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Renormalization-group analysis of weak-flow effects on dilute polymer solutions
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A Gaussian polymer chain in the presence of hydrodynamic interactions and subjected to steady
linear flows is investigated renormalization-group theoretically. To order e {=4—d, d being the
spatial dimensionality) and to the lowest nontrivial order in the flow strength, we consider the hy-

drodynamic effect on the mean-square end-to-end distance. From our general formula, we extract
results for the physically interesting cases of shear and elongational flow. In the light of recent ex-

perimental results there is a possibility that the Gaussian model is of limited validity, even below the

stretching transition.

I. INTRODUCTION

Renormalization-group approaches have enabled us to
systematically study the universal properties of polymer
solutions. ' The static properties of both dilute and
semidilute solutions have been studied successfully. How-
ever, truly time-dependent properties, even for dilute solu-
tions, are relatively less studied. Some problems in
dynamics which have been considered are tlM following:
the relaxational s ectrum properties of a chain in
elongational flows; time-dependent correlation functions
of conformations; and diffusion and complex intrinsic
viscosities' by the Green-Kubo formalism.

The behavior of polymers in flow fields has attracted
much interest both experimentally and theoretically. '
In a recent letter, " we have applied the renormalization-
group approach to the problem of a polymer chain in a
weak flow in the presence of hydrodynamic interactions.
Notice that a major complication is introduced by the
presence of the systematic flow which makes the problem
a nonequilibrium one. In Ref. 11, we had calculated the
mean-square end-to-end distance for a single polymer
chain in the taboo limit. Although our results were
correct, the arguments were a bit excessively simplified.
A correct derivation of formulas will be given in the
present paper.

The ordinary model used by us is that of a Gaussian
polymer chain subjected to a solvent fiow fiel whose
average is a linear flow. The chain conformation and the
solvent velocity field are governed by Langevin equations.
The Langevin equation for the solvent velocity field is
equivalent to the Oseen tensor model traditionally used in
polymer dynamics to the lowest nontrivial order in the
strength of hydrodynamic interactions ' and in the flow
strength.

In the present paper, we study the transient and asymp-
totic behaviors of the mean-square end-to-end distance of
a Gaussian chain with hydrodynamic interactions. Our
general conclusion, which can be understood easily by a
dimensional analytic argument, is at variance with the re-
cent experimental results of the Bristol group. A possible
grave consequence of this discrepancy is discussed. Those

who are interested only in the relevant discussion may go
directly to Sec. IV.

The outline of our paper is as follows. In Sec. II, we

present the Langevin equations for our model and their
formal solutions. In Sec. III we present details of our cal-
culation. We end with formulas for the explicit time
dependences of the mean-square end-to-end distance in
the physically interesting cases of shear and elongational
flows. In Sec. IV we discuss our results in the light of the
experimental results of the Bristol group and consider the
repercussions of this comparison. Finally, we present a
brief summary of this paper.

II. LANGEVIN EQUATIONS
FOR CHAIN-SOLVENT DYNAMICS

The Langevin equation for a single chain is

Bc 1 Bc
(7;t)=— (r, t)+v(c(~, t))

p

+u(c(~, t), t )+8(~,t), (2.1)

(2 3)

g=XO
where (c(r, t) I, o is the instantaneous conformation of
the chain at time t, go is the bare translational friction
constant for the chain unit, u is the fluctuating part of the
solvent velocity field, v is the systematic part of the flow,
and 8 is a Gaussian white noise with mean zero and with
covariance given by

(8(r, t)8(o,s)-) =2' '5(r o)5(t s)I—, —

with I being the d Xd unit matrix. The fluctuating part
of the solvent velocity field is described by the Langevin
equation

Bu
(r, t) =slohu(r, t) uVv vVu —vVv- — '

Bt

Bc—Idr 5(r c(r, t) ) (r, t) —V'p+ f(r, t), —
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( f(r, t) f(r', s) )= —265(r —r')5(t —s)I . (2.4)

We write the systematic flow, which is linear, in the form

v(r) =gA r, (2.5)

where g measures the strength of the flow and A is a con-
stant d Xd matrix. For the simple shear flow A is

0 1 0
0 0 0
0 0 0 (2.6)

and for the uniaxial elongational flow A is

1 0 0
0 —1 0
0 0 0 s ~ ~

(2.7)

We assume that the initial ensemble is in equilibrium
without fiow, and that the systematic flow is switched on
at t =0. We further assume that c(0,0)=0 without any
loss of generality, as the flow is linear.

We can formally solve (2.1) by introducing the
Green's-function matrix G(r, cr

~
t) satisfyingaG, a'G

at
(~,cr

(
t)=go ' (r,o

(
t)+gAG(r, o

(
t)

which is essentially the linearized Navier-Stokes equation
around the systematic flow v. The noise is added to
maintain local equilibrium. This is valid only when the
flow is microscopically weak (see below). In (2.3), p is the
pressure, rto is the solvent viscosity (we will choose the
system of units so that qo ——1 in the following), and f is a
Gaussian white noise with mean zero and variance

No
u(c(r, t), t) = f da T{c(r,t),c(a, t))

a c
X (a, t)+u{c(r,t),t), (2.13)

where T is the flow-modified Oseen tensor

No g

c(7 t) = co( r t)+ f da f ds G(r,a
~

t —s )u(a, s)

(2.11)

with
JtIo

co(r, t) = f da G(r,a
~

t)c(a)
r

+ f da f ds G(r, a
~

t —s)e(a,s), (2.12)

a=NO
where I c(a) I 0 is the initial conformation distributed
in an equilibrium ensemble.

For the formal solution of (2.3), we have to make cer-
tain approximations. Equation (2.3), as pointed out
above, is valid only when the flow is microscopically
weak, i.e., ga &&rto, where a is the typical bare monomer
size. This condition means that systematic flow effects
are locally dissipated quickly and the condition of local
equilibrium can be maintained. Nevertheless, (2.3) still
contains systematic flow terms and the usual Oseen tensor
description is not valid [even to O(e) ] contrary to
Yamakawa's statement. ' The Oseen tensor is modified
by the terms linear in the systeinatic flow. However, to
O(g ) and to O(e) there are no extra terms resulting from
this modification and we can still use the conventional
Oseen tensor description. We show this to be true in Ap-
pendix B. Also, to O(gi), no further complication arises
from the term quadratic in the systematic flow. (Actual-
ly, this is zero for the case of shear flow. ) Solving (2.3)
formally to O(e) we obtain

+5(r—cr)5(t)I, (2.8) T{c(r,t),c(a, t)) = fP'e'"'("" (2.14)

along with the free-end condition

aG ag =0.
=o a«=~0

Then we have

G(r, a
~

t)= 'e'G, ( , robot), (2.9)

where

gPA gPP'= 1+ — k.Ak' k' ak

P=I—kk

Pk

Go(r, cr
~
t)=NO ' 1+2 icos(@or)

p=l

Xcos (p()cr)e
—po'typo

(2.10)

with po ——mP/No. From (2.9) it follows that the systemat-
ic flow is taken into account to all orders in g.

We can write the formal solution to (2.1) as

where 6 ( oor~t) is the Green's function for the case
without flow given by {u{c(r,t), t )u(c(a,s),s ) ) =25(t s)T(c(r, t),c—(a,s)),

(2.15)

with all averages being taken over the initial equilibrium
distribution and noise. In the above we have assumed that
the relaxation of the chain is slower than that of the sol-
vent velocity field as in the case of critical dynamics and
used the Markovian approximation. This can be justified
only to the lowest nontrivial order as the Oseen tensor is
reliable only to this order. '
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III. CALCULATION OF
MEAN-SQUARE END- TO-END DISTANCE

In this section we calculate

( R'(t) ) = ( [c(X,t) —c(O, t)]') .

To this end, we calculate the general correlation function

Q(r, t Io, t)=(c(r, t) c(a, t))

and use tt to determine (R (t) ) from

(R'(t)) =Q(No, t
I
Xp, t)+Q(O, t IO, t)

—2Q(N„t
I

O, t) . (3.1)

Using the formal solution for c(r, t) presented in (2.11),
we have

Q(r, t
I
o, t)=( c(r, t) c(cr, t))

No
=(co(r, t) co(o, t))+ Tr f da f ds([G{r,a

I
t —s)u(c(a, s),s)] cp(cr, t))+r~~o

+Tr f da f dP f ds f ds'&[G(r, a
I

t —s)u(c(a, s),s)] [G(o,P I
t —s')u(c(P, s'),s')] &

= &..(.,t)'.{,t) &+g'+g'+Q',

where Tr and the superscript T, respectively, denote the trace and transpose operations on their matrix arguments.
%e denote

Q (prt Io,t)=( c(orat) co(o, t)) .

(3.2)

This represents the general correlation function in the absence of hydrodynamic interactions. To calculate it, we use the
formal solution (2.12) for co(r, t) to write

No No

{?o«t Iat)=Tr f dy f dy'&[G('yIt)c(y)]r[G(o y'It)c(y')]&

+Tr f dy f ds([G(r, y I
t —s)8(y, s)] f dy' f ds'[G(o, y'

I
t —s')8(y', s')]) . (3.3)

Using (2.2) and (c(y')[c(y)] ) =minify, y']I (which is valid only in the absence of self-avoiding interactions) we ob-
tain

Qo(r t
I
a t) =go+Qo, (3.4)

(3.6)

No No

g,'=Tr f dy f dy'G'(r, y I
t)G(a, y I

t)min[y, y ],
Qp

——2(p 'Tr f dy f ds G T(7.,y I
t —s )G(cr, y I

t —s ) .

Before proceeding to a calculation of the perturbation terms in (3.2), we calculate (R (t) )o, the unperturbed contribu-
tion to (R (t)). From (3.1), we have

(R (t))o——Q(oXp, t
I Np, t) +Q (oOt

I
O, t) —2g(pX ot I

O, t) .

Recall that G{r,cr
I
t)=B(t)Go(r, o

I
t) with B(t)=es '. Then, the contribution of Qp to (R (t) )p is

No

Qo o ~
=Tr[B (t)B(t)] f dy f dy m'n[y y J [Go(&o y I

t) —Go(O, y'
I
t)][Go(&o,y I

t) Go(O y I
t)] .

A simple calculation proves the relation

»o X,e ' '= f dy f dy'minty y'][Go(&o y'I t) Go{o y'—
I
t)][Go(&o y I

t) Go{o y I
t)].—

) (my)
p odd

(3.7)

ao

Q,',.„,=Tr[BT(t)B(t)]SNo g, e
) (my)

p (xi'

Correspondingly, the contribution Af Qo to (R (t) )o is

(3.9)
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Qo„„,——4' ' f ds Tr[B (t —s)B(t —s)][Go{0,0 (
2(t —s))—Go{No,O

~

2(t —s))], (3.10)

where we have used a property of the Green's function

Wof dy Go(r, y i t)GQ(y, i
t)=GQ(, o

t
2t) . (3.11)

{R (t) )o——Qo„„,+Qo

=Tr[Br(t)B(t)]gNQ

e ' '+4go ' f ds Tr[B (t s)B—(t —s)][Go(0,0
~
2(t —s))—Go(NQ, O

~

2(t —s))] .
i (~p)'

P Odd

In the case of a simple shear flow

Tr[BT(t)B(t)]=d+(tg)' .

(3.12)

Using the explicit form for the Green's function and performing the time integration we find for the shear flow

R'(t)
1 —e " '— (~)'e

A2 dsrs 7

(3.13)
dNp ~ i (irp) Nogp

P OdCl

The correct result (3.13) for t-+ ()o has been presented only recently by Bird et al. ' This result is valid to all orders in
the flow coupling g.

In the case of an elongational flow

Tr[BT(t)B(t)]=d+2(tg)

correct to O(g ). Thus, for the elongational flow to O(g )

0
1 4 2N4(p y 1

1
2i) ()tits() — 2t

( )2
t) 0~) ~0

Noko
P Odd

(3.14)

(The result correct to all orders in g is also easy to obtain. ) Next, we calculate the perturbation terms in (3.2). First, con-
sider Q:

No
Q'=Tr f da f d {s(coto) u{c(a,s),s))Gr(r, a

i
t —s)

2
'T

g o 8 cp=Tr f da f ds cc(ar) I dPT(cc(as)cc(ds)) (Bs) )Grtra(r —s), (3.15)

where we have used (2.13), replacing c by co to get results correct to O(e). Writing the explicit form of the Oseen tensor
from (2.14), and using the preaveraging approximation

Np Np g g2
Q =Tr f da f dp f ds f z (cp(o, t)co(p, s))P'{e ' ' ' ' )Gr(r, a

~

t —s) . (3.16)

Notice that the preaveraging result is identical to the exact result in the elongational flow case. For the case of the
shear flow, the extra term can be readily computed. It is similar to the term discussed in Appendix A, and is negligible

as explained in Appendix A. Thus, we do not expect the preaveraging approximation to introduce a large error. Let us

first calculate (Bi!Bp )(cp(cr, t)cp(p, s) ). Using (3.5) and (3.6) this can be written as

g2 g2 %o Wo

QP2 QP2 Q Q, &cp(o, t)cp'(p, s) &=, f dZ f dX G(o,z
~

t)minIZ, X IG'(p, X
~

s)

+2' ' f dX f ds'G(o, z
~

t —s')G (p, d'(, ~s —s')
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8, 3
ap2 N, 'G(»V is)=, G(»X'[s)

and integrating by parts we get

1=8(t}G (P,O~s) f-d~G(a, ~ ~t}GT(»g~s}

=B(t)B (s)Go(»0 i
s) 8(t—)Br(s)Go(a, p i

t+s) .

Term 2 can be simplified by using

2

G (»~ Is s')=—8 (s —s'g'o Gp(»~ ~s —s'),
s

and we obtain

(3.18)

(3.19)

2= — s'8 t —s' B~s —s', Go o, t+s —2s'
s

Integrating by parts we get
S

2= 8(t)B T(s)G p(o, P ~
t +s) B(t —s)—Gp(o, P ~

t —s)+ f ds', [B(t—s')8 "(s s')—]Gp(o, P
~

t +s —2s') .

Combining this with term 1, we obtain the expression for Q as

o Xo

Q =Tr f da f dI3 f ds f B(t)B (s)Go(P, 0~s) 8(t —s)Go(&—P~ t —s)

(3.20}

(3.21)

S s', 8 t —s' BT s —s'
0 cr, t+s —2s'

s

0

yP'(, e o ' ' ' )BT(t —s)Gp(, a
~
t —s) . (3.22)

Notice that Q is the same as Q with ~ and cr interchanged. For Q we obtain, using (2.15)

No o t

Q =2Tr f da f 'dP f ds f 8(t —s)Gp(0'P~ t —s}P'(e ' ' )8 (t —}sGp( ra
~

t —s) .

~e find that Q cancels the underlined term in (3.22) combined with the corresponding term from Q =Q (~~m).
Therefore the correlation function can be written as

Q(r, t
~
0,t) = (co'(r, t) cp(cr, t))

Tr f da f dP f ds f„B(t)8 (s)Gp(»0
i
s)

, [8(t s')Br(s —s')] G—p(a, p~ t+s —2s')
S

X P'(e ' ' )BT(t s)Gp(~, a
~

—t s)+r+m—- (3.24)

From the last expression and (3.1) we can determine the mean-square end-to-end distance under preaveraging
T

S

(R (t})=(R (t))p+2Tr f da f dP f ds f f ds', [8(t —s')Br(s —s')] P'BT(t —s)

&((e ' ' ' ' )[ G(oN ,oa~t —s) —Go(O, alt —s}]

&&[Go(N„P i
t+s —2s') —G,(O,P i

t+s —2s')] . (3.25)

Notice that the underlined term in (3.24) does not contribute to (3.25). Result (3.25} is valid for any linear flow within
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the preaveraging approximation. As pointtxl out in the discussion after (2.12), to O(g ) and to O(e) there are no extra
terms resulting from the modification of the Oseen tensor. Thus, in the subsequent calculation we use the usual form of
the Oseen tensor. Inserting the matrix 8 for the shear flow into (3.25) and performing the Tr operation we obtain

&R (t)& =&R (t)& +2 f da f dP f ds f f ds' 2g

2k)
1 — g (t+s —2s')

k

2 2 ik [cc(a,s) —co(ti, s)]
&1 — g (t —s) &e

k
L

X [Go(Xo,P ~

t +s —2s') —G, (D,P ~

t +s —2s') j

X [Go(Xo,a
~

t —s) —Gi)(D, a
~

t —s) j . (3.26)

Now,

ik [co(a,s) —cO(P, s)] ~ k2
~
z P ~

~2(e g =e +Ojgj . (3.27)

As we are interested in terms to O(g ) only, we can discard the O(g) contribution in (3.27) except for the first pertur-
bation correction term in (3.26). For this term the necessary calculation is done in Appendix A. The resulting term is
numerically small (see below} and does not affect any asymptotic results. Hence we discard it in the following.

Performing the momentum integration in the terms of O(g ) and inserting the explicit forms of the Green's function,
we obtain for the shear flow

& R'(t) &
&R (t) &o g'(d —1)

&ogo &o0o zp ~git„, -4 2 4 2

e
2(mp)' 2(np)

Xo'go
(s t)——

(np)'

Jh t2
&+,&2 [S,+S .

PsP =&
P,P Odd

tNogo
+ e +p~p

(np)
(3.28)

The contour integrals to be performed in (3.28) are fre-
quently encountered in these calculations. Pole terms in e
arise from the diagonal (p =p') terms in the sum. We
quote the final result for the contour integral I in the case

I(p =p') =No 2e '+lnNo+ci(np) y —ln(harp)—

X =ZERO,

S =Zygo (3.29)

to introduce the renormalized couplings and the renormal-
ization constants, viz. , Z~ and Z~. We introduce a length
scale L and define dimensionless parameters as usual

[si(np)+m. /2j
1

KP

correct to O(1}. Here we have used the definitions

ko=koL'"

(3.30}

s:;x)= —f dt sint/t,

ci(x)= —f dt cost/1,

and y is Euler's constant (=0.577). For p&p', the
answer is somewhat more involved. There are no pole
terms arising from the pQp' terms.

The presence of pole terms necessitates a renormaliza-
tion. We use the standard prescription

In the absence of self-avoiding interactions ZN ——1 and

Z~ ——1 —(3/8&@)g to lowest nontrivial order. After the
renormalization has been performed, we insert the fixed
point value g=+=8m~e/3 which follows from the P
function in the one-loop terms. Recall that the dimen-
sionless coupling occurring in &R (t}& was of the form
g Nogo. We find the same dimensionless form here, but
as logarithinic corrections of the form ln(2m. X) appear
multiplied with terms of O(e). We have to introduce an
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fective exponentiated coupling of the form (L) =g/
(2m) g(2nN)'", where v=-,' is the Flory exponent in the
absence of self-avoiding interactions and z =d ( =4—e) is
the dynamical critical exponent. Besides, in order to ob-

tain a result which is uniformly reliable in time, we have
to perform an exponentiation in the p=p' terms giving a
corrected eigenvalue A,(p) (Ref. 7) to 0(e). Our exponen-
tiated result is

& R (t))
1 2 ~ 1,P(),) g —2}((P)( —ec(P)

dN ) (gp)6 q ) (mp)
p odd p Odd

I.

&
—2X(p)T

) (mp)
p Odd

+2eu)2 g D(p,p')T(p, p', t) .
p~p =&
p,p Odd

p+p

(3.31)

The exponentiation scheme is explained briefly in Ref. 7 and at length in Ref. 8. In Eq. (3.31)

Q(p) = 6 +ci(n'p) P — —[si(harp)+m'/2],
5 I

'jTp

g(p)=C(p) —ln(np) . (3.32)

We have introduced a new time unit in (3.31) as t =A,(1)t where

' 2-e/2

e eC{p)/21

(3.33)

Finally, we have introduced normalized eigenvalues X(p) as

X,(p) =A, (p)/A, (1) .

The terms in the double sum of (3.32) are

T(p,p' »= 1
(e

—2X(P)T e
—P(P)+X(P')lT) 1+2(~ )2

(ny')2 —(np) 2(mp) m

+ &
—[X{p)+X{p')]t + ~ +

1

(~p)'[(~p)'+ (~p')'] 2(np) )r (np) +(ny')

1 1

(np) [(np)2+(mp') ] 2(mp) [(np) +(np') ]

(3.34)

and

with

t) ~(p~p'} ~(p.p')
(np' np) (mp—'+np)

g (p,p' }= — —+si(~p) —( —1 } + —+si(np')
2 2

(3.37)

In Fig. 1 we show h(t) as a function of t where

&( )= -' -~ ~ -1 &&iO'.
dÃ

T

&(p,p') = —+»(~p) —( —1}t'+t' —+si(~p')
2 2

(3.36) From the general expression (3.25) we can also derive
(R (t)) for the elongational flow as
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R (t) () 32 &0 &0-+
& f da f dp f dg f g cos(potz)cos(p+) ~(2 —p~

+
dN,

p,p'odd
p+p

2,
g

. 0o ~Po+g
(e g 0 &pe 2g—(t —s) 2gt—

)
2 /f

2

't'0'/&0»2g(t —s) 2gt ~ '" ('0« "—'0(»s))
)

ko ~Po —g

(3.38)

In the curly braces, we expand to O(g ). The expansion of exponential terms like e2g' for arbitrary t is justified be-
cause of the rapidly time-decaying exponential prefactors. Again, as in the case of shear flow, there is a small term of
O(g ) arising from the O(g) contribution to (e'"'+' " "' " ). For the same reasons as in the case of shear flow„ this
term is negligible. After performing the k integration, (3.38) gives

(R (&))o g2(d 1)

0 ~O
Q s cos poQ cos p cx-

pgp =&
p,

' odd

—tt02(t+s)/gp —pp (t+s)/pp 1 2 2tt()sCp 2e e g —t otvoe +l' o(vo
(np)

——2Nogo 2
(e —1) +p~p'~ 2» P"o«o

(np)
(3.39)

The rest of the calculation is the same as in the case of shear flow. Our final renormalized and exponentiated result is

' =1+4(J2 -gV(p '
e -2X(p) e -R'( ) 2

'
e -24P~&dN, ( p), (p), ( p)

p odd p odd p Odd

+e(t) g D(p,p')T(p, p', r),
ptp =&
p,p'odd

p&p

(3.40)

with the same functional definitions as in (3.31). Notice
that the result for elongational flow is quite similar to
that for the shear flow, to within a multiplicative factor
of 4. Thus, we do not present the graphical result here.

IV. DISCUSSION
The calculations by Yamazaki and Ohta and by us

show that the natural parameter occurring in hnear flow
problems 18 M gN . This can be understood by a scal-
ing argument. Since g has the dimension of reciprocal
time, the natural parameter in the problem is the product
of g and the representative time scale of the polymer
chain, denoted by r If the dynamica. l exponent is denoted
by z then r-N'". Thus m -gN'" must be the natural pa-
rameter. The renormalization-group calculation confirms

this. There is good reason to believe that, near criticality,
the chain is stretched to not more than 5 (probably about
2) times its equilibrium size. ' An estimate of g, may be
obtained by use of the weak-flow time scales. (We will
shortly return to discussion of the reliability of dynamical
scaling. ) From this, we conclude that the critical flow
strength g, for the stretching transition must scale as
N '". Vhth hydrodynamic interactions, z =d, and
without it z =2+1/v. The former is the consequence of
kinematics of the Oseen tensor model, '2 so that, to O(e ),
z need not be identical to d. But our experience with the
binary critical fiuid' tells us that this deviation will be at
most of order 5%%uo. The result z=2+1/v is a purely
kinematic result, so it is exact. Of course, our minimal
model cannot describe the region beyond the stretching
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FIG. 1. Normalized deviation h(t) (=m '[(R (t))le
—1])X 10 of mean-square end-to-end distance from quiescent
value, plotted as a function of t for the case of shear flow.

transition. It gives (R2(t) ) -iii', which is wrong (at large
fiow strengths) because (R2(t) ) cannot be larger than N2

This discrepancy arises because we neglect the nonlineari-

ty in the bonds which prevents excessive stretching.
According to recent experimental results by the Bristol

group, the critical flow strength for the stretching transi-
tion (denoted g, ) scales as N i s irrespective of the sol-
vent quahty. They claim that E ' can be definitely ex-
cluded. Thus, we must always use z=d =-3, v= —,', in-

dependent of the actual value of v. One may argue that
the discrepancy is due to the magnitude of tc being out-
side the validity of our calculational scheme, even though
the minimal model is correct. For sufficiently large N,

is significantly smaller than N ",so that at the
critical flow strength io -N ' N' -X ' becomes
very big, invahdating the weak-flow argument we have
been using. It is true that our results which are truncated
to w become unreliable. However, our formal results are
more general. The general result (3.26) for (R (t)) under
the preaveraging approximation is correct for any flow
strength [to O(e) even if there exists a self-avoiding in-
teraction] so long as we can ignore the nonlinearity of the
backbone. Furthermore, we know that the preaveraging
approximation affects only prefactors. s To calculate

R f~(a, s)-cO(p, s) J(3.27) for any g, we need (e ' ' ' ), which is
time independent in the stationary state. Since the chain
is not deformed strongly up to the stretching threshold,
the length scale which is relevant to this quantity must be
X". Hence, the time scale is still given by ~-X'". There-
fore, the scaling argument should be reliable up to the
threshold flow, if we can rely on our minimal model.
Thus, we Inust take the discrepancy seriously.

One might conceive the following argument to explain
this result: Just before the stretching transition, the chain
has been stretched sufficiently to justify neglecting the
self-avoiding interaction. Thus, g, -N 's always. How-
ever, we know theoretically' that the self-avoiding in-

teraction becomes negligible only ~hen the chain has been
stretched to about 10 times its equilibrium size. But, as
mentioned before, the chain is not stretched extensively at
the stretching threshold, so that the previous argument is
untenable and cannot rescue our model in the vicinity of
the stretching transition, if we believe the Bristol results
to be conclusive.

We must stress that the crossover effect is very severe
for dynamic quantities and that v in g, is not the static
but the hydrodynamic v. It may stay rather close to 0.5
even though the static v is almost 0.6. (See, for example,
the theoretical study of the crossover regime in Ref. 18.)
Nevertheless, we would expect some variation of g, with
the solvent quality. Hence again the crossover effect
seems insufficient to resolve the contradiction.

Thus we conclude that, if we rely on our minimal
model, which is the best starting point so far proposed for
dilute solution dynamics, theoretical results and the Bris-
tol experiments are significantly at variance.

There is an even more serious consequence of the previ-
ous discussion. If the harmonic chain model is reliable in
the quiescent fluid, we would expect it to be reliable also
just before stretching as the chain has not been strongly
stretched at flow strengths less than g, . But we have seen
that this is not true. Thus, we are forced to discard our
minimal model consisting of the Edward's Hamiltonian
and the fluctuating solvent hydrodynamics. This model is
theoretically nice and has so far given results in reason-
able agreement with experiment for solution dynamics.
Of course, agreement with experiment does not necessarily
justify a model but it seems difficult to modify our
minimal model while keeping all the results for the quies-
cent fluid intact.

To summarize, we have calculated renormalization-
group theoretically the mean-square end-to-end distance
for a Gaussian chain in a weak systematic linear flow.
The results strongly suggest a scaling form for g, which
does not agree with the experiments of the Bristol group.
This leads to the grave conclusion that the minimal model
currently in use is incorrect. The Bristol experiments, if
conclusive, destroy the existing theoretical framework.
W'e hope that experimentalists recognize the extreme im-
portance of the molecular weight dependence of g, .
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APPENDIX A

Here, we calculate the terms of O(g) which appear in
the calculation for the shear fiow using the general expres-
sion (3.25) obtained within the preaveraging approxima-
tion. From (3.26) we have an extra O(g) term Ts as
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4g Oi g g p 0 0 6 + g +~ 2~ 6 o

X [Go(No, a
~
t —s)—Go(O, a

~

t —s)] . (Al)

%e evaluate

ik [@(a,s) —CO{P,S)](e ' ' )=exp ——gk ([co(a s)—co;(P,s)] )

in the presence of shear flow. A simple calculation yields

2g [cos(p a) —cos(pop}] pp y/g,gk; ([co;(a,s) —co;(P,s)] ) =k
~

a —P ~
+ gokik2 g ~ (1—e ') .

l p=1

Thus, to O(g)

(A2)

ik [c (a,s) c(p,s))— —k&I pl » g — cos poa —cos po —2pos ~0 kil & tel —»—(1—e )e
No p=1

(A3)

The k integration reduces to zero terms of O(g) in our expression for Ts. This conforms with our intuitive expectation
that (R (t)) should not contain terms of O(g) because the stretching should be independent of the fiow direction and
depend only upon its magnitude. Replacing (A3) in (Al) and performing the k,s integrations, we have

p~p ~p =&
p'~p ~p

[cos(poa ) —cos(po p) ]
i
a —p

~

cos(poa)cos(pop)
(mp)

—(P O +P O' )(t —S)/gO —2P Og/gO —Zp (p /(p 1
&( e (e —1)(e —1)

2
+p'~p"

(mp" }2

(A4)

In (A4) we have put d =4 (or e=o), as this expression
does not contain any pole terms.

A numerical evaluation of these terms was conducted
by us. It gave a neghgible contribution to (R (t) ) /(Nd).
Thus, we are justified in neglecting these terms.

APPENDIX B

T(r, r') = 1 — + k.A
I'A I'

(2m)" k2 ki Bk

~pk —2i k.(r—r')
7 (81)

Here we show that, to O(g ) and O(e), there are no ex-
tra terms resulting from the modification of the Oseen
tensor by systematic flow terms. A simple calculation
yields the modified form of the Oseen tensor to O(g) for
the linearized Navier-Stokes equation (2.3}as

I'A I'
k' k' (82)

in (3.25), the k integration takes the form

f k —4 k'~a P~» i —~~ ~tze oc Q
(2~)'

(83)

Thus, the extra terms do not have poles in e. Further-
more, to O(e) we can immediately put e=O in the extra
terms. The a,P integrations then decouple out and are of
the form

of «[Go(No, a
~

t —s) —Go(o,a
~

t —s)]=0 . (84)

Hence, there are no extra terms in {R~(t)) to O(gi) and
to O(e}.

where P=I kk/k and —A is the fiow matrix. Extra
terms of O(g ) are expected to arise from the O(g) terms
in (Bl). However, if we insert the modified projection
operator
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