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The use of four pulsed rf fields for the excitation of multiphoton resonances in a two-level system

is investigated. A general theoretical description of the experiment is provided based on the Floquet
formalism and apphcation of basic conservation laws to the overall transition process. The predic-
tions of the theory are compared with computer simulations of the time evolution of the magnetiza-

tion according to the exact time-dependent Hamiltonian. It is shown that S-photon resonances
occur when the fields are applied at frequencies 1k' and +l~ from the Larmor frequency, where k
and I are positive integers having no common factors and where 0& k & I, K+I=¹ For any reso-

nance k photons are taken from the outer field pair and I are taken from the inner field pair. A to-
ta! of 2[(l +k)!]/(k!1!) mutually interfering transition pathways exist for the overall process and the
resultant magnitude of the effective N-photon field is very sensitive to the relative initial phases of
the rf fields. The spiral motion observed for multiphoton resonances induced by double-frequency

irradiation is absent here when the field intensities are symmetrical. In addition, the fraction of to-
tal applied rf intensity available for multiphoton pumping is considerably greater than for two
fields. Phase cychng to enhance detection of multiphoton effects and multiphoton spin locking are
considered.

I. INTRODUCTION

The nonlinear response of a two-level system to two
simultaneously applied irradiation fields has been the sub-

ject of intensive study. ' 's When the oscillating fields are
the components of a single strong linearly polarized field
oscillating in the plane normal to the quantization axis of
the system, it has been demonstrated theoretically' and
experimentally " that subsidiary resonances appear
when the ratio of the apphed frequency to the Larmor fre-
quency, Q/Qo, is approximately 1/N, N=3,5,7, . . . .
Formulations of the problem utilizing Floquet's
theorem" and the second quantization have estab-
lished resonance conditions and afforded a description of
the subsidiary resonance as a process in which a total of
N photons are absorbed from and emitted to the two cir-
cularly polarized field components during transition be-
tween atomic states. By apphcation of perturbation
theory, a time-independent effective Hamiltonian deter-
mining the approximate time evolution of the system near
resonance could be derived, the off-diagonal element of
which was proportional to coi/Q ', where co~ is the os-
cillating field intensity. Multiphoton resonances predicted
by the theory have been detected by microwave spectros-
copy, ' molecular beam methods, and optical pump-
ing 7s 97 1 1

While NMR can, in principle, directly detect multipho-
ton resonances in a system of noninteracting spins- —,

'

under linearly polarized rf irradiation, its inherent lack of
sensitivity precludes this at achievable rf field strengths.
Consequently, the influence of the counterrotating rf com-
ponent in NMR is conventionally disregarded. ' These ef-
fects become experimentally accessible with double-
frequency irradiation near the Larinor frequency. '

Two linearly polarized rf fields applied at frequencies Qi
and Qz will, in a frame rotating at frequency

Q,„=—,'(Qi+Qi), assume the roles played by the com-

ponents of the single linearly polarized field in the labora-

tory frame, and b,m =1 transitions involving the absorp-
tion and emission of several photons are possible. ' The
resonance condition here is

~
(Qi —Q,„)/(Qo—Q,„)

=1/N, N odd. The N-photon effective field varies in-

versely as (Q& —Q,„) ', rather than Q ' as above, so
that considerably lower rf field intensities are necessary.
Anderson' directly observed an X =3 transition in water

by irradiating with two rf fields, while Franz and
Slichter' observed up to three photon transitions in ro-
tary saturation experiments on solid CaFz. In a series of
studies of the 'H NMR response of chloroform to
double-frequency irradiation, Bucci, Santucci, and co-
workers' ' detected all possible multiphoton resonances

up to N=27 with Qi fixed and Qi variable. These early
NMR experiments were all of the continuous wave (cw)

type, and coherent effects during multiphoton excitation
were not observed.

Zur et al. ' extended these studies to the pulsed NMR
regime by using two simultaneous pulsed rf fields to in-
vert the 'P magnetization of phosphoric acid by a three-
photon pathway. An inversion time t of less than 2 ms
was obtained with rf field intensities of 10 kHz. A
theoretical treatment based on single-mode Floquet theory
was presented and an expression for the three-photon ef-
fective field obtained. The rf fields were phase synchro-
nized, and the dependence of the phase of the coherence
created by double-frequency irradiation on the initial rf
field phases was found to be consistent with a transition
process involving two inner-field (closest in frequency to
Qo) absorptions and one outer-field emission. The magni-
tude of the effective field, measured directly as m/t, was
proportional to the outer rf field intensity and to the
scpwre of the inner rf field intensity, and was independent
of the initial phases, in agreement with the theory.
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A characteristic spiral motion executed by the magneti-
zation in the Larmor frame during resonant double-
frequency irradiation was also observed by Zur et al.
This motion originates in a Bloch-Siegert-like shift, rela-
tive to the Larmor frame, of the rotating frame in which
the magnetization undergoes simple processional motion
under a time-independent effective Hamiltonian. In the
cw spectra this is manifested as rf field strength-
dependent shifts of the multiphoton resonance positions. '

While generally a negligible effect in pulsed single-
quantum NMR spectroscopy, spiral motion substantially
complicates the coherent detection of multiphoton pro-
cesses because the spiraling frequency is not small in com-
parison to the magnitude in frequency units of the effec-
tive multiphoton field. For the three-photon proves cited
above, many cycles of the spiral motion were completed
during time t . This rapid (in comparison to t ) motion
could not be suppressed and more elaborate pulse schemes
were devised's for determining the magnitude and phase
of the transverse magnetization after multiphoton excita-
tion.

Double-frequency irradiation has also been used to
create double-quantum coherence in a spin I= 1 system in
the solid state. '9 When the fields were symmetrically
placed about Qo and the field intensities set equal, the
magnetization was found to execute a simple nutation
about I,' in the Larmor frame without spiraling. The rf
was generated by amplitude modulation of the carrier
wave. In order for there to be no spiraling, it was neces-
sary that both the rf field positions and intensities be sym-
metric about Qo, a form of irradiation which cannot 111-

duce transitions in a two-level system. ' However, the
response of a spin- —,

'
system to more than one pair of rf

fields has not been explored.
The present study treats theoretically the response of a

spin- —,
'

system to up to four simultaneously applied rf
fields. The fields are assumed to be symmetrically
disposed about a central frequency Qo, with arbitrary in-

~4ef4

kW.4 kcu

I i I~j~ I QJ
f
)

~1
Q Qo

FIG. 1. General irradiation scheme: four rf fields of arbi-
trary intensity and phase are applied at frequencies +km, +Ice
from a central frequency 0, where k and I are positive integers
having no common factors and 0&k «/. The offset from the
Lsrmor frequency ~ is b, =QO —Q.

tensities and phases (Fig. 1). The most general configura-
tion of this type would be prepared by low-frequency
amplitude~and phase —modulation of an rf carrier at
frequency Q, with selective attenuation to fix the relative
intensities of each frequency component. In Sec. II, the
Floquet formalism for periodic time-dependent Hamil-
tonians and perturbation theory are employed to obtain an
approximate time-independent Hamiltonian for the prob-
lem, from which conditions for resonance without spiral-
ing can directly be established. The existence of these res-
onances depends on the connectivity of the Floquet states
and the fulfillment of basic conservation laws for the
overall transition process. Once the resonance conditions
are defined, expressions for the off-diagonal element of
the effective Hamiltonian are derived. Section III
presents a series of accurate computer simulations of the
motion of the magnetization vector calculated according
to the exact time-dependent Hamiltonian for field config-
urations predicted by the theory to induce multiphoton
resonances. It is found that the response to four fields
differs qualitatively from that to two fields, most notably
with regard to the existence of more than one resonance of
given order N, the presence of many mutually interfering
transition pathways for any resonance, and the total
suppression of spiraling under readily achieved conditions.

II. THEORY

A. The Ha~iltonian

The laboratory-frame Hamiltonian for a spin I= —, of Larmor frequency Qo irradiated simultaneously by four rf fields
symmetrically placed about a frequency Q as shown in Fig. 1 is

~&(r ) QA 21.——!r0—,coal «—1~)r 0, l+~—,cos[«— k~)r 6]— —

+coicos[(Q+ kco)l —pi]+cu4cos[(Q+ leo)t —$4]I,

where 2co1 and p& are the amplitude and initial phase of field j, co ~ 0, and k and 1 are positive integers having no com-
mon factors besides one, defined such that 0 & k ~ 1. In a frame rotating at frequency Q about the static field direction,

4 ( t) =—dd, I~ [colcos(lcor+pl )+—co2cos(keel +$2)+co3cos(kyat p3)+co4cos(lect p—4)]—
I&[colslll(1cor +pl )+—ciJ2slI1(kcor +$2) tgisln(kcol —p3—) c04sln(Icier —p—4)],

with b, =—Qo —Q. The counterrotating components of the fields are neglected in Eq. (2).
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8. The effective Hamiltonian

In order to establish conditions for resonance, an ap-
proximate expression for the evolution operator U(t) will

be obtained based on the Floquet formalism for periodic
time-dependent Hamiltonians. A thorough description of
the methods has appeared" and only expressions which
are essential or require modification will be reproduced
here. If 4 (t} is periodic with period 22ylr0, the elements
of U(t) are given by

U„„(t)=g (r, n
I
e "

I yl 0)e'""'.

The Floquet Hamiltonian A F is an infinite time-
independent matrix with elements

(r,m+n IP F I yt, m ) =A~/„'+me25y„5„0,

where

(5)

~„„(t)=g W„"„'e'""'.

The Floquet states
I rn) are equivalent to dressed spin

states labeled by the eigenstates of the Zeeman Hamiltoni-

an, r, and the reduced photon number n For the .Hamil-

tonian of Eq. (2), the nonzero elements of 4 F are

The solution of the equation of motion for the spin den-

sity matrix, neglecting relaxation effects, can formally be
written

p(t)=U(t)p(o)U '(t),
where U(t} must be determined from the time-dependent
Hamiltonian of Eq. (2). Equation (3) can be evaluated nu-

merically by division of the evolution time t into many
subintervals over which the Hamiltonian is nearly con-
stant. ' This procedure is utilized in Sec. III to study the
exact time evolution of the magnetization when multipho-
ton resonance conditions are satisfied.

(a,m IPF la, m)= — +mei,

(p, m
I
A F I p, m) =—+mcus,

2

(p, m+1 IA F la, m)=(a, m —I IA F I p, m)'=Xi,

+k I~F Ia m&=&a m —k I~F I@m&'=x2

(p, m —k
I
P F I

a,m ) =(a,m+k
I
~F I p, m )"=Xi,

(p, m I IA—F la, m) =(a,m+1 IA F I p, m)'=X4,

where
I
a) and

I P) are eigenstates of I, with eigenvalues

—,
'

and ——,', respectively, m is any integer, and
I

XJ ————,uje ', j=1,2, 3,4.
In setting up 4 F we have, for reasons of convenience,

employed a lumped photon index and the notation of
single-mode Floquet thtxiry, rather than invoke two or
four separate photon numbers. Since k and I are relative-

ly prime, there will be no ambiguity as to which rf field is
involved in any step of a multistep transition process.
Furthermore, in the limit of large photon numbers the
matrix elements between dressed states will depend only

on the differences between, not the absolute values of, the

photon numbers of the states. '
Considerable simplification of Eq. (4) is possible if the

off-diagonal elements of P F are smaller than the differ-
ences between diagonal elements (c0J &~co), as will gen-

erally be assumed in this study. The diagonal elements of
A F depend on b, and to (as well as the secular parts of in-

teraction Hamiltonians, if present). As the external pa-
rameters are varied, resonance between Floquet states

I r,n) and
I yl, o) will occur if for some set of param-

eter values collectively denoted by P there exist n, r,
and yt such that (i) (r,m+n

I
A F(P)

I r,m+n)
=(yI, m

I
P F(P)

I yj, m), m=O, +1,+2, . . . and (ii) the
quantity

&»n I
~F(P}I

r' 2 &&r' i
I
mF(P) ln, O&—

2
i y', i) E"„„—E;

g+(y, n ),(g,03]

&»n
I
~F(P}

I

r' i &&r' i I~F(P)
I
n'j &&n' j I ~F(P) ln 0&

+ n +
(y', I', ), (q',j ) (E"„„Ey;)(Eyv Ev ~

—)—
[+{y,n), (g,o)]

"nonz«o' here Eyj =Eyj(P}=& rj I
~F(P)

I rj ) and E" =(E „+E&)/2.When the two conditions are satisfied for
w~ e fields the time depmdmm of p(t) is msentidly""confin~ to cohermce b twin levels r and ~, »d tlm~
independent perturbation theory can be applied to ~F(P) to obtain

inmtiy i i~—
(10)

U" "(t) is the part of U(t) active on the resonant levels and is identical to U(t) for spin I= —,. The effective Hamil-

tonian is a 2&2 time-independent matrix defined in terms of fictitious spin- —, operators in the
I r, n ), I 2),0) manifold

by

~ 'v= Re(e2P)I„" "+Im(c—oP)Iy" " 5PIy-
The offset parameter is

(12)
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where the perturbation correction 5„to the energy of Floquet state
I y, n ) due to interaction with nonresonant levels is

(y',i )
f+(y, s },(g,o))

+ t ~ ~ (13)

Equation (10) gives an approximate evolution operator
in the frame in which P (r) is determined, rotating at an-
gular frequency Q. Trsnsformation to a frame rotating at
angular frequency 0+ neo gives the familiar expression

Ul' %(r )' —e (14)

The system evolves according to a time-independent effec-
tive Hamiltonian in the 0+neo frame. In any other rotat-
ing frame, the magnetization executes spiral motion. '

A remark is in order concerning the relation of the
present approach to average Hamiltonian theory (AHT).
It can be shown' that if the series in Eq. (9) is truncated
after the terms containing some number X' factors, the
resulting ——,'eiiP is equivalent to the (y, rj) element of
A (~' —», the effective Hamiltonian calculated by AHT to
order N' —1. While most of the results derived herein
could, in principle, be obtained by AHT, the Floquet
method provides a considerably more efficient means of
determining resonance conditions and of explicitly
evaluating the magnitude and phase of ——,

'
eoP for specif-

ic field configurations.

C. Suppression of spiraling

For the Floquet Hamiltonian of Eq. (7), degeneracy be-
tween IP,O) and I(z,n) occurs whenever b, =neo. This
corresponds to a resonance only if n, k„and I are such
that the off-diagonal element of the effective Hamiltonian
is nonzero. While discussion of ——,'v)~ is deferred to
subsequent sections, we note here that the general stipula-
tion b, =neo can be exploited to define conditions under
which spiraling of the magnetization in the Qo frame is
suppressed at resonance, without a detailed knowledge of
the resonances themselves. These conditions will in turn
place importiuit constraints on the possible values of n, k,
and l.

The spiraling frequency co, is defined as the frequency
difference between the line (Qo} frame and the Q+nco
frame in which the magnetization evolves a(wording to
Eq. (14),

I

which is zero at resonance, giving for the spiraling fre-

qQCIlCQ

N~ Ng N3 N4
Ng= + + + jn+l n+k n —k n —&

(17)

where the substitution b, =neo is made.
In establishing circumstances under which ai, =0 at res-

onance, two cases are distinguished.
(i) n =0. The resonance condition is 6= —eo„where

eo, =(2co) '[(co(—e04)/l+(a)2 —c03)/k)] by Eq. (17). In
particular, if the field strengths are symmetrical about Q,

D. Existence of the resonances: Floquet grid

For a IP,O)- Ia,O) resonance to exist, cog' must be
nonzero; equivalently,

I p, O) and Ia, O) mustbe connect-
ed by the off-diagonal elements of A F, either directly or
indirectly via intermediate states. With conventional ma-

N] N4=Ny j N2=N3=Ni

the formal resonance condition is 5=0 exactly, as di-
agrammed in Fig. 2, and (0, =0 at resonance regardless of
N, N„and Ni.

(ii) n+0. The resonance condition is 6=neo eo„an—d
it is apparent from Eq. (17}that co,+0 unless I & I

n
I

(or,
equivalently, I

b,
I & lai, corresponding to placement of at

least one rf field to each side of Qo).
Of the many possible degeneracies between Hoquet

states for four-frequency irradiation, consideration will be
restricted in the following sections to that between

I p, O)
and

I a, O). We note that the elimination of spiraling at
resonance in case (i) is more readily achieved than in case
(ii), as rf fields prepared by double sideband modulation of
a carrier wave at the Larmor frequency is sufficient, rath-
er than four variably offset fields of arbitrary intensity.
In addition, a smaller rf field offset 5 is required in case
(i) for a given set of field intensities since
e0, -eo(eoj/eo) «eo, 1 &j&4, placing less stringent
demands on the resonance bandwidth of the rf coil.

The off-resonance part of the effective Hamiltonian is,
from Eqs. (7), (12), and (13),

T

N~ N2

2 b+lw h+ka)

N3 N4+ '+
b, —k&0 b, —/co

k~ ' kaP

FIG. 2. A specialization of the scheme of Fig. 1, with zero
offset and applied intensities symmetrical about 00. For this
configuration the spiraling frequency vanishes for all k, I, cu,

and rf phases, as described in text.
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FIG. 3. {Left) Floquet-state grid in neighborhood of
~ P,O). (Right) Key to which sohd lines connect the Floquet states when the

off-diagonal elements of the Floquet Hamiltonian of Eq. (7) are nonzero.

trix representations of 4 ~ it may not be obvious for given
k, l whether these states are connected and, if so, what the
number of intermediate states is. It is, therefore, desirable
to have a representation of the Floquet states which em-
phasize primarily their connectivities rather than their or-
dering by photon number.

Consider the Floquet grid of Fig. 3. The atomic num-
ber alternates throughout the grid, while the photon num-
ber is incremented by k in one direction {here, up) and by
l in the other (left). Each state is adjacent to the four
states directly connected to it by the off-diagonal elements
of the 4 ~ of Eq. (7), and solid hnes between the states are
drawn if the corresponding coj+0. A necessary condition
for resonance between any two states is that an uninter-
rupted pathway aloIlg solid 1111cs exist bctwccn them 111

this grid. An analogous construction has been used in the
analysis of transition pathways involved in four-wave
mixing. "

~ P,O) can be connected to
~
a,O) only if the latter ap-

pears somewhere in the grid. From Eq. (7), if
~
P,O) is in

the grid so is
~
a,qk+q'/), where q and q' are any in-

tegers such that q+q' is odd. Brief reflection reveals that
unless k+/ is odd as well, a grid containing

~
P,O) will

only contain dressed a states with odd photon numbers.
{We require throughout that k and I be relatively prime. )
If k +I is odd, then

~
a,O) must appear in the grid, since

it is possible to choose q= —/, q'=k. The first prere-
qmsite for any

~ P,O)-
~
a,O) resonance is thus

k+l =2m+1,

mth m any non-negative integer.
Let us initially take a)3=co4——0, a)i, co2~0.

~
p, O) is

then connected to states
~
a,q(1 —k) —k), q any integer,

and resonance with
~
a,O) requires q(1 —k) —k =0. The

value q =0 is excluded since processes for which a single-
quimtum pathway exists (k=0, irradiation at the line
frequency) are not of interest here. Also, all q & 0
can be eliminated since k &1. Therefore, I =k(q+1)/q,
q= 1,2,3, . . ., or, equivalently,

1=k+1 (20)

for the
~ P,O)-

~
a,O) resonance induced by two fields ap-

plied to the low-frequency side of the line. This resonance
is equivalent to the (2q+1)-photon resonance discussed
in Ref. 18 for double-frequency irradiation, where the
fields were situated at frequencies kui and kui(q+1)/q
relative to the rotating-frame frequency Q, which was in
turn shifted by co,+0 from Qo.

The situation is illustrated using the Floquet grid in
Fig. 4(a). Since the grid is periodic, only a section cen-
tered on an occurrence of the initial state

~
P,O) marked

by a circle is needed. The nearest occurrences of
~
a,O)

are indicated by diamonds for I=k+1 (open) and
1&k+1 (solid). In the former case there is one pathway
along solid lines to

~
a,O) which is highlighted in the fig-

ure, while in the latter no pathway exists. A similar re-
sult, illustrated in Fig. 4(b), is obtained when rai co2 0, —— ——
co3~4+0.

If a)2 ——a)3—Oy coiyc04+Oy
~
pyO) is connected only to

states
~
a,ql ) and no

~
P,O)-

~
a,O) resonance exists for

l&0 [Fig. 4(c)]. Similarly, no resonance exists if the
inner-field pair is applied alone. The remaining possible
combinations of field pairs also offer no such resonance.
For example [Fig. 4(d)], when cei,co3~0,

~
P,O) is con-

nected to states
~
a,q(1+k)+k ); there is no solution to

the equation q(1+k)+k=0 for which 0&k &1. In gen-
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l I I I

I I i 1'

I I l 1 I I

I [ I I I I

A

FIG. 4. Floquet-state connectivity diagrams for various irra-

diation schemes, indicated to the right of each diagram (not to
scale). The open circle marks an occurrence of

~
P,O). Oc-

currences of
~
a,O) are marked by diamonds: open if !=k + 1

(here, @ =2, I =3},or sohd if 1&k+1 (here, k =1, /=4). {a)

a&i, coq+0; one pathway from
~
P,O) to

~
a,O) if !=k +1, none

otherwise. (b) a&3,co4+0; one pathway if I =k+1, none other-

wise. (c) col, u4+0; nopathways. (d) ~~,~3&0; nopathways. (e}

co2, coq, e~4+0; pathways exist for all k,!compatible with Eq. (19).
Multiple pathways are highlighted for !=k + 1. (f}

coi, coi, coal, m4+0; pathways exist for all k,!compatible with Eq.
(19).

eral, it is impossible for two weak rf fields applied to ei-
ther side of Qc to induce resonant transitions in a two-
level system for any value of the terminal photon number
n as long as k &0. If the line frequency is to lie within
the frequency range dehmited by the fields, then

~b
~

&kr0 or, since a=neo at resonance, )n
~

&k. If
~
P,O) and

~
a, n ) are to be connected by the off-diagonal

elements of A z it is necessary that q(l+k)+k= nfor

the field configuration of Fig. 4(d). There must then be
no resonance, since this equation admits no solution for
0& ~n

~

&k&1.
It is apparent from Figs. 4(e) and 4(f) that if three or

four fields are applied as shown, resonance between
~
P, O)

and ~a, O) is possible, with k and ! restricted only
through Eq. (19}. In addition, multiple pathways exist
from initial to final state. The symmetrical rf field con-
figuration of Fig. 2 therefore represents an infinite num-
ber of resonant irradiation schemes, any one of which is
specified by k and 1 to within a scaling factor r0. In sub-

sequent discussion, P will be replaced by k,!as the identi-

fying subscript attached to quantities comprising the ef-
fective Hamiltonian of Eq. (11}.

E. Multiphoton order of the resonances

The preceding discussion has shown that ~P,O) and

~
a,O) are connected by the off-diagonal elements of A ~

for irradiation as in Fig. 2, but does not indicate the con-
ditions under which such a resonance can be detected.
Since multiple transition pathways exist [Fig. 4(f}], it is
possible the sum in Eq. (9) will have a zero resultant, at
least for certain choices of initial rf phases. Deterinining
——,

'
ePk~i directly from A ~ for particular values of k and !

will settle the question of observability only in specific

(22)

and for photon counting,

4

g (n'+n')=X' .
j=l

(23)

In Eq. (22), the photon energies are Ei ——Qc —leo,

E,=no —kcu, E, =a,0+k', and E4=no+Ia. Combin-
ing Eqs. (21) and (22) yields

k[( +ni) n—i(nz+ni)]=1[(ni+n4) (nI+n4)]—

%e are interested primarily in pathways involving the
minimum number of steps as these are expected to make
the largest contribution to the sum in Eq. (9}. Since the

cases. An alternate approach is to formulate the overall
transition process as a sequence of individual photon in-

teractions to which fundamental conservation laws can be
applied. This will permit us to determine resonance or-
ders (without recourse to graphic devices} and to establish
necessary and sufficient constraints on the rf field phases
for ——,

'
cok~~ to achieve its maximum amplitude.

We begin by defining resonance and pathway order.
The multiphoton order N of a resonance is equal to the
number of factors in the numerator of the first nonzero
term of the perturbation expansion of ——,

'
cok~! in Eq. (9).

This is the saine as the minimum number of photons
needed to complete the transition from

~ P,O) to
~
a,O).

A transition pathway of order E' is defined as a sequence
of N' field interactions and N' 1 vir—tual intermediate
states, beginning on

~
P,O), terminating on

~
a,O), and

conserving energy and angular momentum for the

~
P)~ a ) transition. Each term contributing to

——,
'

cok i and containing N' & N factors corresponds to one

transition pathway of order N', and from the complete-
ness of the Floquet states (4) Eq. (9} must contain one
term for each possible pathway.

A distinction should be made between the higher-order
pathway for a resonance of order X, involving N'&N
steps, and a more thorough diagonalization of 4 z with

application of Eq. (4). The latter refinement will incorpo-
rate high-frequency terms into U(t). ' The present treat-
ment of four-field irradiation is restricted to first-order
terms in the sence that only Eq. (14) will be used to esti-
mate the time dependence of p near resonance.

In applying the conservation laws, the conclusions are
independent of the reference frequency chosen for the dis-
cussion and the problem is formulated in the laboratory
frame. For a transition pathway of order N'&0 we de-

fine the interaction numbers nJ and n&', j=1,2,3,4 as the
number of absorptions from and emissions to field j,
respectively, where nj, nz' are non-negative integers, and
assume as before that coj. &co for all fields. The condition
for angular momentum conservation is

4

g (nJ —n,') =1, (21)
j=l

for energy conservation
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bining Eqs. (25a) and (26) then yields one set of allowed
interaction numbers:

interaction numbers are non-negative and k and 1 are rela-
tively prime, Eq. (24) yields two mutually exclusive con-
straints on the interaction numbers for minimum N':

nI ——s, nit ——s+ ,'(1—k—+1),
ni ———s+ —,

' (1+k—1), n«t ———s+k .
(28)t 1 t l s t J tn)+n4=k, n2+n3=1, n) =ng=n3=n4=0,

ni+n4 k,——ni+nz ——1, ni ——ni ——ni n——4 0——.t l l t 4 t l t (25b)
The interaction numbers corresponding to Eq. (25b} are

Designating the minimum N by N, we obtain from Eqs.
(21), (23), and (25a),

n it n,'—+n] n,'—=1, n', +n,'+n,'+n~«=N, (26)

which indicates that n'i+ni ———,
' (N+1); but the interac-

tion numbers are integral, requiring that N is odd. [An
identical conclusion is reached for Eq. (25b).] Combining
Eqs. (25) and (26) gives finally for the resonance order

N =k+1=2m +1,
with m any non-negative integer.

From this result, we conclude that multiphoton reso-
nances of order 3,5,7, . . . are allowed for four symmetri-
cally placed fields where in every case the spacing param-
eters sum to the resonance order. Field placement for the
six allowed resonances through N =7 is shown in Fig. 5.
It should be noted from Eq. (25) that for each lowest-
order pathway 1 photons are taken from the inner-field
pair, k from the outer-field pair, and in no instance are
photons both alniorbed and emitted to the same field.
Higher-order pathways must, in order to be compatible
with Eq. (21},contain the same number of additional ab-
sorption as emission steps. Thus N'=N+2q, q
=1,2,3, . . . , and all possible pathways involve an odd
number of field interactions.

F. Transition pathways of lowest order

The four nonzero interaction numbers for pathways of
order k +1 are not completely determined by Eqs.
(21)—(23), and it is possible to assign one of them, for ex-
ample n «i in Eq. (25a), an integer value s, 0 &s & k. Com-

The total number of pathways of lowest order for given k
and 1 is then

k+1
Gk, l 2 y gk, l(s)

s=0
(31)

An identical result to Eq. (31) is obtained by inspection
of the Floquet grid. With one occurrence of ~P, O)
chosen as the origin, the closest occurrences of

~
a,0) fall

at Il,kj and I
—1,—k) in the grid (Fig. 6). Every path-

way of order k+1 between the resonant states is then con-
fined to two rectangular regions of the grid, one in qua-
drant I (QI) and the other in quadrant III (@III),each of

n it = —s+k, n2 ———s+ —,
' (1+k—1),

nj ——s+ —,'(1—k+1), n4 s——,

which can be obtained from Eq. (28) by exchanging sub-
script 1 with 4 and 2 with 3.

Each of Eqs. (28) and (29) represents for given s a num-
ber gk l(s} of pathways distinguished by the order of the
photon interactions It is assumed for this two-level sys-
tem that absorption and emission steps must alternate.
The number of pathways is then obtained by separate per-
mutation of the absorption and emission steps, yielding
for either Eq. (28}or (29)

(ni+ni)!(n2+n4))
gk ((s)=

n, !n2!n3!n4!

—,
' (1+k+1) —,

' (1+k—1)

k-s s

l steps I steps

I

I

1

I

1 1
1

(
I

! i ! !
t t+ '

1

FIG. 5. Irradiation schemes for multiphoton resonances of
order 3 through 7. The inner-field pmitions are assumed con-
stant throughout. (a) three photons, k =l, /=2; (b) five pho-
tons, k = l, / =4; (c) five photons, k =2, / =3; (d) seven pho-
tons, k = I, 1 =6; (e) seven photons, k =2, 1 =5; (I) seven pho-
tons, k=3, /=4.

FIG. 6. Pathways of lowest order ( =k+/) are always con-
fined to the taro regions indicated in the Floquet grid, one in the
first quadrant (QI) and the other in the third quadrant (QIII).
One pair of partner pathways from ! P, O) to ! a, 0 } is
higMighted.
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dimension k by I steps. The number of such pathways in
both quadrants is 2[(k +I)!]l(k!I!).QI pathways involve
only absorptions (transitions out of ~II!)) from fields 2
and 4, and emissions (transitions out of

~
a)) to fields 1

and 3, and thus have interaction numbers conforming to
Eq. (25a). The interaction numbers of QIII pathways
satisfy Eq. (25b). For every pathway in QI there is a
partner in QIII obtained by inversion through the origin,
with intermediate-state photon numbers related by change
of signs. As discussed below, the contributions to
——,

'
(2II,~I of a pair of partners differ only in phase for the

general irradiation scheme of Fig. 2.
Two limiting cases are considered briefly. If co( ——I02 ——0

[Fig. 4(b)], n I =n I =II 2
——n 2 ——0, and as long as k & I there

is no set of interaction numbers compatible with both Eqs.
(21}and (28), and no QI pathway. Equation (29) is satis-
fied only if I =k+ 1 [compare Eq. (20)] and s =k, and in
QIII a gk k+1(k) =1 pathway exists from

~
p, O) to

~
a,0). If oui ——0 only [Fig. 4(e)] and we assume I =k+1

(as other choices are possible) we must have s =0 in Eq.
(28) and s =k in Eq. (29), indicating that k+1 QI and 1

QIII pathways of lowest order exist. This may be verified
in the example shown in the figure.

G. Effective multiphoton irradiation field

(32)Wr=

We now utilize the results of Sec. DE and IIF to for-
mulate a general expression for the off-diigonal element
of the effective Hamiltonian. The analysis here is limited
to pathways of order k+I, which for weak fields make
the largest contribution to the perturbation expansion of
Eq. (9).

In QI, the rth pathway of order k +I corresponding to
a particular s value, where 1 & r &gk l(s), makes a contri-
bution to ——,cook~I,

~s g ~II( qg+(I-k+1)/2m-s+(I+k —1)/21 ~e yk —gh~g )

k I
k

67

k
, , ~~4~ —42 —43+44)& ~ ~k, I~»e (35}

where

I 1
@k I k'i( 4 ((I'2 4'3 }+ (k 1)(4'2+(}3 }

2 2

I 1
@k,l k4'I+

2
(4'2 (( 3)+

2
(k 1)(4'2+03)

gk, l(s)

(s) ~k+I —1

k(p, —(()4)—l((It2 —$3)=2mir, (36)

where m is any integer. It is convenient here to introduce
new phase parameters a,P,y,5, given by

a=
z (41 6» P= z-(02-43»

r= 2(4(+04» &= 2((!)2+(()3)

01=}+a 6=&+P 6=&—P 04=x a-
whence

(37)

From Eq. (35) it is apparent that the various transition
pathways mutually interfere according to the relative ini-
tial phases of the rf fields, and that both the magnitude
and phase of ——,

'
aik~~ are sensitive to the choice of phases.

Phase constraints ensuring the maximum amplitude of
——,'alk I for given co, co„and co; are next sought which
amounts to finding conditions for constructive interfer-
ence of all pathway contributions. We note from Eq. (35)
that for the irradiation scheme of Fig. 2 the phases of
every pair of partner pathways can be linked at once sim-

ply by requiring Csk I Csk I+——2m', or

To first order f, is the product of the differences between
the resonant-state energies (represented by the average of
Eo and Ef) and the Floquet-state energies of the inter-
mediate states encountered along pathway q for the tran-
sition. For the

~ P,O)-
~
a,O) process, f, is to first order

proportional to the product of the reduced photon num-
bers of the intermediate states, the proportionality being
exact at resonance when Eq. (18) holds.

The contribution of the partner in QIII is

(g s )k —sx —s+(I+i —1 }/2 (~st )s+(I k+ 11/2Xs—
1 2 3 4

(33)

and the off-diagonal element is

k gk 1(s)

2k. l= g—g (Ills+Ills) . (34)

It is assumed in the following that Eq. (18) is satisfied in
order that c0, =0 at resonance (Sec. IIC). In this case
f,=f„',since the intermediate-state photon numbers differ
only in sign between partner pathways and there is always
an even number of intermediate states [Eq. (27)]. Com-
bining Eqs. (8), (18), and (32)—(34) yields

s, + ' k, l 2 I[ky (k—— S}— S(k Ip)

and the first phase condition is simply

(38)

f3 +Ij(I4——(2m + 1 Hr (39)

ka —IP=mn . (36')

The terms within the summation in Eq. (35) represent
phase differences between different pairs of partner path-
ways or, equivalently, between path contributions within a
quadrant. It is not obvious how to link the phases of
these terms because the real numbers al, l(s} are not
known a priori. The latter can be determined by a com-
puter algorithm which generates and steps through all
lowest-order pathways of one quadrant of the Floquet
grid for any k, l, accumulating as it does so sums of re-
ciprocal products of intermediate-state photon numbers
for each possible value of s. When this operation is car-
ried out, it is found in every case that the signs of the
ak l(s) alternate with s. Theoretical justification for this
is offered below. At present, we note that the sign alter-
nation gives the second phase condition
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5—y=(2m +1)II/2, (39')

which together with Eq. (36) is sufficient to link construc-
tively the phases of all pathway contributions to ——,

'
tok~t.

When Eq. (39) is satisfied, the resultant of the terms
wlthlll the sll111111atlo11 111 Eq. (35}ls

k
1) ak, l(s) Sk, l~k, l (40)

where Sk I =sgn[ak t(0)] and /Ik, t= g,"=0
I ak, t(s)

I
~

From the algorithm, it is found that Sk &

——1 (k odd) and
( —1)" k "/2 (k even). Selected values of Ak I are listed
in Table I. When the two phase conditions are satisfied
[taking m even in Eqs. (36') and (39')] we obtain finally
for the off-diagonal element of the effective Hamiltonian,
from Eqs. (35)—(40),

k I

, )(k+()/2
(2~ )k +I —i

(41a)~B—
2 Nk"I = ~

( 1 )(I + i )/2 0 ' g e /(I+a—/2)'
)k+1 —1

k even . (41b}
L

The above relations specify, according to Eq. (11), an
effective multiphoton irradiation field of magnitude

i
COk i i

=2COOCO;/Ik i/(2')

so that the on-resonance inversion time is

(42)

The phase of the effective field is given by

y+ Ir, k odd
—1 (43a)

—arg( —,cok I )=
1

y+ Ir, k ev—en.
2

(43b)

For example, this field lies in the II direction (phase angle
equal to 0) in the Qo rotating frame if y=Ir/2 for the

k =2, 1=3 five-photon resonance, signifying that under
on-resonance irradiation for a time t /2 the magnetiza-
tion will nutate into y.

The phase conditions (36') and (39') do not unambigu-
ously determine the four phase parameters, and for any
specified phase of ——,tok~t it is possible to choose either a
or P arbitrarily. This makes possible phase cycling rou-
tines for partial suppression of rapid oscillations of the
magnetization due to higher-order terms in U(t) which
are not included in Eq. (14). Phase cycling is considered
in Sec. III8.

In order to justify the sign alternation of the ak t(s)
with s, two arguments are offered. The first is based on
the individual transition pathways themselves. For any
s =s', the pathways making the largest contribution to
ak t(s') will be those with intermediate-state photon num-
bers near zero [small f„in Eq. (32) or (34)]. Given one
such dominant QI pathway for s', it is possible to derive a
dominant QI pathway for s' —1 by replacing, between two
intermediate states lying close to the resonant levels, an
emit to field 1 and absorb from field 2 sequence by an
emit to field 3 and absorb from field 4 sequence (Fig. 7).
This new pathway differs from the old only in one inter-
mediate state, with photon number of sign opposite to the
corresponding state in the original pathway. Therefore, f„
will differ in sign between dominant pathways having s
values differing by one.

A second argument is provided by average Hamiltonian
theory. If p) ——$2 ——((}&

——(|t4 and Eq. (18) holds, the rotat-
ing frame A (t) of Eq. (2) is easily shown to be self-
commuting at all times; since it is also periodic with zero
cycle average, every term of the Magnus expansion van-
ishes, as must the effective Hamiltonian in Eq. (14). (Thus
no resonance is observable even if higher-order pathway
contributions are included. ) With ——,coke ——0, Eq. (35)
holds under assumption of equal phases only if

oak t(s)=0; the akt(s) thus cannot all have the same

sign. Now for arbitrary choice of phases the effective
Hamiltonian A k~1 is equivalent to A '"+ " the term
calculated to order k+1 —1 in the Magnus expansion.
The elements of the latter depend on the elements of the
commutation [A (t),A (t')]. Recasting A (t) of Eq. (2) in
terms of the phase parameters of Eq. (37),

TABLE I. log~o{ Ak I ) for multiphoton transitions.

2
3
4
5
6
7
8

10

0.30103

—0.17609

—1.051 15

—2.197 30

—3.549 46

—0.051 15

—0.847 03

—1.935 17

—0.766 51

—3.053 88

—4.495 82

—4.348 64
—4.26183

—4.222 74
—5.68048

—7.28376
—7.254 52

—9.931 08

'See k = 1, I =2.
See k =2, 1 =3.
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FIG. 7. Eilci'gy-lcvc1 dlagfanl (I)c ftanlc) showing thrcc con-
secutive intermediate states for two doaximmt pathways
(

I p I, I
r

I & 1). Thc preceding and following steps are
represented by dots ( ~ ~ ) and are identical in each case. On
the right an cniit to field 3 and absorb from field 4 sequence re-

places the emit to field 1 and absorb from field 2 sequence at
left, which dccrcmcnts s by 1 [Eq. {28)]and changes the sign of
the photon number of the altered intermediate state.

FIG. 8. Floquct Hamiltonian (partial) for k =1, l =2.
Three-photon pathwaysfrom

I p, O) to
I
a,O) are indicated.

~p l i ( —p)+$2-p3)—
1 COi 2= ( CC1O1S SCDe

SN

&(-4'2+4'3 —0 )
+N2N3Nge Nze

I~44-W3]—Cise)ge ) . (45)

P ( t) =2[ci,cos(ltot +a)(I„cosy+I„siny)

+to;cos(kcit +p)(I„cos5+I~sin5)],

we obtain after a brief calculation

[A (t),P (t')]=—4iIgci, citsin(5 y)—
X [ cos(kcit +p)cos(ltot'+a)

cos(leo—t +a)cos(knot'+ p)], (44)

which is maximal for any t, t' only if Eq. (39') is satisfied.
(When the full commutators contributing to P' +t ' are
evaluated in any specific case, the condition on phase pa-
rameters a and p emerges as well. ) Equation (44) indi-
cates that resonances induced by the irradiation scheme of
Fig. 2 vanish not only when all phases are identical, but
whenever 5 y=mm —or P1 Pz Ps+/& —2m—n, rn an——y
integer.

Applying Eqs. (18) and (37),
2 -s——,F11 1 —— i

2
e—' sin(5 —y)cos(a —2P) . (46)

When conditions (36') and (39') are satisfied for m even
(5=y+n. /2),

—2N] 2=—1 ~P
2

NNI
e —lf

2N

as consistent with Eq. (41a). The maximum amplitude of
the three-photon effective field [Eq. (11)]is then

2
N

I ~T,z I
(47)

There are 52 pathways of order 5, which make a max-
imum contribution to the magnitude of the effective field

H. Explicit calculation for three-photon resonance

2 2 2
coyco 146)g —5')g

1, 2{5) I max
N 24N

(48)

The lowest-order multiphoton resonance induced by
four-frequency irradiation is the three-photon resonance
for k =1, l =2 [fields as in Fig. 3(a)]. A portion of A F
is displayed in Fig. 8. A total of six pathways connect

I p, O) and
I
a,O) via the muumum number N =3 steps,

in agreement with Eq. (31). These are shown schematical-
ly for the laboratory frame in Fig. 9. Two of then, involv-

ing only the upper or lower field pair, resemble three-
photon pathways for double-frequency irradiation apphed
above or below Q. A direct calculation from Eqs. (7) and
(9) yields

as detnmined from the Floquet grid. The latter quantity

1I

X2 Xl X2 X3 X4X XAX3X2
a ')

X2X3,84 X3X2Xi XI X2X3

FIG. 9. The six three-photon pathways from
I P,O) to

I
a,O)

for k = I, I =2 represented diagrammaticaHy in the laboratory
flame.
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will be relatively small if co„co;&co. The 526 pathways of
order 7 make a still smaller contribution. The numerical

importance of higher-order pathways as a function of rf
field strength wiB be assessed below.

I. Comparison of taro-field irradiation

The response of a spin- —,
'

system to double-frequency

irradiation has been extensively characterized. ' " The
salient differences between this and the response to four
fields are as foBows.

(i) Resonances exist with four fields for any k and I
such that Eq. (27) is satisfied, while with two fields only

I =k+1 is possible. The on-resonance effective field in
~oh case depends in a unique way on the intensities and
initial phases of the inner- and outer-field pairs [Eqs. (38}
and (41)].

(ii) Many mutually interfering pathways exist for any
resonance induced by four-frequency irradiation, as op-

posed to a single pathway in the case of the two rf fields.
The effective multiphoton irradiation field for four
symmetrically applied rf fields thus cannot be regarded as
a superposition of two effective fields produced by rf field
pairs appHed above and below Qo, the actual intensity can
be greater or less than that predicted by superposition, and
the phase is essentially unrelated. Taking the three-

photon resonance as an example, the effective field magni-
tude for a pair of rf fields applied below Q() is's

-p
I~V I= 4'

Variation of the phase of one of the rf fields alters the

phase, but not the amplitude, of cog~ An iden. tical result
is obtained if the field pair is applied above Qo. For
four-frequency irradiation, on the other hand, the ampli-
tude of the effective multiphoton field is highly dependent
on the initial rf field phases [Eq. (46)] and can achieve a
maximum amplitude [Eq. (47}] twice that expected by
simple superposition.

In general, the maximum amplitude of the effective
field is significantly greater for given applied rf power
with four-frequency irradiation. Systematic development
of A F in the two-field case gives

(N -1)/2 (X+1)/2
(49)

(2co) '
I [(N —1)/2]!I

where co is the interfteld spacing, while for four fields
with k =(N —1)/2, 1=(N+1)/2 we have from Eq. (41),

I copP I max, 4 fields

2 {X—1)/2 {%+1)/2
0

(2co)
~(N —) )/2. (N+) )/2

Equations (49) and (50) are compared for the same total rf
field intensity by halving the values of co, co„and co; in
the four-field c(Lse. The requirement that co be scaled is
made so that the two calculations hold to approximately
the same degree of accuracy within the first-order theory.
A ratio R is then calculated which gives the effective
enhancement achieved by four fields:

O

0,50

0.00
I 5 9 l5 l7 2l

N

FIG. 10. Graph of logR vs photon number N. R, given by
Eq. (51), is the ratio of the maxissium effective multiphoton irra-
diation field for four fields to that for two fields, normalized to
the same total applied rf intensity.

R = I [(N —I)/2]!I ~(N —i)/2, (N+i)/2 ~ (51)

R is graphed against N in Fig. 10. It is greater than unity
for all N &1 and increases logarithmically with N for
large N.

(iii) Spiraling can be eliminated for four-frequency irra-
diation by requiring the field positions and intensities to
be symmetrical about Q() (Sec. II C); in contrast, resonance
is forbidden for two weak fields placed to either side of Qo
for spin I = —,', and all multiphoton resonances induced by
two fields must involve spiral motion of the magnetiza-
tion with respect to the Larmor frame.

Because of the cancelation of second-order effects asso-
ciated with spiraling, the potential enhancement achiev-
able for N =3 is larger than the value of 2 given by Eq.
(51). The rf field intensities cannot be augmented without
limit unless the field separations are increased proportion-
ally; otherwise, rapid motion of the magnetization vector
about the instantaneous field direction dominates the mul-

tiphoton procession of Eq. (14) to the extent that it is no
longer meaningful to define an effective multiphoton field
or t~.' Gne criterion for defining a limiting inner rf field
intensity co;m~ for N=3 is co; ~=Qo —Q;, where Q; is
the inner-field frequency. Since Q —Q; =co and
Q —Qo ——co, [Fig. 1; Eq. (15)],we find

~i,max=~ ~s . (52)

For two fields (co3——co4 ——0), co, =(co, +2co; )/4co from Eq.
(17); settillg coe =co and coi =coi m~, Eq. (52) gives
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,„=co(v10/2 —1). Defining the total rf intensity

W=too+ni;, Eq. (49) yields a maximum
~

co&~
~

=0.25W(7/v 10—2)=0.053K when the intensities are

pushed to the limit for given ra. For symmetric four-field
irradiation co, =0, t0; =co, and from Eq. (50)
Ini3~lmax=O 25%at this limit.

J. Form of resonant rf irradiation

It was shown in Sec. II C that the rf field configuration
necessary for resonance without spiraling was as shown in
Fig. 2, with irradiation frequencies and intensities sym-
metric about Qc. Restrictions on the rf phases were in
turn given by Eqs. (36) and (39) in Sec. II G. The form of
rf field required for resonant excitation satisfying Eq. (18)
18

Bgf=2 I icos[(Qn —&) & —pi ]+totcos[(QO —k )~ —(()2]+~cocos[(Qc+ k ~)& —y$]+c~gcos[(Qc+ Ini )~ —(()4] I ~

Letting @=5—y,

Bz——4x Icos(Qor y)[ci—,cos(lait +a)+co;cosa cos(kent+ p)]+ sin(Q&t —y)[to;sine cos(knot+ p)]) .

If e=O, Bd has the form of a purely amplitude-modulated
wave oscillating at frequency Qc. It was shown through
Eq. (44), however, that no multiphoton resonance can be
detected for this phase choice, and phase modulation must
be necessary as well. Taking a value of n /2 for e and
a=(8, P=k8 [Eqs. (36'} and (39')] we get for the op-
timum rf field

Bd——4%[ ro, cos(Qct y)cos—(!cot+I8)

+co;sin(Q()t y)—cos(knot +k8)] .

The requisite high-frequency waves of Eq. (53) can be ob-
tained by initially phase shifting the carrier by y radians
relative to the reference wave and subsequently dividing
this into unshifted and n/2 phase-shifted parts. y deter-
mines the phase of the effective multiphoton field [Eq.
(43)] and need not be varied in phase-cycling routines.
The pair of derived high-frequency waves are each ampli-
tude modulated by a phase-shifted low-frequency oscilla-
tion, as indicated in Eq. (53), and attenuated to obtain a
desired t0, jro;. The phases of the modulation waves are
relative to the reference wave at time t =0. The experi-
mental implementation of Eq. (53) through carrier wave

modulation is in progress in this laboratory.

I

evolution time. Typically, calculations with Tjb, t be-
tween 100 and 2000 gave limiting accuracy. To obtain
pft) in another frame rotating at frequency Q', the
transformation

is applied, with ~'=O' —A.

B. The three-photon resonance

Figure 11 exhibits the motion of M in the Larmor
frame calculated numerically when the thro:-photon reso-
nance condition is satisfied. Separate pairs of fields can-
not invert M, inducing instead a period wobble about %.
The failure of two fields to one side of Qc to induce a

IH. COMPUTER SIMULATIONS

In order to establish the extent to which the theory out-
hned in the preceding sections actually describes the
motion of an ensemble of noninteracting spins —,

' under

four-frequency irradiation, numerical simulation of the
time evolution of the magnetization M was performed.
This entailed iterative evaluation of Eq. (3) using the exact
time-dependent Hamiltonian. ' In the present study, the
evaluation of p(t) is initially performed in the Q rotating
frame (Fig. 1) in which p(r) is periodic. Since for b, t small
aild fixed,

U(t +Et;t)=exp[ —iA (t)ht] =exp[ i% (i +T—)br]

= U(t+T+ht;r+T),
where T =2m. /co, it is necessary only to assemble a table
of values of U over a single period T, rather than reevalu-
ate U after every time increment ht for the entire spin

FIG. 11. Ca1culated motion of magnetization vector during
multifrequency irradiation; k = 1, I =2 I,'three-photon reso-
nance). In each case a =P=0, y = n /4. In this and all s—ubse-

quent simulations, the phase parameter 5 is fixed by 5=a+m/2
[Eq. (39')]. (a) vi ——v4 ——0, v2=v3 ——4 kHZ, t =3.21 tns; (b)

v3 ——v4 ——0, vl ——v2 ——4 kHz, f, =3.21 ms, (c) vl ——vq ——v3 ——v4 ——4
kHz, t = 1.61 ms; (d) as in (c), t =3.21 ms.
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transition is not unexpected, since with 5=0 we are far
from the three-photon resonance condition for this field
configuration. When the four fields are applied simul-
taneously as indicated, a n pulse of 3.2 ms is admin-
istered, comparing favorably with a figure of 3.125 ms
pl'edlcted by Eq. (42). Sp1ral nlotloii is absellt aild the
phase of the resonance is in agrannent with Eq. (43a).
The exact motion contains a high-frequency component
of period 2n/co superimposed on the simple nutation
given by Eq. (14); this is a manifestation of higher-order
terms in U(t) in Eq. (4). The apparent focusing of M in
the transverse plane is, as will be AM,n from subsequent
simulations, a general characteristic of multiphoton reso-
nances induced by four symmetrically placed fields.

The evolution of M through a fixed time period
(equivalent to t at resoiiance) as the separation of the
outer fields is varied is shown in Fig. 12. The inner-field
separations are fixed at +20 kHz from Qo. Appreciable
nutation of M away from 0 occurs only when the outer-
field separation is within 100 Hz of the resonance value of
30 kHz. Thus despite the fact that rf field strengths of 4
kHz were employed in this simulation, the resonance
width is only of the order of ePi~i, here 156 Hz.

In Fig. 13, the variation of the ir-pulse time with the rf
field intensities and initial phases is graphed. The curves
in Fig. 13(a) represent the prediction according to Eq.
(42), while in Fig. 13(b} a correction for transition path-
ways of order 5 and 7 is included. The points give the nu-
merically determined inversion times. The results con-
firm the dependence of

I
coi~2

I
on the first power of F00

(0) (b)
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FIG. 13. (a) and (b) Variation of n-pulse time with field
strength for three-photon (k =1, 1=2) resonance. One field in-
tensity is varied, the other fixed at 4 kHz. In each case
v=rg/2@=20 kHz'. Symbols, numerically determined r; Q, vo

variable; 0, v; variable. Lines, theoretical t including (a) three-
or (b) three-, five-, and seven-photon pathways:, vo vari-
able; ———,v; variable. (c} and (d) Variation of

I
v~s2

I
with

phase parameters a and p. In each case v=20 kHz, v& ——vo ——4
kHz. Symbols are numerically determined values. Lines are
from Eq. (41). (c}P=0, a varied; (d) a =0, P varied.

FIG. 12. Motion of magnetization near three-photon reso-
nance: outer-field separation varied, inner-field separation con-
stant at 40 kHz. For each plot a=P=O, y = n /4, v~ ——4kHz-
for all j, t =3.21 ms. The outer-field separations are (a) 86
kHz, {b}82 kHz, (c) 80.6 kHz, (1}80.2 kHz, (e} 80 kHz, (f) 79.8
kHz, {g) 79.4 kHz, (h) 78 kHz, and (i) 74 kHz. Axes as in Fig.
8(a).

and the second power of co&, and show clearly [Figs. 13(c)
and 13(d)] that of the period of the modulation of

I aPi,~2
I

by the inner phase parameter p is half that the outer
phase parameter a [Eq. (46)]. As the rf field intensities
approach c0 the first-order prediction becomes less accu-
rate, although inclusion of higher-order pathways im-
proves agreeinent for co, -co.

Phase cycling with coherent averaging can be employed
to suppress much of the high-frequency motion of M.
Figures 14(a)—14(d) show the evolution of M viewed
along z for four sets of phase parameters a and p such
that a —2p=2m m. Each set may be regarded as a step of
a phase cycle in which a and P are successively incre-
mented by m and n /2, respectively (Table II). Figure 14(e)
plots M,„,the average magnetization for the four-step cy-
cle (for convenience of presentation, phase was decreased
by m/4 in this calculation} showing virtually none of the
rapid motion of Fig. 11(b). A low-amplitude residual os-
cillation of M,„results from cancellation of magnetiza-
tion components during averaging. Consideration of the
importance of phase cycling raises the question of detect-
ing of multiphoton resonances in general. A spin evolu-
tion diagram as thus far presented does not represent a
single acquisition. To determine the motion of M over a
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f time r for one set of irradiation parameters a
series of acquisitions must be taken, w ere e

'

is varied (O~t, gt) and t emultifrequency irradiation is v
'

e
magnetizat1on &, 2 orM(t t ) phase-sensitivity samp or
each r, value as a free induction decay uring ime
after switching o eff the rf fields. Fourier transformation

d time domain permits reconstruction o
M(ti ) as a projection in the transverse p ane. o
the signa o nh

'
1 t noise ratio the results of multiple acquisi-

ch r value would ordinanly be averagtions or eac ti vau -" ac uisitions,h h e arameters remain the same for - a q
' ' '

M(ti ) will appear smeared over a substan i g'tantial re ion of the
F' 14(e) shows that additional im-transverse plane. igure

~ ~

provement is poss1 e ~'bl hen successive acquisitions are
a and, ar-'ed ut with cycling of phase parameters a an P, par-

~ t~e nutation andticularly when accurate measurement o. t..e n

The problem of offsets and spiral motions is cons& er
in Figs. 15 an d 16 The coefficient of I, in the effective
Hamiltonian is, from Eq. (16),

a) = —b, 1 — (a), +4&0;
1 i 2)ofr= — ~2 0

where we assume ~&co. In the 0 rotating frame, M
precesses about an effective field of magnitude

aP 2 2 l/2 (54)2ir&ca'=(
I is I +Or&)

The precession frequency is jus
readily from projection plots of the c cu ated motion o

al ulated from Eq. (42) at resonance. Fig-M; Iroi2I isc c a r
ure15s ops ah th t the variation of the numerical y'

ed from the preciesion frequency, withvs, as asccrtalD
b, /2' is in close agreement with the pr ction o
(solid line). e as. Th d hed line graphs the semiclassical rela-
tion

2nv, rr=( Iroi 2I +5 )NP 2 2 1/2

which lacks the correlation for the level shifts and agrees
1 'th the numerical determinations.less precise y wi

e 0 frame1 ulated motion of the spins in theThe cac a
etrical 1s iven inwhen the field intensities are not symmetrica

' g'
'g . d 16(b). Because n =0 and the field posi-

ed on the line frequency (b =0), we a
from Eq. (15) co, =0. However, the irradiation is n

FIG, 14. Motion of spins at three-p- hoton resonance. Irra ia-
z are as in Fig. 12(e). (a)—(d) phase y =tion parameters in kHz are as in ig.

e =—m/4 for clarity. (a) a=0,
= —n. /2; (e) average ofp=n/2 (c) a='O, p=m , (d) a=n-', = m- '

(a)—(d).

' from E . (16) the resonance condition for the

prcrecession about an effective ie w ic is
of on- and off-resonance components equala1 to

—y(r02+ roi )(coicoi+ r03coq) /4co2

and

z[co i f04+ 2(—ciP2 c03 )]/4co, —

respectively. It is possi e o
''bl to invert the magnetization

y

0
0
0
0

0
m/2

—m'/2

k =1, /=2

0

ton resonances. In each case y is chosen so that the effectiveTABLE II. Phase cycles for multiphoton resonances. In eac case y is
IQQ 1Plt' hoton irradiation field lies along 2 and 5=y+m/2.

CX

—X
—x
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FIG. 15. Variation of effective field mag
'

a nitude with offset
( k =1 / =2) resonance. The offset of thefor the three-photon

center o t eirra sf h
'

distion pattern relative to the line requency
'

z and co/2m=20 kHz.'ed The field intensities are 4 kHz an co m=vari
S mbols are values of v~ determined numeri y,
verse of the precession peri c

fieldf ~~. {54), with three-photon effective ieline is graph o
. Dashed linestrength as pr ct y iedi ed 1 first-order Floquet theory. Dss

ections tois as the preceding, u ne1 t neglecting second-order corrections
Floquet-state energies arising from nonznonzero offset.

IG. 17. Motion of magnetization forfor the three-photonF
2 ulse a lied along( k =1, /=2) resonance following a —m/2 p pp

y. The field intensities are 4 kHz and u/2m =2m =20 kHz. Phases
a=P=y=0; r =6.4 ms.

o y if the rf fields are given an offset of 122 Hz relative
to 0 as indicated in Fig. 16(c),but b, is then nonzero and

motion. As a final illus-
tration, if the field intensities are symmetrical a ut

have both off-resonance irradiation
and an effective Hamiltonian which is time in epen en
in a frame differing from that of the line, and the calcu-

bined off-resonance pre-lated magnetization executes combined o
cession and spiral motion [Fig. 16(d)].

IG. 16. Motion of magnetization .or pfor the three-photonF
2m=20 kHz, a=P=O,k = 1, / =2) resonance. In each case co/2~=

zero offset;( ) Field intensities not symmetric, zero o
v& ——v& ——3.S kH, v3 ——v4 ——4.2 kHz, t=3.2 ms. (b s in
with phase cycling, t = . ms.lin, =6.4 ms. (c) As in (a), with phase cychng,

z offsetoffset equal to 122 z.Hz. (d) All field intensities are 4 kHz, offse
equal to 122 Hz, t =20 msec, with phase cycljtng.

FIG. 18. Calculated motion of magnetiza
'

ization for the five-
hoton ( k =2, l =3) resonance. All field strengths are 10 kHz,

hLn '(b) t —4 Oms (c) t =4.0, with phase cychng (Ta es
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FIG. 19. (a) and (b) Variation in m-pulse time with field strength for five-photon ( k = 1, 1 =4) resonance. One field intensity is

varied, the other fixed at 10 kHz. In each case v=co/2e =20 kHz. Symbols, numerically determined r: Q, vo variable; 0, v; vari-

able. Lines, theoretical t including {a) five- or (b) five- and seven-photon pathways:, vo variable; ———,v& variable. (c) and

(d) As in (a) and (b), respectively, for k =2, 1=3 resonance. One field intensity is varied, the other fixed at 5 kHz. In each case
v= 10 kHz.

It has been assumed to this point that M initially hes
parallel to 't. Figure 17 depicts the computed motion of
the spina under resonant four-frequency irradiation pro-
viding a three-photon effective field of 156 Hz along 2,
applied after an initial n /2 pulse along —$' which rotated
M into R. The magnetization is locked in the rotating
frame using only off-resonance rf fields.

C. The five- and seven-photon resonances

The calculated motion of M for the five-photon (k =2,
1=3) resonance is shown in Fig. 18(a). M nutates into

+P, indicating that the effective five-photon field lies
along 2, as consistent with Eq. (43b} (y=a/2). The cal-
culated m/2 pulse time of 4.0 ms may be compared with a
value of 3.6 ms from Eq. (42) and of 3.8 ms from

u()co; 1 a); + 1.912uo

AP 9 12067

which includes seven-photon pathways. A cycle of the

high-frequency motion, as viewed along the 'R axis at the
start of four-field irradation, is shown in Fig. 18(b},while
Fig. 18(c) illustrates the extent to which this motion can
be suppressed by phase cycling. The phase cycle used
here differs from that for k =1, 1=2 (Table II) in that
the roles of parameters a and P are reversed.

To establish that the number of interactions of the spin
with the inner and out rf field pairs are indeed different
for the two possible five-photon resonances, the variation
of t with rf field intensity is graphed in Fig. 19 for
k = 1, 1 =4 and k =2, 1 =3. In each ease the numerical-
ly determined values fall very close to lines of slope —1

(inner-field strength varied) or —k (outer-field strength
varies) on a double logarithmic plot, as predicted by Eq.
(42) and the general discussion of Sec. II E.

Agreement between the theory and calculation is some-
what improved for rf field intensities approaching co if
seven-photon pathways are included in ——,'co~k~I. It is
noteworthy that m-pulse times of the order of 1 ms are
achievable with Q)0 ~coi Q co, and 6)/2% 10 kHX

The coherence phase angles for the various multiphoton
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FIG. 20. Calculated resonant compound of the magnetization for rnultiphoton resonances from X =3 to 7. The field. separations

and intensities (in kHz) are indicated in the figure. In each case a=P=O, y=ir/2. (a) Three photons, k =I, l =2; (b) five photons,
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l =4.
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the nutation axis is as predicted by Eqs. 43{a) and 43(b).
From these panels the calculated t 's can be compared
with the theory for the seven-photon resonances. Thus
for k =1, 1=6, t (calc)=17 ms, t (pred)=12 ms; for
k =2, 1=5, t (cele)=10 ms, t (pred)=7. 5 ms; for
k=3, l =4, t (calc)=8.0 ms, t (pred)=6 2.ms. These
times are not only in reasonable agreement with Eq. {42),
but seem remarkably short for pulsed NMR resommces of
seventh order. At the formal limit of the first-order
theory (tao ——ta;=ca) t 's of —10 ms are obtained for
ca/2n =10kHz.

A four-step phase cycle comparable to those of Table H
was not identified for any seven-photon resonance or the
k =1, 1=4 five-photon resonance. Nevertheless, incre-
menting either a or p by tr with successive acquisitions
cancels the component of rapid oscillation orthogonal to
the direction of resonant precession. The phase parameter
alternated is that which corresponds to the field pair con-
tributing an even number of photons [Eq. (37)]. Figure 21
illustrates the cancellation of the nonresonant ($') oscilla-
tion for the k =3, 1 =4 resonance (y =it/2) with cycling
of p.

IV. CONCLUSION

24 3.6 4.8 60 7.'2 8.4
t (msec}

FIG. 21. Cancellation of rapid nonresonant oscillation of M„
with alternation of phase parameter P. (a) Irradiation as in Fig.
20(A; (b} with addition of second acquisition for which P=m.

resonances through N =7 are readily compared in Fig.
20, which presents the calculated resonant component of
transverse magnetization induced by four fields having in
each instance the same set of initial phases (only the inten-
sities and spacing parameters are varied). In every case,

A theoretical analysis of the pulse four-field experiment
has been presented which demonstrates the existence of a
new class of multiphoton resonances in spins systems with
I =-,'. For each resonance, there is a characteristic
dependence of the effective multiphoton irradiation field
on the amplitudes and initial phases of the rf components,
and a number of mutually interfering transition pathways
contribution to this effective field. Spiral motions typical
of resonances induced by doubly-frequency irradiation are
here readily suppressed. Extension of this work to spin —,

'

and dipolar coupled spin systems is anticipated, with par-
ticular regard to selective off-resonance excitation of
NMR transitions by manipulation of the rf field phases.
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