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%'e have been studying the two-dimensional continuum percolation problem, using patterns on
square cellular structures %square meshes) generated by computer simulation. The metallic critical
volume fractions for the metal-insulator transition and the effective conductivities of their patterns
agreed well with those of actual materials formed by deposition of metal films on insulator sub-
strates. In this paper we obtain the fractal dimensions of percolation clusters of the two-
dimensional continuum percolation models formed by computer simulation, and compare the factal
dimensions with the results from the actual experiments of Voss, Laibowitz, and Alessandrini and of
Kapitulnik and Deutscher, using transmission electron micrographs of thin metal films deposited on
insulator substrates. %e clearly show that the fractal properties of percolation clusters on square
cellular structures agree well with those of actual experiments. The fractal dimensions are 1.9 for
the large percolation clusters occurring when the metallic volume fraction is close to the critical
volume fraction for the metal-insulator transition.

I. INTRODUCTION

One of the methods for treating the continuum percola-
tion (CP} problem is the filling of a lattice space by plac-
ing rigid spheres on all the lattice points. Then the metal-
lic critical volume fraction (CVF) U, for the metal-
insulator transition is presented by

Ue= e s

(2)

(3)

where p, is the critical site percolation probability of the
lattice, and f is the filling factor, defined as the ratio of
the volume of an inscribed sphere to that of a unit cell. '

The dimensional invariants for the CVF hold for the
two-dimensional (2D) and three-dimensional (3D} system
as follows:

0.45+0.03 for 2D,
0.16+0.02 for 3D .

and fractal property of a 2D CP pattern, using transmis-
sion electron micrographs of thin gold films deposited on
insulator substrates. Their CVF (0.74) agreed well with
that (0.73) of one of the CP models in I. In this paper we
obtain the fractal dimensions of four types of CP model
in I, and compare them with the results from actual ex-
periments by Voss, Laibowitz, and Alessandrini and by
Kapitulnik and Deutscher.

Although the problems of the CP appear as often as
those of the lattice percolation, fewer results for the frac-

Using square cellular structures or square meshes instead
of lattices, we have been studying the 2D CP. In a cel-
lular structure, the fiows of percolation are transmitted on
cells through the boundaries of a cell not on lattice points
and bonds, and the paths of percolation have finite
widths. In the CP, the CVF is given by

Uc =Ice

for the cellular structure with a uniform cell, where p„is
the critical cellular percolation probability. In our previ-
ous paper, hereafter denoted as I, we showed that the
CVF of the CP models formed on a square mesh changes
from 0 to 1 depending on the method of generation of
nercolation clusters. As the shapes of deposited metal
films are elongated, the CVF becomes close to zero. The
dimensional invariant such as (2) does not hold for the 2D
CP.

Voss, Laibomitz, and Alessandrini ' presented the CVF

FIG. 1. Two-dimensional continuum percolation pattern
formed on a substrate with 100& 100 unit cells. The black parts
whose volume fraction is 0.57 are metals for model 3 and insu-
lators for model 8.
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tal dimension of the CP have been published than
those ' of the lattice percolation. With this situation in
mind, we discuss here the fractal property of 2D CP, us-

ing computer simulation and the results from actual mea-
surernents.

In Sec. II we present our 20 CP models generated on
square meshes b5f computer simulation. In Sec. III we ob-
tain the fractal dimensions of the models, compare them
with previously published results, and discuss the fractal
property of the 2D CP.

II. CONTINUUM PERCOLATION MODELS
ON SQUARE CELLULAR STRUCTURES

Here we use four types of 2D CP model formed on
square meshes by computer simulation. These four types
were already presented in I, but here we again give the
four models denoted as A, 8, C, and D.

We use as substrates or matrices square ineshes with
50)&50, 100X100, and 200&200 unit meshes or cells. In
model A, square metal films with n Xn unit cells are
deposited on the meshes of an insulator substrate at ran-
dom, one by one. In the depositions, any overlap among
the deposited films is prohibited, but any contact is per-
mitted. The depositions are repeated, searching places
where no overlaps occur, and continued until any square
with n &(n unit cells cannot be placed without any over-
lap.

In Fig. 1 we present for n =10 one pattern of metal
film deposited on an insulator substrate with 100X100
unit meshes. The volume fraction of metal (the black

FIG. 3. Two-dimensional continuum percolation pattern.
The black parts whose volume fraction is 0.5S5 are metals for
model C and insulators for model D.

parts) of Fig. 1 is 0.57 and the material is still an insulator
because, in fact, the black parts of Fig. 1 are not continu-
ous from one side to the opposite side. To obtain a con-
ductor, we further deposit square metal films with 9X9
unit cells in the same manner. The volume fraction be-
comes unity when square films with 8X8,7X7, . . . , 1X1
unit cell(s) have been deposited in the same method. In
Fig. 2 we present one pattern in the course of such opera-
tions. The texture in Fig. 2 is obtained by placing squares
with 9 X 9, 8X 8, 7 X7, and 6X6 unit meshes onto the pat-
tern of Fig. 1. The shaded squares in Fig. 2 are newly
added in Fig. 1. The metal volume fraction of Fig. 2 is
0.7567 and the texture is a conductor.

FIG. 2. Pattern further packed in Fig. 1. The shaded squares
were deposited into Fig. 1. The volume fraction of the black
and shaded partions is 0.7567.

I QO nm
FIG. 4. The pattern of Voss, Laibowitz, and Alessandrini,

denoted by VLA, at the volume fraction U =0.64 ( &U, =0.74).
Gold-film areas are indicated by black.
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When the matrices are metals and square holes are
punched prohibited overlaps and permitted contacts, the
black and shaded portions of Figs. 1 and 2 are insulators.
Then the materials are another CP model. %e denote by
8 this CP model. Figures 1 and 2 represent either model
A or 8 depending on whether the black and shaded parts
are metals or insulators.

In model C the substrates are insulators, but when
square metal films are deposited, not only contacts but
also overlaps are permitted. When an overlap occurs, the
metal film is deposited only on the portion of nonoverlap.

Model D is formed by the exchange of metals and insu-
lators in model C, just as model 8 is obtained by the ex-
change of metals and insulators in model A. We depict in
Fig. 3 one pattern of C and D for n =10 shaped on a sub-
strate with lOOX 100 unit cells. When the black portions
of Fig. 3 are metals, the texture is model C, and when the
black parts are insulators, the texture is model D. The
volume fraction of black parts of Fig. 3 is 0.5505. In Fig.
4 we show one of the patterns of gold films deposited on
substrates by Voss, Laibowitz, and Alessandrini (VLA),
using transmission electron micrographs. The black parts
are gold films and the volume fraction is 0.64
( & U, =0.74). Hereafter we denote their textures by VLA.

When n =1, models A, 8, C, and D are the same
models. As n increases, the discrepancies among the
models become substantial. In I we showed that when
n ~y 1 the CVF of model 3 is 0.73 and agrees well with
that (0.74) of VLA, and that the CVF of model D is 0.42
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FIG. 5. Scatter plot of the perimeter P versus area A for the
clusters of model A.
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FIG. 6. Scatter plot of the perimeter I' versus area A for the clusters of model 8.



FRACTAL PROPERTY OF TWO-DIMENSIONAL CONTINUUM. . . 3359

and agrees well with that (0.407) of the experiment of
Smith and Lobb. ' In this paper we use n = IO.
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FIG. 7. Scatter plot of the perimeter P versus area A for the

clusters of model C.

III. FRACTAL PROPERTY OF T%'0-DIMENSIONAL
CONTINUUM PERCOLATION CLUSTERS

The fractal dimension Df is defined in many forms.
A relation for Df of the 2D problem is given by

D) /2

where P is the perimeter of fractal objects and & is the
area. Lovejoy' used (5} to estimate the fractal dimension
of cloud and rain area boundaries. Voss, Laibowitz, and
A,iessandrini also applied (5) with other relations. Natur-
ally the fractal dimensions obtained by the different rela-
tions were consistent. In this paper we also use (5), be-
cause in our computer simulation it is easiest and most
direct to estimate the relation between P versus A of per-
colation clusters shaped on square meshes.

We plot P against A of clusters in Figs. 5, 6, 7, and 8,
respectively, for models A, 8, C, and D. In Fig. 9 we
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FIG. 8. Scatter plot of the perimeter P versus area A for the clusters of model D.
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second stage where the metallic volume fraction becomes
close to the CVF and large clusters occur, D~ of the large
clusters is presented by

10'—
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Area, A (nm')
1Q'

FIG. 9. Scatter plot of the perimeter P versus area A for the

gold clusters by Voss, I.aibovritz, and Alessandrini.

present the same data for VLA. The numbers of unit

cells of the substrates are indicated in Figs. 5—8 as
50X50, 100X100, and 200X200. As shown in Figs.
5—8, there are three stages in the relation between A and

P. In the first stage where the percolation clusters are
small and localized, the data points greatly scatter. In the

for all the models. Zallen' expressed the clusters of the
second stage as "all skin and no flesh, " and in the stage
the clusters are skinny. In the third stage where the me-

tallic volume fraction is beyond the CVF, the perimeters
of the largest clusters rapidly decrease, the largest clusters
again become fieshy, D~ decreases and at last it becomes
unity. These behaviors are obtained in all the four 2D CP
models, independently of the numbers of unit cells of the
substrates, though the sizes of the largest clusters depend
oil the numbers.

In the experimental result (Fig. 9) for VLA, the third
stage is not shown; however, the behavior of the first and
second stages agrees well with those of models A, 8, C,
and D. The fractal dimensions [Eq. (6)] agree with those
of VLA and with those of Kapitulnik and Deutscher, ' us-

ing transmission electron micrographs of Pb films de-
posited on amorphous Ge. The fractal dimensions also
coincide with those of the 2D lattice percolation prob-
lem. '-"

Finally, we compare in Fig. 10 the data points of the
perimeter P versus area A for the clusters of models A, 8,
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FIG. 10. Scatter plot of the perimeter P versus area A for the clusters of models A, 8, C, and D, whose substrates have 200&200

unit meshes.
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C, and D formed on substrates with 200)&200 unit cells.
The behaviors of P versus A for all the four models are
very similar to each other, particularly in A and C, and in
Band D.

IV. CONCLUSIONS

We have studied the two-dimensional continuum per-
colation and conduction, using random patterns formed
on square cellular structures, and the critical volume frac-
tions for the metal-insulator transition and effective con-
ductivities agreed well with experimental results for metal
filills deposited on iilslllator substrates.

In this paper we studied the fractal properties of the
random patterns. It was clearly shown that not only the
critical volume fractions and effective conductivities but
also the fractal properties of the random patterns agree
well with experimental results using transmission electron
micrographs of metal films deposited on insulator sub-
strates.

The fractal dimension of the models in this paper is 1.9
for the large clusters occurring when the metallic volume
fraction is close to the critical volume fraction, and the
value agrees well also with that (1.9) of the two-
dimensional lattice percolation.

The random patterns shaped on square meshes are not
similar in their forms to the metal films deposited on sub-

strates, however, the basic physical properties for the ran-
domness such as critical volume fraction, effective con-
ductivity, and fractal dimension agree well with each oth-
er.
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