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The unit-sphere description of nematic liquid-crystal configurations first introduced by Thurston

[J. Appl. Phys. 52, 3040 (1981}]and dealing with elastic properties of nematic liquid crystals only is

extended to include also the study of nematic flows. It is shown how the general features of the flow

properties of nematic liquid crystals can be studied by the mapping of the hydrodynamic torque on

the unit sphere. The effects of the application of electric or magnetic fields to a nematic liquid crys-

tal under shear are discussed by adding the corresponding torque to the maps. Introducing a dimen-

sionless quantity c, which is the ratio of the hydrodynamic and the electric (magnetic} torques, one

can deduce whether the hydrodynamic effects are dominating over the field effects or vice versa. By
drawing the sequence of torque maps which appears as e goes from minus to plus infinity [e having

the same sign as the dielectric (magnetic) anisotropy] it is shown how one can get a good qualitative

understanding of the Aow behavior just by the inspection of these maps. By calculating the eigen-

values of the singular points of the torque maps, their stability is determined. The stable ones corre-

spond to Aow alignment of the director, while the unstable ones can lend themselves to the study of
hydrodynamic instabilities. It is also shown how one in a simple manner can derive expressions of
relaxation times, boundary layers, and thresholds of hydrodynamic instabilities by knowing the

eigenvalues of the singular points. Finally, it is proven that the equations governing the director

profile are formally equivalent to those of a particle moving on a smooth sphere upon which the hy-

drodynamic torque pattern is imposed, the elastic constant (in the one-constant approximation) play-

ing the same role as the mass of the particle. Using this equivalence it is discussed how one can ap-

proach the shear-Aow problem of nematic liquid crystals by using the powerful tools of analytical

mechanics.

I. INTRODUCTION

The flow behavior of nematic liquid crystals is a subject
which lends itself to the study of many fascinating and
unexpected phenomena. Starting with the works of An-
zelius' and Oseen, the theoretical basis for the under-
standing of the viscoelastic properties of nematic liquid
crystals was finally formulated by Leslies and Ericksen
who showed that a complete description of the problem
needs six viscosity coefficients. By the Parodi relation
these six are reduced into five linearly independent
viscosities. Using the convention adopted by Leslie we
denote the viscosity coefficients by ct; (i =1—6). When
studying the qualitative flow behavior of nematic liquid
crystals there are, however, only two of these that are of
importance: az and tran. These must fulfill one important
restriction,

yl =a3—a2 ~ 0 .

Due to this inequality the signs of a2 and as can com-
bine in three different ways: (a) a2&ai&0; (b) ai&0,
a2&0; (c) cti&a2&0. While case (a) leads to the well-
known situation of flow alignment, case (b) turns out to
exhibit different kinds of instabilities which have been
studied both experimentally ' and theoretically. '

The possibility that compounds with viscosity coefficients
belonging to case (c) could be found among the disklike
nematic liquid crystals has on theoretical grounds been
proposed by Carlsson. ' '

In this paper we study the shear flow of nematic liquid
crystals under the following restrictions. We confine the
nematic between two parallel glass plates, one at rest
while the other one is moved with the velocity uo.

Neglecting transverse fiow effects' and also keeping uo

below the critical value where roll instabilities' occur, the
aim is to calculate the director and the velocity profile
through the sample.

II. VISCOELASITIC EQUATIONS:
CHOICE OF COORDINATE SYSTEM

The problem which we study is pictured in Fig. 1. We
conflne the liquid crystal between two parallel glass
plates, distance d apart, the lower one at rest while the
upper one is moving with the velocity uo. The z axis is
taken perpendicular to the plates and the director is given
by the unit vector n. Assuming strong anchoring condi-
tions at the boundaries, the goal is to calculate the velocity
profile u (z} (neglecting transverse flow effects the velocity
is given by v=ux) and the director profile n(z). Each
direction of the director generates a point on the unit
sphere and the director profile n(z} is thus given by a path
(parametrized by z) on the unit sphere connecting the two
points given by the boundary conditions. By introducing
spherical polar coordinates each point on the unit sphere
is assigned to the angles 8 and q. This unit-sphere
description was first introduced by Thurston who stud-
ied pure elastic problems, but here we wi11 extend it to the
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FIG. 1. Geometry of the shear-Aow problem. The liquid
crystal is confined between two glass plates, distance d apart,
both parallel to the xy plane. The lower one is at rest while the
upper one is moving in the x direction with the velocity uo. The
aim is to calculate the director and the velocity profile n(z) and
v(z), respectively. These are determined —at every specified set
of external conditions —by five viscosity coefficients and three
elastic constants.

case of nematic fiows.
In order to avoid that the solution path passes close to

the pole of the coordinate system we introduce two dif-
ferent ways of introducing this according to Fig. 2. We
either orient the pole along the z direction (coordinate sys-
tem I) or along the y direction (coordinate system II). All
quantities which belong to system I will be labeled with a
subscript 1, while all quantities corresponding to system
II will be labeled with a subscript 2.

The next task is to formulate the viscoelastic equations
using the two different coordinate systems introduced
above. A general coordinate-invariant way of formulating
these equations is given by Leslie. z' '

Applying Leslie's
equations to our special choices of coordinates now gives
two sets of equations, one for system I and one for system
II. We end up with three coupled differential equations in
each case:22 two for the director profile determining 8(z)
and y(z) and one for the velocity profile determining U (z},

,
' (8'}'F,s+ ,

' (p—')'(26,~ H—,s)+8'q'F, ~—

Fl ——Elsin 81+E&cos 81,

6) ——0,
H 1

——Ezsin 81+E&sin'HlcoszH&,

I s = —u azcosHlsln+~,

I'~, =u'(azsin 81—azcos 8))cosy&i,

(2.4)

(2.5)

I g p]sm6 ]lp)

(2.6)

g1(81,yl) = —,
' alsinz(281)cos q&i

+ —,
'
(a6 —2az —az)cos 812

+ —,
' (az+ a6)sin 8icoszyi+ —,

' a4,

f, (H„pl )=co~,(azsin 81—azcos281),

h 1(Hl„pl) =azcosHlsinHlsinpl .

System II is as follows:

(2.7)

Fz ——Eicos'Hzcos'yz+Ezsin q 2+E&sin Hzcos iP2

du ~ f (H, y)8+h (H, y)y
dz g(H, q)) g(H, g))

In writing Eqs. (2.1)—(2.3) we have used the shorthand
notation 8'=(dH/dz); y'=(dy/dz); 6 ~=(dG/dy), etc.
We have also introduced ~ which is the shearing force per
unit area. Ei, Ez, and Ez are the Frank elastic constants
and a; (i =1—6) are the Leshe viscosities. The auxiliary
functions F, 6, and H, the viscous torques I"@ I +, I"s,
and I ~, and the viscous functions g, f, and h read in the
two-coordinate systems. System I is as follows:

+8"F+q "6+I'~+I "=0, (2.1)
Gz ——(Ez El )sin82COSHz—sinyzcosyz,

Hz —El sin Hzsin pz+Ezsln 82cos Hzcos f'2

+Ezsin Hzcos pz,

(2.8)

2
y

X

COORDINATE SYSTEM I

(a)

V-V X

l

2
e2

I
h l

=x

t

COORDINATE SYSTEM I1

(b)

I s,
——u'sln82(azcos Ipz —azsin yz),

I" = —(az+az)u'sinHzcosHzslnlpzcoupzf'2

I s =plsln82+2,

gz(82, @)2)=—,
' alsin Hzsin (2yz)

(2.9)

(2.10)

FIG. 2. Coordinate systems used in this work are convention-
al spherical polar ones. Coordinate system I (a) has the pole
oriented in the z direction, while in the case of coordinate sys-
tem II (b) the pole is in the y direction. In this way we can al-
ways find a proper coordinate system„ in which the director
paths do not pass close to a coordinate singularity, for any prob-
lem which we want to study.

+ —,(a6—2az —az)sin 8zcos q&2
1 2

+ 2 (az+a6}sin Hzslil gz+ a4,

f2(Hz, yz) =—(az+ az)sin82COSHzsinpzcoapz, (2.11)

hz(82, f2}=sill 82(azsln pz azcos Ipz) . —
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To summarize, the governing equations of the shear-flow
problem are Eqs. (2.1)—(2.3). For the different choices of
coordinate systems given by Fig. 2 we substitute either
Eqs. (2.4)—(2,7) or Eqs. (2.8)—(2.11) into these.

%9iile all the physics of the system is given by the pre-
vious equations, in practice, these coupled differential
equations are hard to solve except in some special cases.
Furthermore, even if one succeeds in finding a solution
path to a particular problem, the question of its stability
against nearby lying paths is an even harder problem. We
will show in Sec. DI that by the mapping of the shearing
torque I"on the unit sphere, one gains a fairly good qual-
itative understanding of the general features of the sys-
tem. In the subsequent sections we then show that by this
mapping we can solve the problem of the bulk motion
(i.e., neglecting elasticity) exactly. Furthermore, we show
that by introducing elasticity in the one-constant approxi-
mation, we can reformulate the problem into another
more familiar one, which makes it more transparent than
just writing down a set of differential equations.

HL MAPPING OF THE SHEARING TORQUE
ON THE UNIT SPHERE

The viscous torque I'" which is acted upon the director
can be divided into two parts: the shearing torque
I"= I's8+ VP, which is due to the shearing of the medi-
um and the rotational torque, I'"=I s8+I'~y, which will
act upon the director in a nonstationary state. The conse-
quence of the shearing torque I"acting on the director in
a state given by a point (8,y) on the unit sphere will be to
rotate the director with the momentary axis of rotation
given by I . As is shown in Fig. 3, 8 and p will then
change according to

(3.1)

The minus sign in the last of Eqs. (3.1) comes from the
fact that a rotation along the positive 8 axis corresponds
to decreasing y and the factor sin8 is due to that when

les

FIG. 3. The effect of the shearing torque I"=1st)+I P is
to rotate the director ~ith the momentary axis of rotation. given
by I". The change of the director is then given by
hn-(I ~8—I s/sin8ig).

changing y, the director travels along a circle on the unit
sphere, which has a radius of sin8. At any point on the
unit sphere we have now singled out a direction given by
Eqs. (3.1) telling us which way the director will rotate
under the influence of the shear. Dividing these equations
with each other we instead get an equation defining the
path which will be traced out by the director under the in-
fluence of the shear (neglecting elasticity). This is given
by

(3.2)
dq I e

I'~sin8

By plotting the torque maps on the unit sphere we
directly get a feeling of what is going on as we shear a
nematic. In Fig. 4 we have displayed a sequence of torque
maps for the different combinations of the signs of az and
a3 which are possible, and also for different values of the
crucial parameter as/ai. We have drawn the plots as po-
lar plots, using the coordinates of system II, where the
equator (82 ——m/2; pie, [0,2ir] ) represents the shearing
plane. Due to the symmetry of the director (n and —n
are equivalent) we only have to study half of the unit
sphere. The arrows on the paths indicate which way the
director will rotate under the action of the shear. The
singular points of the torque field are the possible equili-
brium orientations of the director. The stable equilibrium
points are either a stable node (SN) or a center (C), and
the unstable ones are either an unstable node (UN) or a
saddle point (SP).

Studying the case when both a2 and as are negative, we
immediately recognize the features of the flow. Starting
at any point on the sphere, the director will end up at the
point given by 8z ——m/2; tang&2 ——(as/a3)'~ or on its phys-
ically equivalent antipole. This is the well-known flow
alignment angle. We also find two unstable equilibrium
points. These may be realized at low shear rates, when
the elastic torque from the boundaries can compensate the
destabilizing torque which will act on the director in the
vicinity of these points. One of these [8i——m/2;
tan82 ———(a2/a&)' ] is an unstable node, while the other
one (8z ——yz

——0) is a saddle and represents the geometry of
the homogeneous instability which is discussed by Pieran-
ski and Guyon. This instability has also been examined
theoretically by Maneville and Dubois-Violette who
have calculated its threshold using a method different but
equivalent to the one presented in Sec. VI C of this paper.

Focusing our attention on the case when u3 is positive,
aq still being negative, we find only one (stable) equilibri-
um point at 82 ——y2 ——0. This is a center. One interesting
question concerning this case is what happens when we
shear the liquid crystal, starting with the director in the
shearing plane. In the bulk case (neglecting elasticity) we
see that a fluctuation that brings the director out of the
shearing plane will not tend to bring it further away. The
director will just trace out a path, which closely follows
the original one. However, Pieranski et al. have reported
this flow to be unstable against fluctuations which tend to
bring the director out of the plane of shear if the shear
rate exceeds a critical value. In order to understand this

problem thoroughly we have to include elasticity and we
postpone the discussion of this instability until Sec. VIII.
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Finally, if we study the case when both ai and ai are
positive, we see that the torque maps resemble the case
when they are both negative with some important excep-
tions. First of all the arrows of the torque maps are re-
versed implying that the stable equilibrium is now given

81=ir/2; taisp2 (a1/a3)" while the point
81——m/2; tauri ——(a1/ai)'~ now gets unstable. Also the
inequality (1.1) demands that ai & az. This has the conse-
quence that the equilibrium points now fall into the inter-
val 81——ir/2; yis[ —ir/4, ir/4] in contrast to what is the
case when both ai and ai are negative. The possibility
that nematic liquid crystals consisting of disklike mole-
cules belong to the ease of positive az and ai have been
suggested by Carlsson. ' '

IV. MAPPING OF THE TORQUE FROM ELECTRIC
AND MAGNETIC FIEI.DS ON THE UNIT SPHERE

In this section we study the effects of applying electric
or magnetic fields to a nematic. Using SI units the corre-
sponding torque can be written

I"=5n 8(n)(B), (4.1)

where B is a unit vector in the direction of the field and 5
is a coupling constant which is given by

Xg
5= 8 (Illaglletlc case),

Po

5=@,e+ (electric case) .
(4.2)

In Eqs. (4.2) we have introduced the vacuum permeabil-
ity po, the magnetic anisotropy X„the dielectric anisotro-
py e„ the applied magnetic induction B, and the appliei
electric field E. We notice the formal equivalence be-
tween the torques which appear in the electric and the
magnetic cases. Many effects which are studied by the
application of an electric field can be reproduced by the
use of a magnetic field —it is just the coupling constant 5
which differs. However, while in the magnetic case the
magnetic induction is constant throughout the sample (if
homogeneous from the beginning) irrespective of the vari-
ation of the director in space„ in the electric case a spatial
varying director will cause the electric field to be inhomo-
geneous. Thus, we have to interpret the torque maps in
the electric case with some caution.

We now apply a field B to the nematic. The director is
specified by a polar coordinate system. In this system the
direction of the field is given by the polar angles 8 and p.
The field torque is then given by

I &
——5[sin8 sin 8sin(y —y)cos(y —y)

+cos8 sin8 cos8 sin(y —@)],
{4.3)

V. SULK MOTION: COMBINATION
OF HYDRODYNAMIC AND FIELD TORQUE MAPS

We are now in a position to discuss the bulk motion of
the system. Neglecting elasticity in Sec. III, we saw that
the director just traces out the torque path on the unit
sphere defined by its initial position. The trace point of
the director behaves like a massless particle moving on a
smooth sphere upon which we have imposed a force field
given by the torque maps drawn in Figs. 4—6. The parti-
cle is viscously damped according to F"' = —yiv, where
v is the velocity of the particle.

Studying a fiow with a magnetic field applied we have
to construct torque maps according to Eq. (3.2) using the
combined torque I =I '+ I". First we have to determine
the singular points of these torque maps, examine their
stability, and classify them. Neglecting elasticity, Eqs.
(2.1) and (2.2) can, by the use of Eqs. (2.6) or (2.10), be
transformed into

y i 8= I"~+I"~,

y,j=— .
' (r', +is).

sin8

The nature of an equilibrium point (8,y ) is now deter-
mined by the eigenvalues A, i and A,1 of the matrix a;J.
which defines the linearized version of Eqs. (5.1) in the vi-
cinity of the corresponding point. In this way we now
investigate some cases and show how one can get useful
information of the qualitative fiow behavior just by the
plotting of the corresponding torque maps. Apart from
what is discussed in Sec. III we will also find stable (SF)
and unstable (UF) foci among the singular points of the
torque maps.

All torque maps will be displayed using coordinate sys-
tem II, which is better adopted to the symmetry of the
problem than system I. All plots will be drawn as polar
plots according to the upper left part of the figures. The
angle which the directar makes with the y axis, 81, in-
creases radially outwards from the center af the plot,
which is denoted by A. The equator 81——n/2; pie[0, 2m]
represents the shearing plane. The point 8 (81 n/2;——
{pz

—0) represents the situation when the director is per-
pendicular to the glass plates. The points 8+ and 8
both represent the situation when the director is parallel
to the glass plates, still being within the plane of shear.
The points C+ and C on the equator are the points
where the angle between the director and the normal to
the plates is arctan (

~
az/az

~

)'~ . As we will frequently
find the pole of system II to be an equilibrium point, we
use system I in the mathematical treatment of the prob-
lem.

It might be helpful to get a rough estimate of when the
field torque daminates over the shearing torque and vice
versa. Defining s as

I"=—,
'
5[cos(28)sin(28)cos(q& —y) —sin(28)cos 8 E

2u'(
( aiag

~

)'~ (5.2)

+sin(28)sin 8cos {q&—g)) .

The consequence of this torque is to force the director to
point in a direction parallel {5& 0) or perpendicular (5 &0)
to 8, respectively.

we shall find
~
e

~
as a convenient dimensionless quantity

of measuring the field strength. s can be positive or nega-
tive depending an the sign of the magnetic (dielectric) an-
isotropy of the nematic. When

~
s

~
&&1 field effects
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0

y ia=5a u'aiP—, yiP= -u'a&a, (5.4)

where a and P are the deviations of 8 and y from their
equilibrium positions, respectively. The eigenvalues of a;J.
are given by

A, i 2
——u'(

~
a2

~
a )' [a+(s —1)' ]

If
~
s

~
& 1 (weak fields} the eigenvalues are complex. The

equilibrium is thus a stable or an unstable focus depend-
ing on the sign of a. In the limiting case of zero field it
b om~ a ~uter. If

~
s

~
&1 (strong fields) the eigen-

values are real and distinct, both having the same sign as
e. The equilibrium then is a stable (s & —1) or an unsta-
ble (e & 1) node.

We will also, for strong enough fields, find two equili-
briurn points on the equator. These can be written

1f2

dominate the behavior of the flow while the hydrodynam-
ic effects are dominating when

~
s

~
« l.

We first investigate the case when a2&0, ai&0, and
the applied field is in the z direction. Equations (2.5),
(4.3), and (5.1) then give

yi8i =u (cxisin 8i —cx2cos 8i)co&pi —
2 5siil(28i),

(5.3}
p)f i =Q Q2cot8]slng9i .

In this case the point 3 (8i ——pi ——n/2) is an equilibrium
point. The linearized version of Eqs. (5.3) in this case
reads

where the upper sign in Eqs. (5.8) corresponds to the
upper one in Eqs. (5.6). In the case of positive s we thus
will find one saddle and one stable node, while we in the
case of negative e will find one saddle and one unstable
node. We then get the following sequence of equilibrium
points as e goes from minus to plus infinity (in Fig. 5 the
corresponding torque maps are drawn in the case
ai ——10~ ai

~
).

(1) s & —1. The point A is a stable node while there are
one saddle and one unstable node located at the equator
between 8 and 8, the saddle lying between 8 and C
and the unstable node between C and 8. When s~ —1

the saddle and the unstable node coalesce at C
(2) —1&a&0. When s= —1 the stable node at A

transforms into a stable focus being the only equilibrium
point in this case. The equator is now an unstable limit
cycle.

(3) a=0. This is the limiting case between positive and
negative anisotropy which occurs when the field is zero.
The point A is now a center.

(4) 0&a&1. The point A is now an unstable focus
while the equator becomes a stable hmit cycle.

(5) s & 1. In this case A is an unstable node while there
are one stable node and one saddle located on the equator
between 8 and 8+. When a= 1 these bifurcate at C+,
the stable node moving towards 8 as the field increases
while the saddle is moving towards 8+.

The second case we investigate is the one when both az
and ai are negative while the field is applied in the y
direction. Equations (2.5), (4.3), and (5.1}then give

[s+(s —1)' ], qadi
——0 (s&0)

(5.6)

yi8i =u (czisln 8i —cx2cos 8i)cos+i2 2

+ —,
' 5sin(28i)sin pi,

yigi =u Qzcot8isingli+ i 5sln(2+i) .
(5.9)

[ f
s

f
+(s —1)'~ ], qPq

——m (s &0) .

y iu =2u '[(a2+ ay)sin8jcos8t

—e(
~
az

~

ai)'~ cos(28i)]a,

yiP=u'a2cot8iP (s & 1)

yiiz= —2u [(ol2+Qi)sln8icos8i

+e(
~
ai

~
ai)'icos(28i)]a,

yiP= —u'a2cot8iP (e& —1) .

(5.7)

The corresponding eigenvalues can be written

A, i
——+2u'(

i ai i
ai)' (c, —1)'i

A,2
——u'a2cot8i &0 (e, &1);

A, i
——+2u'(

~
a2

~
ai)' (e —1)'~

A2 —— u'azcot8i —& 0 (e & —1);

(5.8)

If
~
e

~

&1 the solution of Eqs. (5.6) are real and in this
case the linearized version of Eqs. (5.3) in the vicinity of
the singular points are

Analyzing these equations in the same manner as Eqs.
(5.3) will give the following sequence of equilibrium
points as s goes froin minus to plus infinity (in Fig. 6 the
corresponding torque maps are drawn in the case
a2 ——10ai).

(1) s& ——,. The point A is an unstable node while
there are one stable node and one saddle located in the
shearing plane at the points C+ [tan8i ——(a2/ai)'
si ——0] and C [tan8i ——(az/ai)', qadi

——m] respectively.
(2) s= ——,. There still is a stable node located at C+

but the whole meridian through A and C now represent
unstable equilibrium positions.

(3) ——, «& —, When e= ——, the saddle and the un-

stable node change places so now there is a saddle at A, an
unstable node at C, and a stable node at C+.

(4) e= —,. The unstable node at C remains but the
whole meridian through A and C+ now represents stable
equilibrium positions.

(5) e& —,'. When e= —, the saddle and the stable node
change places so now there is a stable node at A, a saddle
at C+, and an unstable node at C

A more complete survey of the torque maps and the
eigenvalues of the corresponding singular points for all
possible combinations of az and ai (the field being in the
x, y„or z direction) is given elsewhere.
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FIG. 5. Torque maps of the nematic flow in the case a2 ~0, a3 g 0, the applied field being in the z direction. %e distinguish five
topologically distinct cases depending on the value of the field strength c: (1) c ~ —1, (a)—(b); (2) —1 ~ c, ~ 0, (c)—(e); (3) e.=O, (f); {4)
0 «& &, (g)—(i); (5) a & &, (J)—(k).
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a2&0, a3&O g3/a2=0. 4
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FIG. 6. Torque maps of the nematic flow in the case a2 ~0, a3 ~0, the applied field being in the y direction. We distinguish five

topo&ogicaHy distinct cases depending on the vahie of the field strength s: (&) s& —0.5, (a)—(c); (2) s= —0.5, (d); (3)
~
s

~
&0.5, (e)—(i);

(4) a=0.5, (j); (5) s ~ 0.5, (k)—(m).
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VI. MEANING OF THE EIGENVALUES:
RELAXATION TIMES, BOUNDARY LAYERS

AND INSTAMLITIES

In Sec. V we were motivated to calculate the eigen-
values of the linearized version of the torque equations
(5.1) in order to determine the nature of the equilibrium
points of the torque maps. Below we will show how these
eigenvalues can be used to make estimations of relaxation
times, boundary layers, and thresholds of hydrodynamic
instabilities.

A. Relaxation times

We start this section by posing the question: If the
director starts in the vicinity of a stable equihbrium point,
what will be the time scale for its relaxation back to this
equilibrium? This question is—neglecting elasticity—
answered by examining the linearized version of Eqs.
(5.1). Introducr'ng new coordinates n' and P', in which
the matrix a,~ is diagonalized, it is easy to convince one-
self that a disturbance (eo,yo) will die out in an exponen-
tial way characterized by two relaxation times v 1 and ~2.
If the equilibrium is a stable node, the eigenvalues of a;J,
A, i and A,z are both negative, and ri and rz are given by

rl = yl

I ~z I

(6.1)

If, on the other hand, the equilibrium is a stable focus, the
eigenvalues are complex conjugates having a negative real
part Aiz ko, +i——rr The .relaxation time is still controlled
by the real part of A, (Q(0). In this case, however„ the
director will spiral towards the equilibrium point with an
angular velocity co=a/yi.

g'1 (IC/i A, i„ i
)', gz (E/i A,

——z, i
)'i, —— (6.3)

B. Boundary layers

If the director in some way is forced to point in a direc-
tion other than its equilibrium one, we will be interested
in calculating the penetration depth g of this disturbance.
The disturbance may be due to an impurity in the liquid
crystal, a disclination, or preferably to the boundary con-
ditions imposed by the treatment of the glass plates, in
which case it will give rise to a boundary layer type of
flow.

We want to study the time-independent solution of Eqs.
(2.1) and (2.2) in the vicinity of a stable equilibrium point.
For simplicity we perform the analysis within the one-
constant approximation j:&——E2 ——E3 ——I(. By again in-
troducing a coordinate system with its origin in the equili-
brium point in question and rotating it in a proper way we
can write the linearized version of Eqs. (2.1) and (2.2) as

gz 1 yzp1
K +A. ,a'=0, K +A+'=0, (6.2)

6fZ 6fZ

where A, , and A,z still are the eigenvalues of the matrix a;J.
As the equilibrium is assumed to be a stable one the real
parts of A, i and A,z are negative. Equations (6.2) thus
represent an exponential decay towards the equilibrium
characterized by the two penetration depths gi and gz,

where A, i„and Az„are the real parts of A, i and A,z, respec-
tively.

C. Instabilities

In Secs. VIA and VIB we discussed the properties of
the fiow in the vicinity of the stable equilibrium points.
We now go on by investigating the unstable equilibrium
points, which may lend themselves to the study of hydro-
dynamic instabilities in the following manner: We
prepare the glass plates in such a way that the boundary
conditions coincide with the director orientation of one of
the unstable equilibrium points. At a low shearing rate
the director profile will still be constant throughout all the
sample because a director fluctuation which normally
would bring the director away from its initial position will
be stabilized by the elasticity. At a critical shearing rate
u,', however, the elasticity no longer can master the situa-
tion and the director moves away seeking up one of its
stable equilibrium positions. In a recent work Hogfors
and Carlsson' study the stability of the in-plane flow of
nematic liquid crystals i.e., a flow of the type 82——n/2,
{pz=1pz(z). The instabilities which are studied in this pa-
per are of a much simpler nature than those studied by
Hogfors and Carlsson, because now we start with a direc-
tor confipration which is constant in space 82(z)=82,
1pz(z) =1pz. Using the results of Hogfors and Carlsson we
can formulate the stability criterion as

7r2 m2
Ai (E 2, Az(K (6.4)

d d

where A, i and Az are the real parts of the eigenvalues con-
nected with the equilibrium point, d is the thickness of
the sample, and K is the elastic constant. For the instabil-
ity to occur only one of the inequalities (6.4) has to be
violated and consequently it is the largest of the eigen-
values which determine the threshold of the instability.
We thus can gain insight in which direction the instability
will set in by comparing the magnitudes of the eigen-
values. Here, however, caution must be made for uncriti-
cal use of (6.4) because the one-constant approximation in
many cases is a crude one, so in order to make a definite
statement concerning this question we have to rederive the
inequalities (6A) in the case of unequal elastic constants.

VII. ROLE OF THE ELASTICITY

In Secs. III and V we showed how we could get a good
qualitative understanding of the flow properties of nemat-
ic liquid crystals just by the inspection of the torque
maps. In Sec. VI we pushed the analysis further by intro-
ducing elasticity and restricting the fiow to be only in the
vicinity of the equilibrium points. The general
question —the calculation of the time-independent director
profile and the determination of its stability in the case of
arbitrary boundary condition has, however, not been
discussed, and below we show how one can deal with this
problem within the unit-sphere approach.

The expression of the elastic energy density can, within
the one-constant approximation, be written
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d8. zdip
w = ,'E—+sin8

dz dz
(7.1)

an expression valid for both the coordinate systems intro-
duced in Sec. II. Because of this we do not label 8 and qr

by any indices throughout this section. By introducing
the arc length S on the unit sphere we can, by the use of
the relation dS =d8 +sin 8dq, write the elastic energy
density as

1N= 2E
dz

(7.2)

The pure elastic problem (i.e., without flow and/or field
effects) is now solved by minimizing the total free energy
W of the sample. The trajectory traced out by the direc-
tor is thus the one which minimizes the integral

dS
z . (7.3)

We now for a moment turn to an entirely different
problem, namely, that of a particle of mass rn which is
moving on a smooth sphere. The solution of this problem
can be formulated by Hamilton's principle as: "The par-
ticle will trace out the trajectory on the sphere for which
the action integral I is stationary. " If no forces act upon
the particle the action integral is

2

I = 27tg
'0 ' dt

(7.4)

t"

E sin& +2 cos8-d y dO dy —I @=0.
dz dZ

(7.5)

where —,
'

m (dS/dt)1 is the kinetic energy of the particle.
We thus notice the formal equivalence between the elastic
problem of nematic liquid crystals and the problem of a
fi'cc particle nlov111g 011 a smooth sphci'c. Thc clast1c con-
stant in the first case plays the same role as the mass in
the second one. Furthermore, in the elastic problem the
solution path is parametrized by the space coordinate z,
while it is time which parametrizes the solution path in
the particle case.

We now want to extend the analysis from the pure elas-
tic case to the one where we introduce flow as well as the
influence of applied electric or magnetic fields. The effect
of this extension is to impose a "force field" upon the unit
sphere. This force field is, of course, the field which is
visualized in the torque maps of Figs. 4—6. The solution
path of the time-independent shear-flow problem will thus
be the same as that of a particle moving on a smooth
sphere upon which we have imposed the same field. We
now show how this analogy can be derived from basic
principles in a more formal way. The governing equa-
tions of the director profile in the stationary case are
given by Eqs. (2.1) and (2.2). These read putting
E) ——K2 ——E3 ——E,

E —sin8cos8
d 8 . dye

dz

The I"s in Eqs. (7.5) are now considered to be the sum of
the shearing torque and the field torque, i.e., I;=I;+I",.
Making the substitution E~—m, z~t, F~—+I'8, and
I e~ F—~, these equations transform to those of a parti-
cle moving on a smooth sphere under the influence of the
force field F=Ee8+F tp. The conclusion drawn is the
following: The stationary shear-flow problem of nematic
liquid crystals is equiualent to the study of the motion of a
particle of negatiue mass mouing on a smooth sphere upon
which we haue imposed a force field (I ~, —I e). The elas
tic constant E plays the role of the negatiue mass —m of
the particle. The z coordinate parametrizes the trajectory,
playing the role of time in the particle motion. One could
ask oneself whether it would not be better to let the elastic
constant play the role of a positive mass, instead of defin-
ing the force field with the opposite sign than what is
done. This would indeed give the same torque maps apart
from the arrows being turned into the opposite direction.
Therefore we would be misled concerning the stability of
the singular points, because those with the arrows going
inwards really are the stable equilibrium points of the
torque maps.

The conclusion which we draw is thus that within the
one-constant approximation we can transform the station-
ary shear-flow problem of nematic liquid crystals into the
one of a particle of negative mass moving on a smooth
sphere. In contrast to what is the usual case in particle
mo:hanics we now are studying a boundary value problem
knowing the starting and end points of the particle, and
the irutial velocity has to be calculated when solving the
problem. Even if the concept of a negative mass might be
confusing in some respects, we have gained a lot by the
particle analogy, because now we are in a position to use
all the knowledge of classical mechanics and dynamical
systems when dealing with the flow. It should be possible
to determine "constants of motion" and to derive stability
criteria without explicitly solving the equations.

Finally we ask the question of how much of the particle
analogy will survive when we study the case of unequal
elastic constants. The answer is that the analogy is still
valid in this case, however, we have to map the unit
sphere along with its torque pattern onto a surface with a
shape which depends on the elastic constant ratios Ei /Ei
and Ez/Ei. This approach is discussed in the pure elas-
tic case by Thurston and Almgrenz and by Thurston. 19

Another approach which should be equally good is to still
work on the unit sphere but instead letting the particle
mass get anisotropic in a suitable way.

VIII. DISCUSSION

Although the shearing of a nernatic liquid crystal is an
experiment which is simple to perform, it turns out to ex-
hibit a host of complexities, which makes it difficult to
analyze theoretically. With the assumptions made in Sec.
I, the theoretical understanding of the problem is con-
tained in the three coupled, nonlinear differential equa-
tions (2.1)—(2.3). It is hard to get any intuitive under-
standing of the system just by writing them down and
furthermore they are solvable only in some special cases.
Even in these cases it is a difficult task to determine the
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stability of the solutions obtained. This has motivated the
geometrical approach to the problem made in this paper,
where we have shown how we can get an understanding of
the behavior of the system without actually solving its
govermng equations.

By introducing the unit-sphere description of the direc-
tor and, furthermore, by plotting the torque field which
arises from the shearing of the nematic as well as from
the application of an electric or a magnetic field, we have
gained a good qualitative understanding of many of the
features of the flow. If we by some reason can neglect
elasticity we even have solved the problem completely. In
this case the director will just move along the field lines
until it ends up in one of the singular points of the field
or, which happens in some cases, in a closed orbit around
the point A on the unit sphere .By introducing elasticity
into the problem the situation gets more complex. How-
ever, by the particle analogy discussed in Sec. VIII we still
can get a decent intuitive understanding of the problem.
We also learn where we can find the necessary tools for
dealing with the general problem, namely, from the study
of two-dimensional dynamical systems. By calculating
the eigenvalues of the singular points of the torque field
we can determine their stability. Furthermore, these
eigenvalues can be used to construct approximate solu-
tions to the flow problem in the vicinity of the stable
equilibrium points. The thresholds of the hydrodynamic
instabilities which can develop in connection with the un-

stable equihbrium points can also be calculated.
Even if we have gained a lot of information about the

flow without actually solving the governing equations
there are, of course, many questions which cannot be
answered until we do so. One interesting case is the flow
wllell 'R3 is positive and tz2 negative. The torque maps in
this case are given by Figs. 4(d)—4(h). There is only one
singular point A in these. This is a center and the field
lines are closed orbits around this. We want to study the
features of the in-plane flow in this case, i.e., the flow
where the director lies all the time in the plane of shear
(the equator) and is given by 82 tr/2; q&2

————qr2(z). The
fact that this is a possible solution can immediately be
seen by substituting it into Eqs. (2.1)—(2.3). There is one
instability which can be regarded as a hydrodynamic
analogue to a flrst-order phase transition connected even
with this simple flow. '~ This is denoted the tumbling in-

stability and has been observed experimentally by Cladis
and Torza ' and also by Pieranski et al. '

By investigating this instability we are, of course, not
guided by the torque maps of Figs. 4(d)—4(h). There is,
however, another problem which is connected to this ex-
periment and this is the question whether the in-plane
flow is stable against fluctuations which tend to bring the
director out of the shearing plane or not. Although in

both experiments the tumbling instability was observed,
the out-of-plane instability was only observed by Pieranski
et al. and not by Cladis and Torza. This apparent con-
tradiction might be explained by investigating the torque
maps of Figs. 4(d)—4(h). If the director fluctuates out of
the plane of shear it will leave the equator and instead
land up on a field line close to this. In the case when

ai/~ ai
~

deviates from unity this field line is ellipselike
so in two of the quadrants the director will approach the
equator as it follows its new orbit, but in the other qua-
drants it will draw away from it. Still, however, the new
orbit is close to the equator from which the director start-
ed. In the case when we neglect elasticity it is thus obvi-
ous that the in-plane flow is stable against the out-of-
plane instability.

Including elasticity, however, the situation gets more
complex and it is easy to understand that at least in some
cases we might expect the out-of-plane instability to exist.
One case is when n& &&

~
a2 ~, performing the experiment

with parallel boundary conditions. In this case the direc-
tor starts in the point 8+ on the unit sphere and the
torque field will act destabilizing for the first quarter of
the equator. Another case is ai»

~
a2 ~, the boundary

conditions being perpendicular. The other two combina-
tions of ai/

~
tz2

~

and boundary conditions will not, how-
ever, have a tendency of exhibiting the out of plane insta-
bility, at least not until the shearing rates get comparative-
ly large. In the experiments mentioned above, Pieranski
et al. used parallel boundary conditions while Cladis and
Torza, who actually studied a Couette flow, used perpen-
dicular boundary conditions. In both papers ai/~tt2

~

was reported to be about 0.01 which corresponds to the
torque map of Fig. 4(d). It is then obvious that we expect
the out-of-plane instability to be observed by Pieranski
et aI. and not by Cladis and Torza. This conclusion is
also confirmed by the stability analysis performed by
Hogfors and Carlsson. "

Vfe conclude by stating that the unit-sphere approach
gives a good qualitative understanding of the flow proper-
ties of nematic liquid crystals. It can also be used in a
simple manner to perform some quantitative calculations.
Furthermore, it should be a fruitful starting point for
those who want to make detailed calculations of the gen-
eral flow problem as well as investigations of the stability
of the flow.
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