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%e discuss rational approximations to a single irrational number and pairs of mutually irrational
irrational numbers and show that the binary "Farey" tree organization of the rationals extends
naturally to a binary organization of pairs of rationals with a common denominator. There are ob-
vious applications to theory and experiments in dynamical systems.

I. INTRODUCTION

In two-frequency dynamical systems, the breakup of
Kolmogorov-Arnold-Mosur (KAM) tori or invariant cir-
cles can be studied by looking at the stability of the long
periodic orbits. ' This involves the approximation of an
irrational number by a sequence of rationals.

In three-frequency dynamical systems, we need to
simultaneously approximate a pair of mutually irrational
irrationals by a sequence of pairs of rationals with a com-
mon denominator. Although we are motivated by our
desire to understand mode coupling in these multifrequen-
cy dynamical systems, the present paper is solely a
number-theoretic discussion which does not assume fami-
liarity with dynamical systems and number theory. Re-
sults similar to those derived here have been used before
and will be discussed in the context of renormalization of
mappings in a forthcoming work. However, we felt a
need to separate our intended application from the
number-theoretic discussion, since we believe that the
number theory, by itself, has more general applicabihty.

We proceed from an overview (Sec. II) by reviewing the
standard theory of continued-fraction approximations to a
single irrational number in Sec. III and then discuss the
somewhat less standard "Farey" approximants in So:. I&.
In Sec. V, we present what we believe are novel ways of
investigating simultaneous approximations in a way
which we believe will prove to be useful to physicists.

of this problem to the simultaneous rational approximants
to several mutually irrational irrational numbers is con-
sidered a difficult, essentially unsolved problem in number
theory. We hasten to point out that we do not believe we
have derived deep new results in the theory of numbers.
Our aim is to discuss compactly and elegantly results
which should be useful to physicists in a spirit we have
not seen before in the literature.

The precise generalization of rational approximants to a
single irrational number is to define a sequence of pairs of
rational numbers ter„= (p„/r„,q„—/r„) I„"=p, eacl1 set witll
a common denominator r„which converges to a pair of
mutually irrational irrational numbers cr=(cr&, cr2). In or-
der to define "best,"we have to have a metric which mea-
sures how close a rational approximation is to an irration-
al number. There are two common natural metrics in use.
The metric which measures "weak convergence" (called
metric of the "first" kind by Khinchin} (Ref. 4) is the or-
dinary two-dimensional (2D) distance:

~
~cr (p/r, q/r)

~ [
= —

[ cr —(p/r, q/r) ~, (2.1)

and the metric which measures "strong" convergence
(called metric of the "second" kind by Khinchin)

I
lcr (p«q/r}—ll. = I

rcr —(p q} I
(2.2}

where
~ ~

indicates the ordinary Euclidean norm. With
these definitions, we say that cr„=[(p„/r„),(q„/r„)] is a
"best" rational approximant if

II. QVERVIE%'

A central problem in number theory is how to "best"
approximate an irrational number o by a converging se-
quence of rational approximations
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The answer to this question was solved long ago by the
Illetllod of coIltlIllled fl'actions. DepeIicllllg oil oui def1111-
tion of "best," the answer is either the "Farey" sequence
of rational approximants, discussed briefly in Sec. IV,
or the continued-fraction approximations which form a
subsequence of intermediate convergents of the Farey se-
quence.

It is perhaps surprising that the innocent generalization

(2.3)

for all triplets of integers (p, q, r) for any r & r„Aration. -

al approximant can only be called best relative to a partic-
ular metric.

%e now choose o. and a metric and ask how to generate
a sequence of best rational approximants cr„with increas-
ing denominators converging to o.. %ith these metrics,
we are aware of no known systematic methods of describ-
ing this except a complicated method recently developed
by Brentjes. ' We shall mention his method briefly later
when we discuss why it does not provide our application
with a suitable solution. Although a suitable solution to
the problem is not known, various theorems exist concern-
ing special values of o and bounds are also known about
the size of the norm as a function of the denominator.
We will not discuss these theorems since we did not find
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III. CONTINUED FRACTIONS

To place our results in context with well-known theory,
we shall first discuss results from the theory of continued
fractions. Proofs of our statements can be found in Refs.
4—7 and references therein.

Assume a is an irrational number and let o'„=p„/q„
denote a convergent sequence of best rational approxi-
mants, with q„and p„ integers. I.et I nI I denote a collec-
tion of positive integers and [n ~, n2, . . .] be the number

[n„nz, . . .]=
Pf ) +

1
Pf2+

f13+ '

(3.1)

The sequence terminates if and only if [n&„nz, . . .] is a
rational. With cr=[n„n2, n3, . . .], cro= 1, o~=p~/q~-
—= [n &,n2, . . . ,n~], and pn =[nn+, ,nN+2, . . . ,n „], th—e
following facts then follow:

(a) oz is a sequence of strongly convergent best rational
approximants.

(b) p~ and nN are determined by the recursion formula

these theorems useful, nor did we find the direct connec-
tion between them and our construction of the simultane-
ous rational approximation scheme presented in the fol-
lowing sections.

The situation is not hopeless, however, because for our
purposes it is not essential to restrict ourselves to the best
rational approximants as long as we can obtain strongly
convergent sequences. This we can do systematically;
aside from prefactors of order 1, these sequences converge
as rapidly as the best approximant. The existence of sys-
tematically derived, geometrically converging sequences
has long been known. This method first attributed to
Jacobi is commonly called the Jacobi-Perron algorithm.
In many ways, it is a natural generalization of the
continued-fraction algorithm. However, since the Jacobi-
Perron sequences and various refinements fail to generate
either weakly or strongly convergent best rational approxi-
msnts, the algorithms have not gained the recognition
that the continued-fraction method has for ordinary ra-
tional approximants.

In a sense, what we shall present in Sec. V is yet anoth-
er Jacobi-Perron algorithm. We believe that from the
point of view of naturalness and elegance, this is the algo-
rithm of choice for physicists. It turns out this algorithm
makes contact with what we believe are the fundamental
generalizations of properties of the golden mean, which
plays a fundamental role in the theory of rational approxi-
mants of a single irrational number. The algorithm
presented here also generates a natural extension of the
Farey organizations of the rationals which is discussed in
Sec. IV.

We will not discuss the applications of this theory to
dynamical systems. Rather our wish is to provide a tool
which others can use to investigate dynamical systems
with several incommensurate frequencies. The apphca-
tion of these ideas should be obvious to those who are
studylllg these qllestloils.

(32)

(3.3)

Ar
I%+1 9%+1 Jpx Cw

(3.4)

where [x] denotes the largest integer &x.
It is convenient to introduce the shift operator

s(x) which acts on the unit interval by removing the
first continued-fraction entry of x. Thus if
x =[ni,n2, n3, . . .]

s(x)=[n2, n3, n4, . . .]=x ' —[x '] . (3.5)

The inverse to s {x)has an infinite number of branches t„,
where

t„(s(x))=x if [x ']=n . (3.6)

Since s(x) is piecewise continuous, we often denote each
of the these pieces of s(x) by s„(x), i.e., s(x)=s„(x) if
n & 1/x & n + 1.

Although continued fractions are extremely useful,
there are several properties that are not ideal for us. We
list these below:

IV. FAREY TREE

A. Farey organization of the rationals

We shall now describe the Farey ordering of the ration-
al and irrational numbers. This particular way of
looking .at rational approximants is not familiar to many
physicists and appears to generalize quite naturally to
simultaneous rational approximants.

A rational number is the ratio of a pair of relatively
prime integers. For reasons soon to become clear, ~e
write this explicitly as p/q =((p,q)) where we note the
similarity in the notation to an integer vector. The
"Farey" sum e of two rationals is the sum of their
numerator and denominator. Thus

Interpreted as an operation on integer vectors, Farey sum-

(i) Continued-fraction representations are not sym-
metric about —,', violating a fundamental symmetry of the
rational numbers on the unit interval.

(ii) The address [ni, nz, ni, . . .] requires a symbol (i.e.,
the integer nn ) which has an infinite number of possibili-
ties.

{iii) The shift operator has an infinite number of
discontinuities.

(iv) The continued-fraction approximation misses many
weakly convergent best rational approximants.

As an example of (iv), —,', —,', . . . , are weakly conver-
gent approximants to 0, while they are completely skipped
in the sequence crN since s[—,']=0. To remedy these
problems we next discuss the Farey organization of the ra-
tional numbers and make a more elegant construction
which we will generalize to simultaneous approximants.
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mation is vector addition but is also a "mediant" opera-
tion since if x &y, then x &xey &y. Based upon the no-
tion of a mediant operation, it is straightforward to en-
code rational numbers into the binary tree, usually called
the Farey tree. This is done in the following steps.

(1} Start from the two trivial rational numbers
((0, 1))=—', and ((1,1))= —,', placing them at each end of a
line segment. The two end points will define the left and
right boundaries of the tree. The entire line segment is
called the level-0 Farey interval. [See Fig. 1(a).]

(2) Perform the mediant operation @ on the end points
of the level-0 Farey interval, resulting in ((1,2}}at the mid-
point. The fraction —,

'
is defined to be the Farey element

of level 0. [See Fig. 1(b).]
(3}The fraction —,

'
splits the level-0 Farey interval into

what we define to be the two level-1 Farey intervals.
(4) Perform the mediant operation on the end points of

the level-1 Farey intervals splitting each of the level-1 in-
tervals into two level-2 intervals which are smaller by a
factor of 2. Draw an arrow between each element in level
1 ("mother") and the two elements in level 2 that it gen-
erates (left and right "daughters"). For example, —,

' is the
left daughter of —,

'
being the result of a mediant operation

of the left level-1 interval whose end points are ((0,1)) and
((1,2}}. Note that only one member of each mediant
operation is in the previous level. Draw arrows labeled
"0"from mother to left daughter and labeled "1"to right
daughter. (See Fig. 2.)

(5) Recursively apply (3) and (4) on all new Farey inter-
vals generated. This naturally generates a binary "Farey"
tree as shown in Fig. 3.

We now make several important observations whose
proofs may not be obvious to the reader:

(i) Every rational between 0 and 1 occurs exactly one in
the tree.

((ot)) ((~2))

B A

((0&)) (( 1 1 ))

FIG. 2. The shift operations, So and S~, are illustrated. The
labels A and 8 show how vertices are mapped under the shift
operations. Each level-1 Farey interval is mapped into the
level-0 Farey interval.

(ii) An element x is on level n of the tree if and only if
the sum of entries in the continued-fraction representation
of x is n+l.

(iii) The 2X2 matrix whose rows are the right to left
list of integers defining the end points of a Farey interval
has determinant 1.

01 14 15 25 12 35 25 34 11

)5 27 38 57 47 58 57 45

B. Binary Farey address

We now define the binary address associated with a
particular rational number. Simply read the path to the
rational number from —,, writing down the string of 0's

and 1's encountered in going from mother to left or right

((01)) (()2)) (()1))

2

((Oi)) ((12)) ((11))

((13)) ((25))
5 5

0 & 0
5 4

FIG. 1. (a) The hne interval bounded by ((0,1)) and {(1,1)) is a
level-0 interval of the Farey tree. The first mediant operation
generates ((1,2)) and splits the level-0 Farey interval into two
level-1 Farey intervals. (b) The mediant operation on the level-1
Farey intervals generates the elements of level 1, {(1,3)) and
((2,3}) which are linked to their mother ((1,2)}. Descendants are
labeled by arrows.

FIG. 3. (a) The elements of the Farey tree through level 3 are
shown. {b}A second dimension is added to show the binary or-
ganization of rationals and the path of arrows leading to each
rational. The entire Farey tree is recovered by the projection of
this tree to the unit interval.
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&([IQ Ii Iz ])=[Ii Iz I» ]. (4.2)

The map is obviously 2:1 on the real numbers, maps the
unit interval to itself, and maps both the left and right
Farey interval of level 1 onto the entire interval of level 1.
Clearly, there will be two branches to s (x};we define

s(x)=
sQ(x) if x (—,

'

si(x) if x & —,
' .

(4.3}

The map s(x) must not only map rationals to rationals
but also preserve mediant openstions in order to preserve
the tree structure. Hence if

«pQ RQ})=((pi qi})((S» q»}
then we also want

s ((pQ qQ) )=s ((pi, qi ))es ((p~,qi ) )

But the mediant operation is a simple addition of the 2D
integer vectors, hence any linear operation on the integer
representation of the fractions will preserve mediant rela-
tions. The shift map s (x) can be therefore defined by the
action of the two matrices SQ and Si which act on the in-
tegers representing the numerator and denominator of the
rational number. In order to properly map the top Farey
levels, we demand that SQ(0, 1)=(0,1), SQ(1,2)=(l, l),
Si(1,2) =(0,1), and Si(1,1)=(1,1). These matrices are

daughter. For instance the path to —,
' from —,

' is left,
right, left, so that —,

' =[0,1,0] We note the appealing
symmetry of the address with respect to refiections about

1
«

2 '

[IQ Il Ii ]=[1 IQ 1 Il 1 I2« ' . 1 (4.1)

We shall now define an algebraic way of generating this
address by generating the shift map s(x) with the proper-
ty that rrN=[IQ Il* IN]=«PN qx}}. (4.6)

In order to implement this algorithm, we must under-
stand how to compute ((p~,q~)) given only the address.
This is easily done with the operators TQ and Ti which
are inverses to SQ and Si.

We define 2Q=SQ ' and Ti ——Si '. The ¹hrational
approximant is then given by

(par qw ) =~i, rz, ' ' ' &i„(1»}. (4.7)

[The vector (1,2} is of course a column vector. ] These for-
mulas can be written with the following recursive algo-
rithms.

Algorit&~ 4.1: Compute (PN, R~) given the binary~V«h, , ~«l.

1np«: [IQIi,

Output: ((PN, Rx))=[IQ,I&, . . . , IN] .

I~itiali~: ~=2X2 Identity matrix; n =0;

do while (n (N)[
if (I„=O)M~MTQ,

if (I„=1 )M+-MT i,
7l~Pl +1

(p~, q~) =M(1,2) '

or 1. We then know that the address of
((p,q)) =[IQ,Ii, . . . ,IN]. Since the shift operator is well
defined for irrationals as well as rationals, we can assign
an infinite address to an irrational number.

The binary address generates a unique rational
approximant to an irrational number. Assume
o=[IQ,Ii,Iz, . . .]. We define the ¹hFarey approxi-
mant o~ by

1 0 2 —1
—1 1 ' ' 1 0 (4.4) Algorith~ 4.2: Compute the bi~ay address and

rations approximatiom to an arbitrary irrigational, o.
It is simple to show that this induces the transformations
of the line interval sQ and s, by the following formula:

X 1sQ(x)=, si(x)=2 ——.
1 —x X

(4.5)

It is straightforward to show by induction that not only
do boundaries of Farey intervals map into boundaries, but
that the interior of the Farey intervals map into the interi-
ors. Since it was shown that the shift operations preserve
the mediant relations, shift operators map the entire left
and right subtrccs of rationals onto the vrhole Farey tree.
It is simple to verify that s (x) is indeed the shift operator
on the Farey address.

Since we understand the shift operator, it is simpler to
work algebraically with addresses and rational approxi-
mants, rather than having to construct a complete tree.
Let us assume that the following string of compositions
can be made, respecting the convention of intervals in
Eq. (4.3). si„sq„, . si, ((p,q))=((1,2)) where I„ is 0

Kaput: o .

Output:[IQ Ix . l and (Pw RN} .

Initialize: M =2)&2 Identity matrix; X=0; xp ——o. ;

do while (x~~ —,
'

}[

if (x~ ( ,' }IN 0;———
if (x~) —,

'
)IN 1;——

X~+ ) =Sg X~

M~MTg

(PN+I RN+1) =M(1 2)

%~X+ 1
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Although we shall not do so, it is straightforward to
prove the direct relationship between the Farey address
and continued-fraction representation. Except for prob-
lems at the two ends of the address, we can convert a con-
tinued fraction to a Farey address by expanding each in-
teger ni into n repeated 0's or 1's, switching between 0 or
1 each time. For instance an address [.. . ,2, 3,4, 2, . . .],r
in continued-fraction scheme translates to
[.. . , 11000111100,. . .] in Farey binary scheme. This
rule breaks down at the two ends of the address. The pre-
cise conversion formula can be found in Refs. S and 9.

C. The golden mean

In spite of the length of this section we are not primari-
ly interested in approximations to single irrational num-
bers. We will therefore not discuss in depth the properties
of aa, the golden mean, although it plays a major role in
the theory of rational approximants. We list, however,
several properties that are relevant:

(i) lrG =(v 5 —1)/2.
(ii) sosl (oG) =crG so that ca ——[1,0, 1,0, 1,0, 1, . . .].

Thus aa is a fixed point of the refiection composed with
the shift aperator.

(iii) The ¹hrational approximant to the golden mean
has the largest denominator at the Nth Farey level.
Furthermore, in this special case, the continued-fraction
approximants coincide with all the Farey approximants.

(iv) oG is the "most irrational" number since it is mast
difficult to approximate by rationals.

There is another way of assigning a binary address
where shift opel'atlails are given by $0+-$0 81ld s l ~1—s l

which was introduced by Cvitanovic and Feigenbaum, '
It is equivalent to our scheme and generates the same ra-
tional approximants, but has the merit that the golden
mean is a fixed point of period 1. However, this address
breaks the symmetry around —,

' and the natural ordering
of rationals. For these aesthetic reasons, we prefer to use
our labeling scheme. Next we shall extend these ideas to
simultaneous rational approximants.

V. GENERAL. IZED PARRY TREE

A. Definitions and basic results

In this section, we discuss how to generahze the Farey
construction of single rational numbers ta pairs of rela-
tively prime rationals, i.e., set of 3 integers (p,q, r) where

p, q, and r are relatively prime associated with the two
"simultanlxius rationals, " (p/r, q/r)—:((p,q„r)). We de-
fine a "mediant operation" on ({p, ,q „rl ) ) and
((pi, q2, r2) ) analogous to the two-dimensional Farey sum:

({pl ql rl))({p2 q2 r2))=({pl+p2 ql+q2 ri+r2)) ~

Read as an operation on triplets of integers„y is of course
vector addition. The mediant hes roughly halfway be-
tween two rational vectors. We now construct a "tree" of
simultaneous rational fractions by the following steps:

{1)We start from the unit square in the plane and the
triplet of simultaneous fractions ((0,1,1)),((1,0,1)),((1,1,1))
placed at each corner of a right triangle as shown in Fig.

((O&t)) ((122)) ((11~))

((11P.)) t(212})

((001)) ((&o&)}

FIG. 4. {a) The shaded area in this schematic diagram
denotes the level-0 Farey triangle for the construction of the
"generalized Farey tree" and illustrates the first mediant opera-
tion, {{0,1,1))${(1,0, 1))=((1,1,2)). (b) The second mediant
operation generates two level-1 elements, {(1,2,2)) and ((2,1,2)),
vrhich are daughters of ({1,1,2)).

4(a). We call this the "level-0" Farey triangle. These ver-
tices will define the tree boundary, just as ((0,1)) and ((1,1))
formed the tree boundary in the Farey construction. The
rationals in the interior of the triangle are those rationals
((p,q, r)) for which p+r &r, 0&p &r, and 0&q &r„with
p, q, and r containing no common divisor. The vectors in
the lower left half of the square will be ignored; they can
be obtained by a simple reflection operation of the con-
struction outlined below.

(2) We perform the mediant operation 8 on the the ver-
tices of the hypotenuse of the Farey triangle, placing
((0,1,1))$((1,0,1))=((1,1,2)) in the middle of the hypo-
tenuse. The fraction ((1,1,2)) defines the level-0 element
of the tree, analogous to the Farey tree level-0 element.

(3) By connecting ((1,1,2)) and ((1,1,1)) by an arrow, we
split the large triangle level-0 triangle into two similar
"level-1" Farey triangles, smaller by scale factar V 2.

(4) We perform the mediant operations on the two hy-
potenuses of the smaller Farey triangles, generating
((1,2,2)) and ((2,1,2)) as level-1 elements of the tree. The
simultaneous fractions ((1,2,2)) and ((2,1,2)) are the two
daughters of the level-0 parent ((1,1,2)). [See Fig. 4(b),
with the arrow pointing from mother to daughter. ] This
generates successive levels of daughters and Farey trian-
gles. In contrast to the ordinary Farey construction, the

0)&—&44—IM—255—122—M5—233—344—3 1 )

)34—25 4 —356—54 $4—434

l/I IL
123—~7—34—457 46—323

L r'ILl
235—346—33 35—535

Xl/lLl/l
325—5W'—425—525

213—526—313

L EI
Xl

101

FIG. 5. A11 elements of the tree up to the fifth 1eve1 are
shown. For clarity, the arrows have been eliminated.
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mother is not directly involved in the mediant operation;
an element is the product of a mediant operation between
her grandmother and a more distant parent. The recur-
sive application of (3) and (4) generates the entire tree.
All elements of the tree up to fifth level are shown in Fig.
5.

%e now make several important observations, which ere
will shortly prove.

(i) Every pair of simultaneous rationals obeying
p+q & r appears exactly once in the tree, but those pairs
which are not on the boundary of the tree can be reached
by ttoo distinct paths from ((1,1,2)).

(ii) The 3 X 3 matrix whose rows consist of the counter-
clockwise list of vertices of a Farey triangle has deter-
minant 1.

B. Binary representation scheme

The construction of the mediant operation and the ana-
log with the Farey example suggests that we should at-
tempt to find a pair of nonsingular linear fractional
transformations, derived from a pair of linear operators
on the integer vector defining the simultaneous rationals.
Each transformation maps the two level-1 Farey triangles
onto the level-0 Farey triangle, maps simultaneous ration-
als to simultaneous rationals, and preserves mediant
operations. [See Fig. 4(a).] If we succeed„we are
guaranteed to obtain a binary address in the same manner
that an address was generated for the Farey tree since any
linear fractional transformation on a pair of rationals
preserves the mediant operations. We proceed to con-
struct this binary address.

We shall again take capital letters to refer to matrix
operations and lower-case letters refer to mappings of the
2D plane. We further take the lower-case letter to denote
the transformation of the plane induced by the matrix of
the upper-case letter. For the following discussion, it is
helpful to refer to Fig. 6.

The vertices of the level-0 triangle ho are
[(0,1,1),(1,0,1),{1,1,1)]. This triangle is split into two
level-1 triangles EPt

——[(1,1,1),(0, 1,1),(1,1,2)] and
hi ——[(1,0, 1),(1,1, 1),(1,1,2)). The order of the listing of
uertices is important. We then define Sz and Si by
Sob, i

——& and Sib, I ——i}o. Thus, So and Si map the ver-
tices of the small triangles into the vertices of the large.

It is easy to verify that

—1 0 1 0 1 0
So —— 1 0 0, Si ——0 —1 1

0 1 0 1 0 0
(5.1)

Denoting an arbitrary simultaneous rational by
((p,q, r))=(p/r, q/r), the operation so((p, q, r)) corre-
sponds to simple matrix multiplication on the three-
dimensional vector (p, q, r), i.e., so((p, q, r)) =((So(p,q, r))).
Defining (x,y)=((p, q, r))=(p/r, q/r) it is easily shown
that

so(x,y) = (5.2)

si(x,y) =

so(»y) if x(y
s (x,y) =

s&(x,y) if x &y .
(5.3)

The domain on the line x =y has been arbitrarily assigned
to so, slightly breaking the symmetry between x and y.

It is then natural to assign a unique binary address to a
pair of simultaneous rationals. Let ((p', q', r') )

=s((p,q, r)). Then it follows that p'+q'+r'(p+q+r.
It is also easy to verify that if (p, q, r) contains no common
divisor, that (p', q', r') also contains no common divisor.
Eventually therefore, repeated applications of s to an ini-
tial simultaneous rational ((p, q, r) ) obeying p +q +r
& 4(p, q & 1 and r & 2) must reach ((1,1,2)).

Let us assume that the string of compositions

We now make the crucial observation that not only
the vertices but also the boundary and interior of the
two level-1 Farey triangles map precisely onto the boun-
dary of an interior of the level-0 Farey triangle. That the
boundary maps properly is not difficult to see since under
so, (y =1)~(x+y =1), (x+y =1)~(x=1), and
(x =y)~(y =1). The Jacobian of so is 1/y, hence, it is
nonsingular in the interior of the domain of sz. Also
since the boundary maps onto the boundary, the interior
of the triangle 5& is mapped 1:1onto the interior of the 50
triangle under so. Since s i can be obtained from so by re-
flection, analogous statements can be made for s &.

We can now define a unique map s (x,y) on the triangle
0'

{(011)) ((1{1)) SO ({0}1))
sl„st„, sI, ((p, q, r))=((1,1,2)) . (5.4)

((101))({10}))
FIG. 6. This diagram illustrates the shift operations so and

sl which map the two level-1 Farey triangles into the level-0
Farey triangle. The labels A, 8, and C show how vertices are
mapped under the shift operations.

For each composition the particular choice so or s& was
made respecting the choice of domains in Eq. (5.3). We
then define ((p, q, r) ) to have the address
((p,q, r))=[ID,I~, . . . ,I~]. The address shift operator
is therefore identified with s(x) since
s[IO,Ii, . . . , Iz]=[I&,I2, . . . , IN]. One can see that no
problems arise extending this definition to irrational num-
bers since there is no restriction to finite length addresses.

The binary address generates a unique simultaneous ra-
tional approximant to a simultaneous irrational analogous
to the role of the Farey address in the earlier section. As-
sume cr= [Io, . . . , IN, . . .) is a simultaneous irrational so
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that the address does not terminate. Then, the ¹hsimul-
taneous rational approximant o~ is defined to be

IJII=[IoIi . In]=((pw qN rII}). (5.5}

and

0 1 0 0 0 1
T'0= 0 0 1 T~= 1 0 0

1 1 0 1 1 0
(5.6)

In order to actually implement this algorithm, we must
understand how to compute ((p,q, r)) given only the ad-
dress. This is again done with the operators To and Ti,
which are the inverse matrices of So and S&.

We define To=So ' and T& ——S&
' and confirm that

do while (xNQ 2 and y~+ 2 ) j

if (xN )yIv )III 1——;
(xN+ l~yN+1) $1~(XN~yN ) i

M~MTy

(pN+i qIv+i re+i}

=M(1, 1,2);
N~Pf +1

to(x,y}=, , ti(x,y)=1 1 x
x+y x+y x+y x +y

(5.7)

where so(to) is identity and si(ti } is identity. The ¹h
rational approximant is thus given by

Px 1

qII (TI TI TI (5.8)

and crII ((pN, q~,——re )). Note the order in which the ma-
trices T~ are multiplied.

The whole procedure can be packaged in a neat recur-
sive algorithm. For convenience, we write the algorithms
to compute rational approximants from the address and
the address from the simultaneous rational or irrational.

Algorithm 5.1: Cosnputc (p~, qII, re ) given the +nary
address [Io,I&, . . . , IN ].

Input: [Io Ii . . . , Iw ] .
Output: ((pN, qN, rN}}—[Io,Ii, . . . ,I—II] .

Initiali~4:: M=3X3 identity matrix; n =0;
do while (n & N) I

These operations can be interpreted geometrically. One
visualizes a binary address composed of all 0's by a path
of arrows. Begin by drawing an arrow between (l, l, l) to
(1,1,2). Then make a right turn of 135', drawing an arrow
from the end point of the previous arrow with a length
1/~2. The triplet of integers at the tip of the new arrow
is a new rational approximant. This process can be re-
peated recursively and converges to a number we call the
"spiral mean, " which will be discussed later in Sec. VI.
(See Fig. 8.) In an arbitrary address, the process is the
same, but an address of 1 indicates a left turn by 135',
rather than a right turn. This completes the picture of the
geometric binary tree. There are therefore a few points
which need to be made before we go on to discuss fixed
points and golden-mean generalizations. In contrast to
the ordinary Farey tree, every simultaneous rational
occurs twice in the tree, provided we allow all addresses.
The mechanism behind this is seen in Fig. 7, where there
are two directed paths to ((3,3,5)). With each copy of
((3,3,5)) is associated a distinct subtree of daughters.

There are two inequivalent paths terminating at each
rational. The inequality in our algorithm in Eq. (5.3) will
determine which one of the two paths will represent the
address; changing the inequality (governing the choice of
so of si to nlap the Hnc x =y} chooses thc othci' path.

if (I„=O)M+-MTo ',

if (I„=1)M~MT),'

Pf+—Pf + 1
((041)) ((&22 )) 33)) (I1 1 )))

(pN, qN, re ) =M(1, 1,2)

Algorithtn 5.2: Compute the binary ~A~mss and
simultaneousrational appro»nations to an arbitrary
pair of irrational&s, o„and cr„.

Input: tr(o„,cr~), where o„+a„)1 .

~ put: [Io, . . . , III, . . .] ~d (pII, qII, rII ) .

Imt4»m: M =3 Q 3 identity matrix; N =0;

(x„y,)=(~.,o, );

«((101))
FIG. 7. The directed path to a rational, ((3,4,5)}=[0,0,&,&] is

shown by successive solid arrows. Dotted arrows show the tail
of the second path which leads to the same rational.
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For a true simultaneous irrational, there is no ambiguity
in the address. Other than being aesthetically objection-
able, the double multiplicity in the address of a rational
does not seem to pose any problems.

Depending on how the vertices are mapped, we can
construct other ways of assigning a binary address. We
believe, however, the scheme presented here has the
clearest connection to the "generalized golden mean"
which we now discuss.

VI. QENERAI. IZED GOI.BEN MEAN

We called tlM simultaneous 11Yatloilal wliose address is
all 0's the spiral mean, since the path to this simultaneous
irrational forms a converging spiral. (See Fig. 8.) Since
the address is all zeroes, the spiral mean is a fixed point of
so. Thus so(n, ) =o, . It is easy to verify that
o, =(~,r ') where' satisfies r —v —1=0. Thenumer-
ical value of r is v=1.324718. . . . Our choice of a spe-
cial simultaneous irrational depends on our choice of ad-
dress. However, this particular simultaneous irrational is
more fundamental. We will return to this point after we

discuss important properties of the spiral mean and its
simultaneous rational approximants.

In order to proceed, we must make some definitions. A
manic polynomial of degree n is an nth degree polynomial
with integer coefficients and the coefficient of x" is 1.
The aigebraic integers are the roots of monic polynomials.
The minimal polynomial of an algebraic integer a is the
monic polynomial of lowest order with ct as a root. The
algebraic integers of order n are those whose minimal po-
lynomials are nth order polynomials. It is known that
each algebraic integer has a unique minimal polynomial.
The roots conjugate to an algebraic integer a are the other
roots of the minimal polynomial of a. A Pisot
Vijayaraghauan (PV) number of order n is an algebraic in-
teger of degree n lying outside the unit circle in the com-
plex plane whose conjugate roots are inside the unit cir-
cle." ' For each n, there is a unique smallest PV num-

ber, x„. Listed here are the minimal polynomial of the

smallest PV number for each degree n & 5:" x2 —x —1,
x —x —1, x —x —1, x —x —x +x —1. The numer-3 4 3 5 4 3 2

ical value of these are x 2
——( v 5 —1)/2

=1.618 359. . . , x3 ——1.324718. . . , xg ——1.380277. . . ,
x5 ——1.443269. . . . It is known" that r is the smallest
PV number for any degree. There is no obvious pattern to
the coefficients in these polynomials. We have only been
concerned with degree 2 and 3 PV numbers.

Successive rational approximants to the spiral mean
obey

IN +3 EN+1+EN ~ IN+3 ON +1+qN s

PN+3=PN+1+PN

1th@31, P2 ——0, P1 ——1, q3 ——O, q& ——1, q1 ——1,
r 3=1, r 2 ——1, r, =l. The first 17 of these integer
triples are shown in Table I. The asymptotic growth rate
of the integers is precisely the largest root of the charac-
teristic polynomial of To, namely ~, i.e., the smallest
third-order PV number. It is not difficult to compute the
proximity of the rational approximants to n, . The answer
is o' ((pN, q—~,rN))=(e, es) where

'N ' N

where I,+ are the roots conjugate to r, the numbers A,B
are nonzero complex coefficients of order 1, and the aster-
isk indicates complex conjugate.

It should now be clear why PV numbers are crucial for
strong convergence of the rational approximants: Since
rN diverges with N as r", rn(e„e„) converges only if

~

A, +
~

g 1. Matrix recursions generate all the rational ap-
proximant schemes which appear to be relevant to our
type of rational approximant algorithm. By identical ar-

TABLE I. The first 17 rational approximants of the spiral
mean, cr„are shown.

((122))

((254)):

FIG. 8. For the-spiral mean, e, (denoted by X), the directed
path of the simultaneous rational approxirnants forms a cover-
1ng spiral.
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guments to that used to derive properties about the spiral
mean, the asymptotic growth of the integers forming the
rational approximants to any other similar recursive
scheme is the leading root of the characteristic polynomial
of a matrix M, and is therefore an algebraic integer since
a characteristic polynomial is Ionic. Since the closeness
of successive rational approximations to the irrational is
given by a formula such as Eq. (6.2), it is seen that there is
strong convergence to the simultaneous irrational if and
only if the leading root of the characteristic polynomial is
a PV number. We have thus identified the spiral mean as
the cubic irrational with the most robust geometric scal-
ing of the rational approximants.

These properties are certainly shared in one dimension
by the golden mean. Using any one of several definitions,
we often say that the golden mean is the "most difficult"
number to approximate. It seems plausible that this state-
ment can also be made for the spiral mean, but we have
not yet proved or seen a precise statement of our assertion.

VII. DISCUSSION

best rational approximants. However, the algorithm gen-
erates many other approximants as well, and does not ap-
pear to be suited for the applications we have in mind. It
appears that we must give up either the best rational ap-
proximants or give up scahng of approximations. Giving
up some of the best rational approximants seems less
harmful to analysis if it is scaling and renormalization
which will be important to dynamical systems theory.

The Farey triangle construction can be generalized to
higher dimension, and for three frequencies and four in-

tegers, we work with tetrahedra instead of triangles. We
have been able to construct the binary tree in 3D in the
same manner as in 2D. We were puzzled to find, howev-
er, that a simple, natural extension of our previous
analysis of a period 1 fixed point does not lead to a
characterjstic polynomial giving the smallest fourth-order
PV number. In fact it does not even lead to a PV number.
We do not understand whether this is significant or
whether it merely shows that we are not clever enough in
generating an acceptable algorithm for a 3D binary tree.

If we are to understand three coupled relatively incom-
mensurate frequencies in a manner analogous to the study
of two frequencies whose ratio was the golden mean, the
foregoing discussion suggests that the best choice is the
spiral mean. The rational approximants to the spiral
mean generated by our algorithm are in fact the best ra-
tional approximants by the criterion of weak convergence.
However, our algorithm does not always give a best ra-
tional approximant for arbitrary simultaneous irrationals.
No Jacobi-type algorithm is known which satisfies this
criterion. There is an algorithm which can extract the
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