . (15)

To get simple analytic expressions we assume that F is
continuously differentiable and, for the stability analysis
(Sec. IIIB), that E also has continuous second partial
derivatives.

The stationary points of the free-energy functional (15)
are those m which satisfy the equation

where for the moment we have absorbed P in F. In the
Appendix of Ref. 14 it was proven that the "Jacobean" we
are looking for is

Prob(m & mdiv & m+dm) -exp[ —Nc'(m)]dm, (12)

where c'(m) is the Legendre transform

so that
I le�(I'& I lls I I

and p, is always in the unit sphere ofI &. If one looks for solutions of a fixed-point equation
via an iterative search procedure (see below), it is good to
know where they can be found.

We now want to evaluate the free energy (15). Given
m =@,, the variable t in (13}has to be such that is =Vc(t}.
[In fact, this t is unique if c(t}is strictly convex. ] But a
solution p of the fixed-point equation (17) is of the form
is =Vc[VF(ls)]. Hence t=VE(ls) and, by (13),

c'(Is) =y, .VF(p, ) c[VF(l—s)] .

Combining (15)—(17) and (20) we obtain

pf(p) =—F(ls) ls.VE(ls—)+c[VE(p,)],

(20)

(21)

where lc satisfies (17) and is such that it maximizes the
right-hand side of (21). The energy per spin u(P) is given
by u(p)= p'F(ls) —or, returning to the notation of Eq.
(9) and bringing in the p again, we get u(p)= E(ls}. —
The entropy per spin s(P) now readily follows from
s(P)= Pf(P)+Pu—(P). One has to add ln2 to get the
usual entropy.

The ergodic components of the model are labeled by
the vectors p, which are the stable solutions of (17). Each
ergodic component is a free-energy valley separated from
neighboring valleys (if any) by a free-energy barrier of
height N. Metastable states also correspond to free-
energy valleys, but with a higher free energy per spin. As
N ~ oo, the barriers become infinitely high and the ergod-
ic components become "truly" ergodic. However, for
large but finite N there is a negligible probability that
once the system is caught in one of the valleys the MC
dynamics will let it mount a barrier and wander into
another ergodic component.

VE(m)=Vc'(m) . (16)
B. Stability

By strict convexity [Bc'=(c}c) '], which we henceforth
assume, we may rewrite (16) as

m=Vc[VE(m)]=—()}(m) . (17}

This is a fixed-point equation in the p-dimensional order-
parameter space. It implicitly depends on the inverse
temperature p. Among the solutions ls of (17) we have to
choose the one(s) that maximize(s) the right-hand side of
(15). These are called stable. Solutions ls that only give
rise to a local maximum are called metastable. Otherwise

p is an unstable state.
Until now we have not used the specific form (14}of

c(t). If we do this and use vector notation, we get instead
of (17),

How do we find the fixed points p=p(ls) of Eq. (17)?
In general, there is no hope for solving (17) analytically,
so one must have recourse to numerical iteration. Starting
vnth a mell-chosen mo, one generates a sequence

mi=4(mo» m&=4(mi), ms=4(mi» (22)

In this way one introduces a discrete dynamics in the
order-parameter space that maps each m onto ()}(m). The
question then is whether m„converges to a fixed point p
and whether ls gives rise to a (local) maximum of the
free-energy functional (15). We define p to be a stable
fixed point if there exists a neighborhood U of p such that
any sequence (22) which starts in U converges to p, . 0th-
envise p, is called unstable.

We now prove the following theorem: p, is a stable
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fixed point if and only if it gives rise to a local or global
maximum of the free-energy functional (15). In other
words, p is an unstable fixed point if and only if it corre-
sponds to an unstable state of (15). A numerical iteration
gives physically relevant (stable and metastable} states
only.

For the proof we need some results from the theory of
functions of several real variables.

(i) Let f: R "~R be a continuously differentiable
function from R" to R . Then the derivative (Df)(a)
of f at the point a is the m X n matrix
(&f'/&xi)(a)=(8&f')(a), with 1&i &tri and 1&j &n. Here
the components off have been denoted by f'.

f g
(ii) Chain rule: For R "~R ~ R&we have

D(gof)(a)=Dg(f(a))Df(a) . (23)

(iii) Inverse-function thcerem: Let f: R "~ R "be con-
tinuously differentiable with det[Df(a)]+0 Th. en f
exists and

D(f ')(y) =[Df(f '(y))] (24)

Henceforth we will assume that also c(t) is twice continu-
ously differentiable. This is certainly true for (14).

Now p, =P(p, ) is a stable fixed point if and only if the
eigenvalues of DP(p, } are in absolute value less than one.
We have to prove that this fact implies and is implied by
p. being a (local) maximum of the free-energy functional
{15).

We first show that the eigenvalues of DP(p} are posi-
tive (and thus real). Let us denote the components of P by
{{)',1 &i &p. The chain rule (23) gives

(&;&tF)(p) & (8;B,.c')(p. ) .

Equation (27) should not be read elementwise but inter-
preted as a matrix inequality. It is a transcription of the

—= g AtkBki
k

That is, DP(p) is the product of two matrices, A and B.
Both A and 8 are positive, i.e.„are Hermitean and have
positive eigenvalues since c and F are convex, 2 c by defi-
nition and F by assumption. Only here we exploit the
convexity of F. Quite frequently, as in (14), c (t) is strong-

ly convex with A such that its eigenvalues do not vanish

(A )0).
Let cr(X) denote the set of eigenvalues of a square ma-

tflx. Then

o'(DP(p ) )=a(AB) =cr( A ' BA '~ ) C R +,
since A'~ BA'~ &0 and for any two square matrices X
and F we always have o(XF)=a(I'X) So the eigen. -

values of DP(p) are real and positive. We now show that
they are less than one if and only if p is a (local} max-
imum of the free-energy functional (15).

Let us consider (15) more carefully and note that p
gi~es rise to a (local) maximum if and only if {16)holds
and in addition

=[D(ac)(ac'(i ))]-'
=[D (Bc )(VF(p) )] (28)

Now the matrix elements of D(r}c) are 8;Bjc so that (27)
may be rewritten

where 8 and A where defined by (25). But 8&A
is equivalent to A '~ BA '~ & I, whence cr(AB)
=o(A'~BA'~ )&1 and this is what the proof should
prove.

As a corollary we note that the stability criterion which
follows from (25), (27), and (29),

o(AB) & 1, (30)

is quite convenient. The matrices A and 8 are readily cal-
culated and in practice it frequently happens that
F(m) = g g(ma) with g a convex function of one real

variable. Then 8 =(8;B~F)(p,) is a diagonal matrix. The
criterion (30) also holds when F is not convex. Since
o(AB) =o (A '~ BA '~ ), the eigenvalues of AB are all real.

The above theorem has an interesting application to
pattern recognition. One specifies a key pattern at t =0
that is a somewhat-blurred version of one of the stored
patterns, Then one allows the system to relax in phase
space to an attracting fixed point of the MC dynamics or
in the p-dimensional order-parameter space by determin-
ing the order parameters (5) at t =0 and iterating the
mapping {22), i.e., P. As yet it is not clear whether the
basin of attraction of a fixed point {M, in the order-
parameter space corresponds one-to-one to sets of config-
urations in phase space that relax via the MC dynamics to
the support of an ergodic component {=bottom of a free
energy valley} corresponding to p, .

C. A simple example

We finish this section by studying a simple example,

(31)

which does not contain any randomness. %'e assume
x~1. The case x =I wiII be treated in Sec. IV. Here

p =1 and F(m)=PJx '
~

rn ~", which is convex. We
may immediately apply our general theory since we no-
where used the requirement that the g; have zero mean.
So we take g;i = 1 in (5) and (14), find c(t)=in[cosh(t)],
and see that (21}reads

requirement that the second derivative of (15) be strictly
negative-definite.

In agreement with general usage we write Vc'=Bc*.
Then Bc maps R ~ into R~ and Bc'=(Bc) '. More-
over, the matrix elements of D(Bc*) are just the 8;Btc'
=BJB;c' which occur in (27). Combining the inverse-
function theorem (24) and the relation Bc"=(Bc) ' we

get, using (16),

D(Bc'}(p)=D((Bc) ')(p)

=[D(&c)(&c '(p))]
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FIG. 1. Graphical solution of the fixed-point equation (33). There are three cases: (a) 1 ~x ~2; p has an infinite derivative at
p=O+ and, hence, w'hatever the temperature, one always gets a nonzero, stable Axed point (P). (b) x =2; the Curie-Weiss model.
Through a simple geometric construction one checks the (in)stability of the fixed points, p =0 and I' if T & T, . By the theorem (Sec.
D B) we then know immediately which fixed point maximizes the free-energy functional (32). The transition at T,(P,J= 1) is second
order. (c) For x &2, the function p" ' has a vanishing derivative at @=0+and, hence, tanh(PJp" ') has an S shape. At T, (middle
curve) the system undergoes a first-order phase transition. For T & T„there are three fixed points, p =0, J' and Q. Whereas Q is un-
stable, the other two are stable. An evaluation of the free energy (32) shows that p =0 gives rise to a metastable state whi1e P corre-
sponds to a global maximum.

—Pf(P)=PT(x ' —1)
i p f'+in[cosh(PJ

/ p [" ')],
(32)

while p, satisfies the fixed-point equation

p=tanh[PJsgn(p, )
~ p ~

'],

tees the correspondence only locally, for a neighborhood
of the fixed points. Why then is p=O attractive'? There
are overwhelmingly many spin states satisfying the condi-
tion mN(S)=N 'Q, , S(i)=0. All these contribute to
the entropy s (P) and count as soon as P '= T is positive
because f(P)= tt (P) —Ts (P).

1.e.,

(33)

If p, is a solution to (33), then —p is another solution. So
we may assume p &0. We now analyze Eq. (33) for the
three cases (a) 1 &x &2, (b) x =2, and (c) x & 2. See also
Fig. 1.

Case (a) does not exhibit any transition. Whatever the
temperature, we always get a stable, nonzero fixed point
since the derivative of tanh[PJp, " '] diverges at x =0+.

Case (b) is well known. It is the Curie-Weiss model and
the only one that can be solved by elementary means. z5 If
PJ & 1, there is a unique solution p =0 whereas for PJ & 1

the solution y, =O has lost its stabihty and a new, stable
p & 0 bifurcates away from zero. Hence the transition at
T, is second order.

Case (c) is quite interesting. Since Ju' ' has a vanishing
derivative at p, =O+, the right side of (33) represents an
S-shaped curve. At T =T, this curve touches the
straight line which represents the left side of (33). For
T & T, we get in addition to p, =0 two more fixed points
of which P is stable and Q unstable. The system under-
goes a first-order transition to the state whose order pa-
rameter is determined by I'. In the phase space we now
get three free-energy valleys corresponding to the two er-
godic components vrith p=@+~ 0 and p =—p+ and one
metastable state with p, =O. As P~ oo, @=0 loses its sta-
bility and the order-parameter space is divided into two
basins of attraction, one for p+ and the other one for
—p, + with p=O as their common boundary. Moreover,
they are in one-to-one correspondence to the basins of at-
traction of the MC dynamics in phase space.

But what about a finite P? The above theorem guaran-

IV. AUTOASSOCIATIVE MEMORY MODELS

The importance of autoassociative memory models to
pattern recognition is well established. ' 9 One stores
several patterns and if a certain key pattern, which some-
what resembles one of these, is received the problem is to
retrieve the original version. There is, however, a serious
difficulty that hinders an efficient retrieval: Not only are
the original patterns available as attracting fixed points of
a suitable dynamics (here of the MC type} but also other
images, ghost patterns or spurious states, appear. Plain-
ly, the latter are not wanted. They are usually associated
with metastable states. How can we avoid or, at least,
suppress them'? To get some insight into this question we
study a class of models that comprises the Hopfield
model. Particular attention is paid to the low-noise (low-
T} behavior and the corresponding microscopic ground
states. In Sec. IV A we introduce the model and calculate
its free energy, in Sec. IVB and IVC some special solu-
tions to the fixed-point equation are obtained and their
stability is studied and finally, in Sec. IV D, we analyze an
interesting special case without any metastable state.

A. The axodel and its free energy

We want to study the following family of models:

H~ ———XJ x ' N '; i (34)

labeled by x &1. For the moment we assume x &1 since
the case x = 1 will be considered in Sec. IV D.
Throughout this section p is a finite positive integer and
the g; have fixed values, randomly chosen according to
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Pf(P)=—gf f (x ' —lip*,
a=1

+{ln cosh PE p'
I=1

(35)

their distribution (even; mean zero and variance one). For
x =2 and g; =+ 1, the model is the one proposed by Hop-
field.

Comparing (34) with (11) we see that we have to put

+(m)=pig~, x '
~
m ~'. For the values of x chosen

each of the
~
m

~

is convex and continuously differenti-
able and so is their sum E(m). Using Eqs. (14), {18),and
(21) we find that the free energy is

N

mr =E ' g g;P(i)=N ' g g;„sgn(g; )

These so-called Metis states are precisely the ones ~e are
interested in. They contain the stored information (pat-
terns) and are to be retrieved.

(b) Let us suppose, more generally, that iz contains n

nonzero, equal components p (1&n &p). Such a p is
called an n sym-metric state. By permutation invariance
we may relabel the a and assume that only the first n

components of p are nonzero. Then p = (}M,, . . . , }M,

0, . . . , 0)—=}Lil„and, by (36),

with fixed point-equation
@={~(',tanh pip, " ' g gr I, 1&a&n (40)

p =] itsnh gf f i~*
a=1

= (g'tanh[PJ(g' Iz" ')]) . (36)

while the other components identically vanish. Note that,
once again by permutation invariance, the right side of
(40) does not depend on a. By adding the first n com-
ponents of p, and dividing by n we get

In (35) and (36) we have used the fact that the distribution
of the g~'s is even to reduce everything to the positive
orthant I}u & 0; 1 (a &p I. In general, one has to replace

S by li I
={IW I li zI I} p I

) As the s«»»ty is
determined by (30), the problem is in principle solved. We
will, however, study some special solutions of (36}.

B. Special solutions

For low-enough temperature T (high enough
P=1/AT) there are quite a few solutions to (36). See,
for instance, Ref. 8 for the case x =2 and the Ps +1 or
Gaussian. Here we concentrate on some typical examples
without specifying the distribution of the fs.

(a) We first turn to the simplest possible solution. Sup-
pose that only one component of p„say p, is nonzero.
Then, by (36),

p =n '((1 g')tanh[PIp' '(1 g')] ) . (41)

p= I g~sgn g gr }, 1 & u & n

with@ =0 for ann. Adding (43) for 1&u&n and divid-
ing by n one regains (42). Moreover, one easily verifies '

that

p =0 is always a solution of (40) and (41). As P~ 00 and
p+0 we find

' 2 1/2

n-'{~ X 0, &n-'{ X 4„

in agreement with (19).
Returning to (40) we take the limit P~ go once again

and obtain

p~= (g tanh(Ply~ 'g~) ), (37)

and the other components pr, y+a, vanish identically-
in agreement with our ansatz. The right side of (37) does
not depend on a and we, therefore, may drop it. As
P~ oo (T$0) and p~&0 we end up with

(38)

in agreement with (19}. Here, as in (19), the inequality
follows from the Cauchy-Schwarz inequality. As we al-
ready noted, p,~=O when y&a.

What is the microscopic state corresponding to (38),
i.e., which state gives p„=( ~ g ~

)5 r? It is

S(i)=sgn{g; ), 1&i &N

where sgn{z)=1 if z &0, —1 if z &0, and 0 if z =0. To
check that (39) gives the correct values for the order pa-
rameters, we use (5) in tandem with the {strong) law of
large numbers, '

S(i)=sgn (44)

is the microscopic state corresponding to (43). Here we
assume that g",g;r does not vanish with probability
one. According to (14), the n patterns g'r, 1 & y & n, have
been mixed (n ~ 1), which is to be avoided. We will see
shortly how this can be done.

How many n-symmetric states can me get7 There are
{&) ways of selecting n elements out of p and by permuta-
tion invariance there are equally many solutions to (36),
provided @+0. In addition, if gz=(p )&0 is a solution,
then p'=(+p, ) is another solution. It is reasonable to in-
corporate these also. Altogether, there are 2"(~» } nonzero,
n-symmetric states.

Apparently we now have found quite a few spurious
states. Are they stable against the Mattis states (39)? To
answer this question we first check the ground-state ener-

gy of both states, where P= + ao,
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Eq. (39) ==u(ce)/(Jx ')= —((»gi ))'& —1,

Eq. (44) =-u( }/(Jx ) = —n n ( y gy
l"

r=i

(45a)

(45b)

By the central limit theorem,

(46)

as n becomes large and then the inequality in (45b) be-
comes an equahty, apart from the multiplicative constant
(3/2/ir)'. Only in the Gaussiail case we llave exact equal-
ity for all n

If 1 &x & 2, so that 1 ——,x & 0„ the spurious n

symmetric states are expected to be stable. This expecta-
tion will be nicely confirmed by the case x =1, to be
treated in Sec. IVD. The larger n, the more stable the
spurious states become. If x =2, Eq. (45) leaves the sta-
bility problem undecided and one has to perform a de
tailed calculation of the middle terms, which may be nas-

ty. However, if x &2, then 1 ——,'x &0 and the larger n,
the more advantageous the Mattis states (39}are. In fact,
if "deep valleys are also broad, " which seems reasonable,
we would be done. Moreover„ in Sec. DIG we have seen
that if we increase x, then T, is lowered and at low T
only energy arguments are important.

(c) Before turning to a stability analysis for finite tem-
peratures (T&0) we quickly discuss another type of solu-
tion to the fixed-point equation (36). We now make the
ansatz that p=(pi, . . . ,pi,pi, ,p2, 0, . &0)=pilm
+p2l„with m times a p, i and n times a p3. The pi and

p2 satisfy a coupled set of nonlinear equations,

pi ——m '((l g)tanh[Pl(pi 'l .g'+pi 'l„g')]),
(47)

p =n '((l„.g)tanh[PI(p; 'l g'+p' 'l„ f)]) .

The components p with m +n &a &p vanish identically,
which is consistent with the ansatz. If x =2, the case
pi+pi can indeed be realized, and so on. All in all, one
should be prepared to fmd a huge amount of solutions to
(36}. Whether they are stable is another question, to
which we now turn.

H „(p)=PX(x —1)(p~„)'
X (ggrcosh i[pJ(g' p' ')]) . (49)

= PJ(x —1)p

X([g'I+(n —1)g („]cosh (pJp" ' g)), (53a)

I.et us first consider the case p=0. Then, whatever P,
H is a diagonal matrix whose elements are either + oo if
1 &x & 2, so p=0 is unstable, or they all vanish for x & 2
and p=O is stable. For x =2, p, =O is stable only if
PJ & l. All this is in agreement with the qualitative pic-
ture suggested by Fig. 1. One may object, however, that
the function F has continuous, second-order partial
derivatives at p=O only if x &2 so that the above argu-
ment is not completely correct. Its conclusion is correct,
though. In spite of that, we restrict our discussion to
x & 2 and relegate the case 1 &x & 2 to the Appendix.

For a Mattis state p=(p, O, . . . , 0) we find that H(p, )

is a diagonal matrix with (p —1) elements equal to zero
(x &2), which is certainly less than the required upper
bound (one), or }8'J(cosh 3I(PJp)(I ) (x =2), while in
the one-dimensional fixed-point space we get (x & 2)

A, i ——PJ(x —1)p' (g cosh 2[(PJp" ')g] ) . (50)

The stability of an n-symmetric state p=(p, , . . . , p, ,
0, . . . , 0), which lives in an n-dimensional fixed-point
space (n &1), is determined by a block-diagonal matrix
with two blocks of size n Xn and (p —n)X(p n). Th—e
diagonal elements of the n Xn matrix are

HN, (p)=PJ(x —l)p' (@cosh [PJ(p ' g'}])=a,
(51a)

1 & a & n. They are all equal, and so are the off-diagonal
elements

HNr (p ) =PJ(x —1)p" ( (If&cosh [ALT(p' 'g) ])

b, — (51b)

1 (a&y & n; in general
»
b» &a. So for H(p) restricted

to the n-dimensional fixed-point space we may write

H =(a —b)1+nb l„»( l„ (52)
n "I» n

where l is the unit matrix and l„=(1,1, . . . , 1}ER".
We then get one nondegenerate eigenvalue

X,=(a b)+nb—

C. Stabihty

According to Sec. IIIB, the stability of a fixed point
p=Vc(VF(p)) is determined by the eigenvalues of the
matrix H(p)=8'~ AB'~ where

and another, ( n —1)-degenerate eigenvalue

A,2 ——a —b = PAx —1)p"

X ((g~ —g~gr)cosh (pJp, " '.g) ) . (531)

A r(p) =(B~Brc)(VF(p)), B~r d~drF(p) . ——(48)

Turning to the (p —n)-dimensional, orthogonal comple-
ment of the fixed-point space we find a diagonal matrix
with a single (p —n)-degenerate eigenvalue

p is stable if and only if all the eigenvalues of H(p}
are less than one; cf. Eq. (30). Since F(p )

, PJx '» m»' and c(t)=(in[cosh(t g)]), a sim-

ple calculation gives for p, in the positive orthant

A3 ——PJ( cosh [PJ(p.g)] ), if x =2

A3=0, if x&2.

(53c}

(53d)
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Note the decreasing complexity in going from A, i to A,i.
For n =1, A,z does not exist and A. i and A, i reproduce our
previous results. For n ~ 1, the stability analysis is a deh-
cate affair. Suppose, for instance, that the g's have a
discrete probability distribution not including zero, that
x =2 and n is even, then Prob(g", g =0)&0 and, thus,
A,3~ ix& as P~00. Hence, the n-symmetric state p, &0 is
unstable at low temperatures. However, for n odd it may
well happen that Prob(g", /~=0)=0. Then Ai~O as

P~ 00 and we have to study A, i and A2.

Q

(p,,O)

N

H~ ———NJ J&J
' QS(i) (54)

I'(m }=PJ
~

m
~

is convex but not continuously differenti-
able. Since both c(t)=in[cosh(t)] and c'(m) are convex
and c"(t)=c (t), we use the analog of Fenchel's duality
theorem ' so as to transform

Pf(13)=—sup [E(m) —c'(m)]

into

—Pf(P) = sup [c(t)—+'(r) ] .

Now

F'(t) = sup [mr —pl
~

m
~ ]=0, if

~

t [
&gr (56)

and + co elsewhere. Hence

13f(P)= s—up [c(t)]=in[cosh(PJ)],
ft f~PJ

(57)

since a convex function attains a global maximum on a
closed convex domain D at one of the extreme points of
D 20

We now turn to (34) and take x =1,
p N

H~ — J&JJ g N —g g;+(i) (58)

D. The case x =1

Let us first consider a very simple example that is de-

void of any randomness,

FIG. 2. The free-energy functional (60) assumes its maxima
at the corners P~ „I'2,P3,P& of a square (in general, a hypercube)
because of convexity. The flaw lines of the dynamics (22) have
been indicated. The Mattis state Q =(p, ,O} is unstable and so
are all the other Mattis states.

R~Bx S&i&=I&&n gx g, ; &&i&% (6&&

where x is one of the corners of the cube [—1, +1]i'. If p
is odd, there are 2i' of these states.

The previous considerations also apply if p grows loga
rithmically with ¹ Then the number of the states (61) is
extensive, i.e., proportional to N. Their prescription has
interesting applications to coding.

Summarizing: All information is immediately mixed
up and forgotten. Therefore, the generalized Hopfield
model with x =1 (and also 1&x &2) describes an, ex-
«emely forgetful being. If, however, one is willing to con-
sider the 2& fully mixed patterns (61) as the information
one wants to retrieve, then the x =1 case is a model
without metastable states. At T =0, one may flip up to
half of the spins before leaving the basin of attraction of a
certain (fully mixed) pattern (61).

V. THE LITTLE MODEL

z*r»= g &i&J& »i.&=0.
a=1

if
~
t

~

& PJ for all a, and + oo elsewhere. Hence

Pf (13)= sup —[c(t)] .
ft f &PJ

(59)

(60)

Since c (t)= (in[cosh(t g)] ) is a convex function and the
cube I ~

t
~

&/3J; 1 &a (p I is a convex, polyhedral
domain, c(t) attains a global maximum at one of the ex-
treme points of the cube, i.e., at one of the corners; cf. Fig.
2. No metastable state can exist and, by symmetry, all the
corners give rise to the same maximum. Moreover, they
all favor a complete mixing of the original patterns. As
T~O (P~ 0o } the corresponding microscopic states are

The Legrende transform of the energy function
+(m)= g~, PJ

~

m
~

is readily obtained as the mul-

tidimensional analog of (56),

The statistical mechanics of the Little model may be
described by an effective Hamiltonian' HN,

—PH~ —g ln cosh &gJ—Q J,JSj() (62)
i=1 j

As compared to Ref. 1, a trivial N ln2 has been dropped.
The S(i) are Ising spins whose normalized trace will be
denoted by trs( ). Since the JJ are as in the Hopfield case
(1), we may defin order parameters as in (5), i.e.,

m~N N' g g;Q(i)——, 1&a&@ . (63)

To each site i we also assign a duplicate spin cr(i }=+1,
with normalized trace tr ( ) and order parameters

N

ma, w=JtJ ' g g; o(i), 1(a&@. (64)

Using the duplicate spins ~e no~ re~rite the Hamiltonian
(62),
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N
r)H—»=)x 2 Ii xxp rtr f I; »t"'» +xxp rr—r f I; m,",»

i=1 a=1 a=1
x

=lx tr Ii xxp gftt(r) f I; tx
i=1 a=1

»

=lx tr xxp rrrtl g m "»'tx' »
a=1

(65)

so that

—Pf(P)= lim IN 'ln[trs exp( —PH&)]I

= lim N 'lnftrstr exp[NPJ(mI)I' mIv')]J .
N-+ ce

For m=(m"', m'z') E R zi', the energy function is

F(m) is not convex. Furthermore, the c function which is relevant to (66) has the argument t=(ti, tz) in
R zi'= R I')& R I' and is defined by

c(t)= hm &-'ln[«str exp'(t, m"'+tz mN")]
W-+ ce

= lim IN 'in[trs exp%(ti mIv')]+X 'ln[tr exp%(tz mN')]I
N~N)

=c(ti)+c(tz) .

Here, by abuse of notation, the c(t;) are the Hopfield c
functions (14) with argument in R ~. With probability
one, ' they do not depend on the fixed set of ('s we started
with.

By Sec. III A we immediately get

Pf(P) = sup—[gJm"'m'I' —c'(m)] . (69)

As we will show shortly, the symmetry between the two
components m'" and m' ' of m=(m'", m'z') is not bro-
ken. That is, if m maximizes the free-energy functional,
then m"'=m' '=p,

Due to the above observation the fixed-paint equation
(18), which I'eads

This result was obtained in a completely different way in
Ref. 8.

We now show that in (69) m'" and m' ' must be
equal without using the special form of the fixed-point
equation (70). Without loss of generality we may assume
that PJ = 1 and that the supremum is attained at
m'=(mi, mz}. Then

SiiP[PJm Bl —C (IB}]=IBi'Biz+[—C (Ini, nlz}] .

(74)

The function c(ti, tz) is symmetric in its two arguments
and so is its Legendre transform c'(mi, mz). Moreover,
—c'(mi, mz) is concave and thus

(70) —C (Inixlnl)= Z [—C (Bli,IBZ)]+ Z [—C (nlZ, Bli)]

may be reduced to

pc = (g tanh[PJ(p. g)]), (71)

m]+mr mr+mr
2

'
2

(75)

which is (36) with x =2, i.e., the generalized Hopfield
model. Furthermore, by (21) the free energy directly fol-
lows: My'Xn2 &

t I
M] +Xn2

2
—Pf(P)=[+(m) —m V'F(m)+c(&+(m) )]

=pJ(p —2' )+2C(pal)

=2[——,
'
Pcs +c(/1')],

and thos

(73)

m'i. mz+[ —c(m'i, mz)]
2

m)+ XI12 Xll)+ Hl2 M.)+XGg

2
'

2
(77)

with equality if and only if mi ——mz. Combining
(74)—(76}we get for the right-hand side of (74)
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and the inequality is strict if m&&mz, as claimed.
Turning to the stability problem we note that, as

%~00, both the original spin configurations and their
duplicates give rise to the same stationary points p, . These
are determined by (71) and the requirement that they
maximize the free-energy functional (69), i.e.,

Pf—(P)= sup [)M' —c'(lt v)] . (78)

The function p is convex and so is d(ls)—=c'(la, lt). We,
therefore, can apply the analog of Fenchel's duality
theorem so as to get

ist and the original patterns are fully mixed these models
favor the stability of single patterns whenever x p 2. The
Hopfield case x =2 is particular in that the Hessian of F
is just a nonzero multiple of the unit matrix. Moreover, a
simple duplication of the spin variables enables a direct
solution of the Little model in terms of the Hopfield
model.

Though the present analysis was restricted to only a fi-
nite number p of stored patterns, it clearly shows that pat-
tern recognition through spin-glass-like neural networks
offers a surprising richness of structure which deserves
detailed attention and further research.

Pf(P—)= sup [d'(t) ——,'t ]
tER&

and using the relation

d'(t)= sup[@.t —c'(p, ,p)]

sup [pi'( 2 t)+pi( i t) —c (p,p)]
(p] P2)

=c"(-,' t, —,
' t) =c(-,' t, —,

' t)

(79)
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APPENDIX

=2c( —,
' t),

where the last equality follows from (68), we find

Pf(P) = sup [—2c( —,
' t) —( —,

' t)'),
t

i.e., putting —,t =u,

—PfL;«i, (P)=2sup[c(u) ——,u ],

(80)

(82)

In Sec. IV we have seen that the parameter x of the
Hamiltonian (34) plays an important role. However, for
1 &x & 2 we could not apply our stability analysis directly
because the energy function F(m) was not twice continu-
ously differentiable at m=0. Section IV D suggests, how-
ever, that here also we should take advantage of the ana-
log of Fenchel's duality theorem2s

Pf(P) = sup [F—(m) —c'(m)]

which is (73) once again. But more can be said. Equation
(82) shows that the stability analysis of the Hopfield model
directly applies to the Little model Since .we have dupli-
cated the spin variables we only need to do half of the
usual amount of work.

= sup [c(t)—F'(t)] .
t

Since F(m)= gr, PJx '
lm~ l', we have to determine

the Legendre transform

(PJx '
l
m

l
')'(t) = sup (mt PJx '

l

—ni
l

')

VI. DISCUSSION

A flexible formahsm has been presented to defermjne
the equilibrium statistical mechanics, in particular the
free energy and the stable states, of a spin-glass-like neural
network. The main results, (21) and (30), have been ob-
tainixl without any supposition on the energy function
F—except for convexity, which greatly simplifies the sta-
bility analysis. As we have shown elsewhere, through the
notion of extremal set, even the ground-state analysis
may depend critically on the chosen probability distribu-
tion. We, therefore, have concentrated on a general
framework and refrained from giving too many details.

One may wonder, though, where we used the random-
ness of the g'; 's. The answer is: To obtain thermodynam-
ic stability as %~00 through their ergodicity. ' If the
g; 's are arbitrary, one may use the same formalism but
the c function is not readily evaluated and the ensuing
analysis is, at least analytically, intractable.

The family of Hamiltonians (34) which are labeled by
x & 1 comprises the Hopfield model (x =2) and shows a
wide spectrum of bifurcation phenomena and stability
problems. Whereas for x = 1 metastable states do not ex-

—g Nv 'I&.&~%~I'I .
a=1

(A3)

What have we gained'? Since x '+y '=1, the in-
equality l ~x ~2 implies y~2 whereas xg2 leads to
1&y&2. Hence, everything in sight in (A3) is every-
where twice continuously differentiable if we assume
1&x &2. Let us do so and define

l
t

l
=(

l ti l,
l
t2 l, . . . , l tz l

). An extremum of the expression be-
tween the curly brackets in (A3) is found if

&4tanh(ltl 4)&= lt ~(PJ) I'
and a maximum is attained at t if the Hessian,

&f.g„~sh '(t g))
'--' .

l t./-(PJ) l~-'5.„, (As)

(A2)

where x '+y '=1. Note that then (x —1)(y —1)=1.
Using (A2) we obtain

Pf (P)= sup I &
—in[cosh(t g)] )

t
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is negative definite. If we put

(A6)

and use the relation (x —1)(y —1)= 1, then (A4) is readily
transformed into the (general version of the) fixed-point
equation {36).

Let us check the stability of y, =0 in the case 1 & x & 2.
By (A6), p, =0 corresponds to t=0, so (A5) is reduced to
the unit matrix, which is never negative, and p, =O is
bound to be unstable, whatever the temperature. This is
in agreement with our preliminary argument of Sec. IV C.

What are the stable states then'? If ls =(p„. . . ,
p, O, . . . , 0) is an n-symmetric state {Sec.IVB) with n &p,
then the restriction of the Hessian (A5) to the (P n}—

dimensional, orthogonal complement of the fixed-
point space is the positive diagonal matrix
{cosh [PJ( ~)u, ~" '.g')])5 z. That is, all directions in
the orthogonal complement are repulsive. This
phenomenon is nicely illustrated by Fig. 2, where x =1
and p =2. If 0 & n &p, we cannot but choose n = 1. Con-
sider the point Q =(p,O}. In the fixed-point space, along
the coordinate axis, Q is attracting and, thus, stable. But
in the orthogonal complement, along the line P, P4 per-
pendicular to the x axis, the natural flow is expanding and

Q is unstable. We also se: which points are stable: the
corners, like Pi ——(p, ,ls). So we have shown that among
the symmetric states only the P-symmetric ones have a
chance to be stable if 1 «x & 2.
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