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A recent finding of Meakin et al. and Halsey et a/. is that the surface of diffusion-limited aggre-
gates (DLA) requires an infinite hierarchy of fractal dimensions for its characterization. In this
work, we seek to understand this discovery and to place it into perspective. To this end, we study
the distribution of hit probabilities near the surface of a variety of suitably chosen fractal and non-

fractal object ranging from DLA and screened-growth aggregates on the one hand to simple A-

arm stars and S-sided polygons on the other. %'e show physically how the infinite hierarchy of
fractal dimensions arises, even for nonfractal objects. An important difference however, is that the
infimte hierarchy is characterized by a constant gap exponent for the nonfractal objects, while for
DLA a constant gap exponent is not sufficient.

I. INTRODUCTION

A fractal object such as a polymer in solution or a col-
loidal aggregate exhibits remarkably strong screening
behavior. As these objects are made larger, their density
becomes indefinitely small, yet their interior is progres-
sively better screened from external fields. Thus, e.g., a
polymer of radius of gyration R behaves hydrodynamical-
ly like a dense sphere with a comparable radius. External
flow does not penetrate into the interior, and only a small
part of the polymer experiences the external flow. Analo-
gous screening occurs when the fractal is an electrical
conductor or when it is an absorbing sink for some diffus-
ing substance. Thus the screening properties of a fractal
have an important bearing on their special rheological,
electrical, and catalytic properties. It is thus of interest to
examine how screening occurs by characterizing the sub-
set of the structure responsible for the screening.

The idea that a specific part of a fractal is responsible
for its screening provides one concept of a "surface" for
the fractal. The broader question of how to characterize
the surface of complex structures is important for their
adsorption, optical, and acoustic properties, as well as
those listed above. Many of these properties may be ex-
pressed in terms of the interaction of the structure with
probe particles, which come from the exterior of the ob-
)ect and move according to soIQe physlca1 law.

This paper is a sequel to two papers' which address
the question of how to characterize the surface of a frac-
tal object. The first paper' recognized the fact that only
a minute fraction of the total surface sites is responsible
for the screening, and developed a mean-field theory for
this fraction of "unscreened" sites. The second paper
tested this mean-field theory by first introducing the basic
variable p, the probability that a site i is the next to be hit
and then calculating the hit distribution function N(p).

Here N(p)bp is the number of perimeter sites for which p
is in the range (p,p+bp). Reference 2 found the mean-
field theory of Ref. 1 to be reasonably accurate when low
moments of N(p) were considered, but not so accurate for
high moments. The high moments weight the most ex-
posed "hottest" tips of the fractal the heaviest, and it was
found that not only did the high moments scale different-
ly than the low moments but successive high moments did
not scale in the same fashion. Thus, instead of a single
exponent being sufficient to describe the critical behavior
of N (p), one needs an entire hierarchy of exponents. '

The purpose of this paper is to explore the physical
basis and implications of this discovery of an infinite
hierarchy of scaling exponents, with a view toward
developing some understanding of the surface of a fractal
object. To this end, we consider the anomalous behavior
found even for certain nonfractal objects, such as simple
S-arm star structures and needles, and also S-sided po-
lygons. We also attempt to answer the important question
of when one should expect to find an infinite hierarchy of
exponents by making comparison with recent work on the
voltage distribution across the bonds of a percolation clus-
ter. '

In Sec. II we develop further the mean-field theory of
Ref. 1, which predicts that a single exponent is sufficient
to describe the unscreened surface of a fractal object. In
Sec. III we consider the modification of mean-field theory
needed when very large moments of N(p) are considered,
while in Sec. IV we consider the scaling behavior of gen-
eral moments. Section V describes computer models, and
Sec. VI applies this first to needles and A-arm stars and
then —in Sec. VII—to S-sided polygons. Section VIII is
an extensive discussion of the surface of a DLA
(diffusion-limited aggregation) cluster ' while Sec. IX
concerns a family of screened growth aggregates" ' for
which the fractal dimension can be tuned at will.
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II. MP.AN-FIELD THEORY

The definition of the "surface" of an irregular ramified
object, such as a biological macromolecule or cross-linked
gel, is a question of great current interest that was ad-
dressed recently by Coniglio and Stanley (CS).' They not-
ed the distinction between the geometric surface of an ob-
ject and the vanishingly small subset of that surface that
can actually be reached by some probe. Consider, for ex-
ample, a macromolecule. Naively, one expects that the to-
tal surface area doubles when the mass doubles. A large
portion of the surface is so well "screened" by the outer
part of the macromolecule that the part of the surface
which is "unscreened" is vastly smaller than the total sur-
face. Moreover, this unscreened surface scales totally dif-
ferently than the total surface: If the total surface is dou-
bled, the unscreened portion increases by a factor smaller
than 2. This consideration seems at first sight academic,
but when we recall that many biological macromolecules
are triggered by the arrival of diffusing particles, we real-
ize that the properties of this unscreened perimeter are re-
sponsible for controlling fundamental biological processes.

To make these concepts quantitative, CS formulated a
simple mean-field treatment of the unscreened perimeter
of a fractal object [Fig. 1(a)]. They found that M„, the
number (or "mass") of unscreened surface sites, scales
with the molecular diameter L as

(2.1}

M
Z =gpf (2.3)

1(b)]. The first term in parentheses corresponds to the
"cookie-cutter perimeter" (which is found if we simply
cut the fractal} whose length scales as L '. The second
term corresponds to the fact that walks with noninfinite
fractal dimension will penetrate the fractal to a mean

(d -D)/d
depth A, -L ~. It is physically plausible that the de-
gree of penetration is controlled by the co-dimension of
the fractal, (d D),—and by the fractal dimension of the
walk, d~.

Equation (2.2) was put to a direct test by an extensive
series of numerical calculations by Meakin, Stanley, Coni-
glio, and Witten (MSCW). Specifically, MSCW calculat-
ed the "hit probability, "p;, the probability that perimeter
site i is the next to be hit. This was done by first fixing a
large DI.A cluster [Fig. 2(a)], and then sending typically
10 random walkers at the cluster. Counters on each per-
imeter site record how many times that perimeter site is
hit. Figures 2(a)—2(d) show the actual MCSW results. If
the mean-field theory were completely correct, then the
"hit distribution" of Figs. 2(b)—2(d) would be quite dif-
ferent: the hits would be more or less concentrated [like
Fig. 1(b)] in a band of width A, , and the band would not
change much from Fig. 2(b) to Fig. 2(d).

To quantitatively analyze the phenomenon of Figs.
2(b)—2(d), MCSW introduced the family of moments

with

d„=(D—1)+(d —D)/d~ . (2.2)

where M is the total number of sites. The mean-field an-
satz is then the statement that

Here d„ is the fractal dimension of the unscreened perim-
eter, D is the fractal dimension of the cluster or "macro-
molecule, " and dz is the fractal dimension of the walk
taken by the incoming particles (e.g., d~ =2 for a diffus-
ing particle and d~ =1 for linear trajectories). A similar
result was also found by Meakin and Witten's for the in-
terface of DI.A clusters.

Equation (2.2} has a simple physical interpretation [Fig.

p y l ~ lp2y ~ ~ ~ p Mg
p,

0, otherwise .

Hence the qth moment is given by

Zs ——[(p )&M„] .

Now p is fixed by the normalization condition

(2.4)

(2.5)
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FIG. 1. (a) Schematic illustration of different fractal surfaces arising in the description of a general cluster. (i) The external perim-
eter or hull has a fractal dimension de, . (ii) The total perimeter has a fractal dimension D, equal to that of the total bulk mass of the
cluster. Since D & dq, it follows that the internal perimeter must have the same fractal dimension D as the total perimeter. (iii) The
unscreened perimeter where an incoming walker is more likely to hit has a fractal dimension d„. (b) Schematic illustration of parame-
ters needed to obtain the mean-field expression, Eq. (2.2}, for the fractal dimension of the unscreened perimeter. The symbol X
denotes a typical cluster site that is hit by an incoming random walk, while A, is the mean thickness of this band of sites.
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{2.6)

From (2.6) it follows that

(2.7)

Substituting (2.7) into (2.5), we find that in the mean-field
limit the scaling of Z~

' 's "is independent of q, with

Z I-(q-1) (2.8)

When MSCW calculated Zs for small q, their results
were consistent with the mean-field prediction. Thus the
CS mean-field theory provides a good description of phys-
ical phenomena that depend on low moments, such as
electrical conductivity' in a random superconducting net-
work. This is why the predictions of Ref. 1 for the con-
ductivity problem are in good agreement with numerical
results.

However, when MSCW considered much larger values
of q, they found systematic deviations from the mean-

field value (Fig. 3), as we shall now discuss.
For q sufficiently large, we would surely expect the CS

mean-field result {2.8) to fail: since only the most exposed
tips of the DLA perimeter are favored in the moment sum
(2.3), we would expect A, to have a q-dependent exponent,
not the q-independent exponent (d D)—jd~ of Ref. 1. In
fact, MCSW found that for large values of q, (2.8) fails
quite seriously (Fig. 3}. Here we replace (2.8}by

L
—(q —1)D(q) (2.9)

Z& QN(——p)p i . (3.1a)

where d„=D(q) is now q dependent.

III. VERY HIGH MOMENTS: THE LARGE-q LIMIT

Note that the p values in the summand of (2.3) can be
binned, and a distribution function N(p) introduced,
where N(p) is the number of sites whose p values fall in
the range (p,p+ bp). Thus we can write
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FIG. 2. This figure illustrates the harmonic measure for a 50000 particle off-lattice 20 DLA aggregate. (a} shows the cluster. (b)

shows all 6803 particles which have been contacted by at least one of 10 random walkers (following off-lattice trajectories). (c}shows
all of those particles which have been contacted 50 or more times and (d} shows those particles have been contacted 2500 or more
times. The rnaxirnum number of' contacts for any particle was 8197 so that p,„=8.2 X 10 '.
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V). For general q, the sum in (2.3) is no longer dominated
by p,„,but rather by some other value p =@', where in
general

(4.1)

depends on the value of q. This p' is the value of p that
maximizes the summand n(p)p»=exp[inn(p)+q lnp]. It
is the solution of the equation

FIG. 3. The exponent yJ=D(q)/D, where q=j+1, which
characterizes the behavior of the jth moment of p;. Here pf is
the probability that perimeter site i is the next site at which the
cluster will grow. For small j, y, is close to the mean-field value

yj = I, but for higher moments the y& approach the expected
limit, 1 —1/D.

d inn(p)
(4.2)

d1qp

Let us define the new exponents a(q) and f(q) by the ana-
logs of (3.2a) and (3.2b},

p '(q) —A (q)L (4.3a)

and

We will see that lnp is the natural variable in this prob-
lem, which motivates a logarithmic binning (such as
—, &p &1, —,

' gp« —,, —, p& —„', . . . ). Hence (3.la) be-

comes

(p")-&(q)Lf"' .

(q —1)D(q)=qa(q) —f(q) .

From (4.2) it follows that

(4.3b)

(4.4)

Z» =gn (p)p»,
1np

(3.1b)
[(q —1)D(q)]=a(q) .

n (p) pN(p) .

We next note the following inequality:

Z, & [(p )'n(p, .)] . (3.2a)

where n (p) is the number of sites for which Inp is in the
range (Inp, lnp+ b, lnp ). In the limit of small bp,

f(q) &a(q), (4.6)

Thus if we know D(q), then a(q) follows from (4.5) and,
finally, f(q) from (4A}. A similar approach leading to
(4.4) and (4.5) has been developed in Ref. 7.

We note that the normalization conditiong,n(p')p'= I implies g Lf'»' '»'=1. Hence,

Here

(3.2b)

with the equal sign holding for q = 1.
Note also that p'(q)~p, „as q~oo, so if we set

a,„=a(m ),
is the maximum value of p, and

n(p, „)-L (3.2c)

is the fractal set of perimeter sites characterized by the
value p p~ . For q sufficiently large, the sum in (2.3) is
dominated by the maximum value of p, and (3.2a) holds
as an equality. Hence if we combine (3.2) with (2.9), we
find

—a(ce)

lnp' a(q)
lnp, „a(oo )

plus terms of order (1/InL). Inverting (4.8), we have

(4.8)

From (4.7) and (4.2), we find that in the asymptotic
large-I. limit,

(q —1)D (q) =qa,„—f,„. (3.3) q=q(x) . (4.9)
Note that (3.3) would reduce to the mean-field result (2.8)
if f,„=a,„=d„. We discuss the generality of this
behavior of D(q) in Sec. V. Equation (3.3) was first ob-
tained in Ref. 6, where a,„and f,„were believed to be
independent of q (i.e., Z» has a family of exponents, but
with a constant "gap" a,„). We shall see that this as-
sumption is overly restrictive.

IV. ARBITRARY MOMENTS: THE CASE
OF GENERAL q

~en q is not extremely large, the approximation
described above breaks down except for special cases
where N (p) can be described by a power law in p (see Sec.

Substituting in (4.3), we finally obtain

n(p) =C(x}L»~"', (4.10)

where x =lnp/1np, „, C(x)=8[q(x)], and P(x)
=f[q(x)]. Note that we have replaced p' by p since p'
can be considered to be an independent variable. That is,
(4.8} is a functional equation valid for all values of p* and
hence for all values of p.

Equation (4.10) gives the scaling behavior for the hit
distribution function n (p). ' The actual exponent in (4.4)
depends on the ratio lnp/lnp, which reduces to the
usual scaling with only one scaling exponent when a(q) is
independent of q. Similar scaling is also found for the
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voltage distribution in a random resistor network, when p
is replaced by the voltage across a bond in the backbone of
a percolation cluster. "

V. SCALING OP N(p) FOR NONUNIFORM
ABSORBERS: POLYGQNS, NEEDLES, AND STARS

1 =~(x)=p(L )L . (5.1)

Thus p(L)-a/L.
The exponents D(q) may be readily calculated for such

objects usiilg the hit. distribution N(p) as deflliled above.

In the previous discussion when the incoming probes
are diffusive particles, the probability, p(x), that a ran-
dom walker hits the side x of the surface of the aggregate
coincides with the distribution of diffusing flux on such a
point. Since this probability can also be obtained by solv-
ing the Laplace equation with absorbing boundary condi-
tions on the aggregate, it is also called the harmonic prob-
ability measure.

There is a special motivation for studying this diffusing
flux for fractals like diffusion-limited aggregates (DI.A},
whose form is itself controlled by the properties of this
flux. In DI.A, particles are added one at a time to a
growing cluster or aggregate of particles via random-walk
trajectories, starting from randomly positioned distant
points. If the particle reaches a position on the surface of
the growing cluster of particles, it is added to the cluster
at that position. The event which describes the growth
process is the arrival of the particle at the surface. Thus
the harmonic measure not only characterizes the surface
of the cluster but also the growth process. For other
growing objects, the measure is provided by the growth
probability.

To define the distribution of flux onto an absorbing ob-

ject, more generally, we suppose that the space around the
object contains a "harmonic" field u (r), satisfying
'(}' u =0. This u may be heat, some molecular species, or
momentum in a quiescent, viscous fluid. We take our ob-
ject to be a perfect absorber of the field, so that u =0 on
the absorber. The flux p(x) at some point x on this ab-
sorber is the rate at which diffusing particles are absorbed
at x. For a smooth surface, it is the magnitude of Vu at
x; this gradient is always normal to the surface.

The distribution of hit probabilities can show interest-
ing scaling behavior even when the object is not fractal.
Such scaling behavior emerges for any object with sharp
corners, such as a polygon or star. If the opening angle of
a corner is y, then the flux density p(x) at distance x
from the corner varies as x ~, with P=(1—y/~)/
(2—y/m ). The most singular case is a needle, where y =0
and P= —,

' . The power-law behavior holds out to distances
x of the order of the side length L of the polygon. For
definiteness, we divide the absorbing object into a lattice
of cells of size "a." Then we may normalize the flux

p (x) so that it gives the probability that a given diffusing
particle lands at the cell at x, i.e., g„p(x)=1. For the
weak singularities encountered here (P&1) the sum is
dominated by the largest distances, of
order I.,

For the interval a &x &L where p(x}-x
N (p)-p

' '~~ for p, between some po p——(L ) and

p =p(a}. This is readily checked by using the defini-
tion of N(p}, namely, N(p)=+„5[p(x)—p].

The moments Z» may be expressed in terms of po and

p using Eq. (3.1}and N(p)-p ' ' ~. For small mo-
ments such that q —1/P & 0, the integral is dominated by
the smallest p's, of the order of po:
M»

'» "-p) ' fdpN(p)p. The integral is unity be-

cause of our normalization. Thus

Z, -po' " q&»P. (5.2a)

It is convenient to introduce the function M» defined by

m —=Z-'"q-"-I. 'q'. (5.2b)

Combining (5.2a) and (5.2b), we have M»-po '. This
scaling is independent of the moment taken.

For higher moments, the scaling becomes more compli-
cated. If q —1/P) 0 the largest p's dominate the integral,

'
q —1/P

I~ (q I) (q i) Pmax
cYjq P 0

Po
(5.3)

Since po and p,„scale differently with the size L of the
polygon, the M» must now scale differently for different
q. Using qo

—1/L and p,„/po-L~, and recalling that
M»-Ln'», we find

D(q) = 1+(Pq —1)/(q —1), q»/0
1, q&1/P. (5.4)

Thus for these nonfractal objects, the exponents
(q —1)D(q) vary linearly with q, as was found in mean-
field theory' and in some of the early calculations for
DI.A, but the present discussion shows that different
powers D(q) may occur for quite ordinary objects, as not-
ed recently in a different context.

The derivation of (5.2} and (5.3) is valid whenever N (p)
has a power-law behavior in some range po&p &p,„.
The adsorber need not be a polygon. The power
—1 —1/P must be more negative than —2; otherwise even
the normalization integral is controlled by p, and all
moments Mq scale as p~,'x. One instructive extension is
the case of a regular "asterisk" made of A radial needles
of length L. The important region for all the positive mo-
ments M» is the region near each needle tip:
x &L[1 c(o2s/»Ar—)]. For the large-p values of this re-
gion, P= —, and N(p)-p . The other asymptotic re-

gime is the V-shaped regions near the center. The Van-
gles are 2»r/A, so that the angle y defined above is
2m(1 —1/A), and P=l —A/2. For the p values found
near the center, N(p)-p'" '~' "'. Thus N(p) consists
of two power-law regimes, one for the most exposed re-
gions, the other for the most protected regions. Only the
exposed region proves to be important for calculating the
positive moments of the flux distribution and the corre-
sponding exponent D(q).

Fractal objects, like the nonfractal ones discussed
above, are expected to have a broad distribution N(p) of
flux intensities, and we may generalize the above discus-
sion to include these. The range of p for an object of size
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L extends from the p;„of the most protected point to
the p,„of the most exposed point. Between these ex-
tremes lies the median, pQ, which we now define explicitly
by

J, p»(p)dp= 2-. (5.5)

As with the asterisk discussed above, only the exposed
or unscreened regime between pQ and p,„ is iinportant
for the non-negative moments. The complementary
screened region p;„&p &pQ may be large in the sense

pQ/pmig ))pmgx /pQ ~ In a fractal (though not in an aster-
isk), the unscreened region may even become a vanishing-
ly small part of the object, so that

f X(p) /M ~0,
where the number of elementary cells in the object, M,
can be expressed as

M= X(p) . (5.7)

(5.6}

The scaling of the moments Ms with the mass M de-
pends on the behavior of E(p) between pQ and p,„. In a
simple smooth object, where p /pQ remains bounded as
M~ao, all the Ms scale as PQ ', this is the only scale
available for expressing the Mv. In more singular objects,
such as stars, p,„/pQ~ao as M~oo. In such a star
there is no characteristic p value in the system between pQ
and p,„. Thus, N(p) follows a power law between these
limits. (The same behavior occurs in higher dimensions
for objects with sharp points or edges. } Whenever E(p)
shows such power-law behavior, Eqs. (5.2) and (5.3)
describe how the moments Ms depend on q. Thus the
D(q) exponents, though different from each other, are not
independent: the exponents (q —1)D(q) must vary linear-
ly with q for all moments above a certain threshold [cf.
Eq. (3.3)]. All moments below this threshold must scale
with the same exponent.

Such a hierarchy of scaling exponents is ubiquitous.
For example, in the percolation problem the distribution
X(s) of cluster masses s has power-law behavior over a
range of s which becomes infinite as the critical point is
approached. As a result, different moments of the mass
distribution scale differently, but the exponents are linear
in q (i.e., there is a "constant gap" between successive mo-
ments). ' This linear behavior in q was also hypothesized
for DLA fractals. This hypothesis appears to account
reasonably for the measured moments Mz for the non-
fractal objects studied in this section. A departure from
simple linear behavior of the moments seems to occur in
DLA, as reported below, and so indicates an interesting
difference between a fractal object and a merely singular
one like a star. Departure from linear behavior for DI.A
means that X(p) cannot be described by a simple power-
law behavior [see Eq. (4.10)].

VI. COMPUTER MODELS: A-ARM STARS

All of our simulations are based on recently improved
models for diffusion-limited aggregation. ' In these
models the particles are allowed to undergo off lattice ran-
dom walks in which large steps are allowed if the particle

is a long distance from the cluster. This reduces comput-
er time requirements by a factor of about 10 and allows
simulations to be carried out using a large number (=10 )

of particle trajectories for large (10 lattice units or parti-
cle diameters) diameter objects. Two versions of the
model have been developed. ' In the off lattice model a
particle whose center is x particle diameters away from
the center of the closest particle in the aggregate of parti-
cles under examination is allowed to move by a distance
of up to x —2.0 particle diameters in a randomly selected
direction. In the close vicinity of the cluster steps of
length 0.7 particle diameters in randomly selected direc-
tions take place. If a mobile particle comes in contact
with a particle which is part of the cluster at any stage
during one of these steps a record is kept of which particle
in the cluster was the first to be contacted and a new tra-
jectory is started.

In the semilattice model a similar procedure using off
lattice random walks is used, ' but the object under exam-
ination is represented by a set of occupied lattice sites.
The particle trajectory stops if the particle (now con-
sidered to be of zero diameter) enters an unoccupied lat-
tice site with an occupied nearest neighbor (an unoccupied
surface site). A record is kept of how many times each of
the unoccupied surface sites is contacted and a new trajec-
tory is started after each contact. At no stage in the simu-
lation is a particle allowed to cross or enter an occupied
lattice site. In both models the particle is released from a
random position on a circle which just encloses the clus-
ter. The random walk trajectory is terminated if the par-
ticle either contacts the object under examination or
moves a distance greater than 100R,„ from the object
where R is its maximum radius.

An A-arm star consists of A linear arms of length L at-
tached at a common point with an angle of 2m/A between
each adjacent pair of arms. In off-lattice simulations, this
structure is represented by a single central particle of unit
diameter with A arms consisting of L —1 particles whose
centers are on the line defining the arm and separated by
one diameter. In the semilattice simulations we start with
an off-lattice star, and convert the coordinates of the
centers of each particle into integers. The lattice sites cor-
responding to those integers are then filled and the unoc-
cupied surface sites are identified.

The theoretical results given above are unambiguous.
Consequently they provide an opportunity to check our
computer programs and assess the uncertainties intro-
duced by finite size objects and the use of a finite number
of particle trajectories to estimate the haimonic measure.
Simulations were carried out for 18-, 12-, and 6-arm stars,
as well as simple 2-arm stars ("needles" ) using both the
semilattice and off-lattice models.

Figures 4(a) and 5(a) show some results obtained from
the off-lattice model using a 12-arm star with arms 400
particle-diameters long. Figure 4(a) shows the dependence
of ln[N(R)] on lnR, where N(R) is the number of times
particles a distance 8 particle diameters from the origin
of the star have been contacted. A total of 10 off-lattice
trajectories were used to obtain these results. According
to Fig. 4(a), N(R)-R" where the exponent u has a value
=5.15 in good agreement with theory (co=A/2 —1=5).
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FIG. 4. (a) The number of times N{R) that particles at a distance of R particle diameters from the center of a 12-arm star were
contacted during a simulation in which 106 particles were used to probe the surface of the star. Each particle trajectory ends as soon
as the first contact with the star has been made. Both the star and the particles are assumed to be comprised of circular disks of unit
diameter. These results are consistent with theory which indicates that N(R)-R for small R. (b) The number of contacts for parti-
cles located at a distance of R +0.5 particle diameters from the center of off-lattice DLA clusters. These results were obtained from
simulations using 50000 particle off-lattice clusters and 5 X 10 random-walk trajectories per cluster.

Figure 5(a) shows the dependence of in[% (10 )] on 0,
where N~(10 ) is the number of particles that have been
contacted cr times after 10 trajectories. These results are
consistent with a relationship of the form

(6.1)

where the exponent v has a value of about —', . Unfor-
tunately, the results of these simulations ca11IIot be used to
accurately evaluate the strength of the singularities at the
tips of the arms. The reason for this is that the finite size
of the particles destroys the singularity.

From the contact probability distribution, an infinite
family of surface size measurements can be obtained using
the definition of surface size given earlier,

' 1/j

(6.2)

where p; is the contact probability for particle i in the
cluster (or unoccupied surface site in the case of lattice
models). Using a 12-arm off-lattice star with arms of
length up to 500 diameters and assuming that the quanti-
ties p; grow with increasing cluster mass M or arm-length

I according to pj-M ' we find yI ——0.882, yz ——0.727,
$3=0.651, y4 =0.61 1, y5 ——0.587, y6 ——0.570, y7 ——0.559,
and ys ——0.550 using 10 particle trajectories for 15 cluster
(star) sizes in the range M =601—6001 or I.=50—500 di-
ameters.

The theory presented above accounts for the powers yj.
The relation between the D(q) exponents treated theoreti-
cally and the yj exponents measured in these simulations
is given by

' 1/(q —1)

t PJ
j

with q —1=j and M-L . Thus

According to (5.3) with P= —,', the exponents y& should

have a value of 0.5(j+1)/j. Table I compares some of
our results for A-arm stars with this prediction. Accord-
ing to our theory the quantities pJ defined by

pJ
——pj

'+" should all increase with cluster mass accord-
ing to pj Mo' . Figure 6 shows the dependence of lnpj on
lnM for a simulation carried out using off-lattice
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FIG. 5. (a) This figure shows the number of sites H(u) which were contacted exactly 0 times during the simulation used to obtain

Fig. 4(a). In both figures a star with arms of length 400 particle diameters was used. (b) The number of perimeter sites which have
been contacted cr times after 10 random-walk trajectories for screened-growth clusters with a fractal dimension of 1.5. The averaged
results for five simulations are shown.
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Exponent

yl
y2

y3

y5
y6
y7

ys

y 00

DI

1.33

0.666
0.595
0.562
0.545
0.535
0.529
0.525
0.522

0.491

DI

1.50

0.624
0.579
0.556
0.543
0.535
0.529
0.524
0.521

0.492

Dt

1.66

0.565
0.540
0.527
0.520
0.515
0.513
0.511
0.510

0.491

TABLE II. Surface mass exponents y; obtained from stars in
which the number of arms A is adjusted so that the mass M(L)
of stars with arms of length L is given by M(L)-L, i.e.„

y; =min (1+i ), 1
S

S+2 (7.1)

The procedures used were very similar to those described
above for the N-arm stars. For the off-lattice simulations
the sides of the polygons are represented by a linear string
of osculating circles of unit diameter. Each side of the
polygon contains L+1 such circles, two of which are

VII. COMPUTER MODELS: REGULAR POLYGONS

The same theoretical approach which was used to ob-
tain the surface mass exponents y; for the A-arm stars
with harmonic measure can be used for regular S-sided
polygons as well. A series of simulations was carried out
to test the theoretical prediction that the surface mass ex-
ponents y; should have the value

TABLE III. A comparison of the surface mass exponents y; obtained from off-lattice (0) and semi-
lattice (s) computer simulations for the S-sided regular polygons with the theoretical values (t). The as-
terisk indicates logarithmic corrections.

1.021
0.885
0.791
0.741
0.711
0.692
0,678
0.667
0.591

0.964
0.871
0.786
0.737
0.707
0.688
0.674
0,664
0.587

1.0
0.9
0.8
0.75
0.72
0.7
0.686.
0.675
0.60

1.030
0.971
0.882
0.828
0.795
0.722
0.757
0.745
0.657

0.993
0.951
0.885
0.835
0.803
0.782
0.767
0.756
0.684

1.0
1.0'
0.889
0.833
0.800
0.778
0.762
0.750
0.667

1.023
1.005
0.939
0.884
0.849
0.825
0.808
0.796
0.706

0.992
0.974
0.939
0,901
0.870
0.846
0.829
0.815
0.704

1.0
1.0
0.952
0.893
0.857
0.833
0.816
0.804
0.714

1.016
1.017
0.979
0.931
0.895
0.870
0.852
0.839
0.744

1.0
1.0
1.0
0.938
0.90
0.875
0.857
0.844
0.75

1.012
1.019
1.001
0.962
0.928
0.902
0.884
0.870
0.768

1.0
1.0
1.0
0.972
0.933
0.907
0.888
0.875
0.778

1.013
1.018
1.009
0.981
0.949
0.923
0.904
0.889
0.770

1.0
1.0
1.0
1.0*
0.960
0.933
0.914
0.900
0.800
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FIG. S. Dependence of the product p;I. on L for off-lattice
regular heptagons. The p; are surface masses (moments) de-
fined in the text and I. is the length of the sides of the heptagon
in units of particle diameters.

VIII. SCALING PROPERTIES FOR THE HARMONIC
MEASURE OF DLA CLUSTERS

2D DLA clusters containing up to 50000 particles or
occupied lattice sites were grown using either the off lat-
tice or semilattice model described above and in earlier
work. ' The surfaces of the clusters were explored using
particles following random-walk trajectories. In the case
of the off-lattice clusters, a record was kept of how many

shared with adjacent sides. Thus a polygon with sides of
length L is made up of SL circles of unit diameters. For
the semilattice simulations the coordinates of the center of
each circle are converted to the nearest pair of integers
and the corresponding lattice site is considered to be occu-
pied. For the off-lattice simulations polygons of about 25
different sizes with maximum radii ranging from 5 to 550
particle diameters were used and 5X 10 random-walk tra-
jectories were used to estimate the harmonic measure.
For the semilattice model simulations somewhat larger
polygons were used to estimate the harmonic measure (up
to 800 diameters maximum radius) and 10 random-walk
trajectories were used to estimate the harmonic measure
for each polygon of about 30 different sizes.

The results of the exponent y; obtained from these
simulations are shown in Table III. Only the surface
masses p; for polygons with sides of length L greater than
or equal to about 100 diameters were used to obtain the
results shown in Table III. Because the regular polygons
are not commensurate with the square lattice, better re-
sults are obtained for the off-lattice than for the semilat-
tice models. Only results from the off-lattice models are
given for S&6 in Table III. For S=3, 4, 5, and 6, there-
sults shown in Table III were taken from a single simula-
tion. For S=7 and S=8 the results from two simula-
tions were averaged.

For the S =7 off-lattice case, Fig. 8 shows the depen-
dence of ln(Lp, ;) on lnL for i = 1 —8. In the cases where
the exponents y; are equal to 1 (as is expected foi' yi, yp,
and ys from the theory) these curves should be horizontal.
The results shown in Fig. 8 are consistent with limiting
L~ co values of 1.0 for y „y2, and ys and values smaller
than 1.0 for y4 —y „.

times all of the particles in the cluster were contacted. In
the case of the semilattice model the number of times
each of the unoccupied surface sites was contacted was
recorded. At each stage 10 random walks were used to
estimate the harmonic measure. The results shown in Fig.
6 were obtained from eight such simulations.

Assuming that the ratio pJ1/pjl+' , is related to M by the
power-law expression

J. +&
pj /pj+ i -M (8.1)

the exponents yj' were obtained by least-squares-fitting
straight lines to the dependence of ln(yji/yJJ++i) on InM.
The results obtained in this fashion were

y )' ——0.463+0.003, y2' ——0.436+0.005, y3' ——0.420+0.006,
y.'=0409 0007,

'
y', =0402+0006', y.'=0397 0007',

and y7' ——0.394+0.006. The exponents y„" are very close
to the asymptotic value y'„'=y„but the deviations from
this value are quite substantial for the ratios of the lower
moments. For DLA y „should have a value of
(D —1)/D (Refs. 19 and 20), where D (the fractal dimen-
sion for DI.A) has a value of about 1.7 (0.7/1.7=0.412).
Figure 9 shows the dependence of the ratios on E for
simulations carried out using the semilattice model. In
each simulation the growth of the cluster was stopped at
24 stages ranging from 10 lattice sites to 50000 occupied
lattice sites.

For the semilattice model the exponent y „[Eq.(7)] has
been measured directly by determining the maximum con-
tact probability p,„ from 23 simulations each employing
27 clusters in the size range 10—50000 occupied lattice
sites and 10 random-walk trajectories for each cluster the
results shown in Fig. 10 were obtained. By least-squares-
fitting straight hnes to the coordinates (lnp, „,lnM) ob-
tained from each simulation the exponent y„ is estimated
to have a value of 0.390+0.004 in good agreement with
the results obtained by Turkevich and Scher.

Similar results have been obtained using the off-lattice
model. From simulations carried out using 26 cluster
masses between 10 particles and 50000 particles and
250 000 random-walk trajectories for each cluster
the results y &' ——0.470+0.007, yz' ——0.443+0.007,
y3' ——0.429+0.007, y4' ——0.419+0.007, y5' ——0.413+0.008,
y6' ——0.409+0.008, and y7' ——0.406+0.009 were obtained.

-2.0
-2.5-
-3.0 ~
-3.5-
-4.0—

-5.0-
-5.5-
-6.0 "
-6.5 10

FIG. 9. Dependence of the moment ratio ~ pi )'l(pi +& ~+ for
semilattice DLA clusters. These results were obtained from
eight simulations using clusters with masses M between 10 and
50000 occupied sites.
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FIG. 10. Dependence of the maximum contact probability

p on cluster mass M for semilattice DLA clusters.

The values obtained for the exponents for y„and y„" for
both the off-lattice and semilattice DLA models are sum-
marized in Table IV.

The uncertainties given here and elsewhere in this paper
represent 95% confidence limits and are the contributions
of statistical uncertainties only to the total uncertainty in
these exponents. Systematic uncertainties resulting from
the finite size of our simulations and the finite number of
trajectories are probably larger than the statistical uncer-
tainties.

If the exponents yj were linear in j—or, equivalently,
(q —1)/D(q) =qa f with a an—d f independent of q—we
would expect yj =y„. Our numerical results, Table IV,
indicate that yj deviates slightly from y„ for low mo-
ments, indicating therefore that a and f are q dependent.
Recently lower moments have been calculated ' using the
electrostatic analogy with DLA giving even stronger evi-
dence of the nonlinearity of (q —1)/D(q) on q and there-
fore the dependence on q of f and a.

The exponents discussed above provide us with impor-
tant information concerning the surface of DLA clusters
as seen by completely absorbed particles (i.e., by the har-
monic measure) and are the relevant quantities for a
variety of physically important problems such as ca-
talysis. Figures 2(b}—2(d} show that the measure is con-
centrated onto perimeter sites at the "tips" of the aggre-
gate; the measure is very small near to the interior of the
cluster (i.e., there is strong screening of random walkers).
In many ways this measure is similar to that found for the N (8)-o (8.2)

stars. There seem to be singularities in the measure and
the measure is very small for a significant fraction of the
sites. Thus Fig. 2 provides a motivation for the descrip-
tion of the harmonic measure for DLA in terms of a frac-
tal set of singularities.

One of the characteristics we would like to know about
the harmonic measure is the distribution of the probabili-
ties. The moments p; convey some information about this
distribution but they are dominated by the sites with the
largest contact probabilities p,„. Figure 11 shows the re-
sults of semilattice simulations in which 10 random
walkers were used to estimate the harmonic measure for
20000 site DLA clusters. The averaged results for five
such simulations are shown. Figure 11(a) shows the dis-
tribution in the number of contacts at various stages dur-

ing these simulations. Here N (8) is the number of sites
which have been contacted o times after a total of 8 ran-
dom walkers have been used. Figure 11(b) shows how the
number of sites which have been contacted a times de-

pends on 8 for various values of o. Figure ll should be
compared to Fig. 2 which shows X (8) for a 12-arm star
with large 8.

Similar results have been obtained from simulations of
the penetration of random walkers into other fractals.
For example, Fig. 5(b) shows the results obtained from
five simulations in which 10 random walkers. were used
to estimate the harmonic measure for screened growth
clusters"' grown with a fractal dimension of 1.5. These
clusters were grown from the center of 1001)&1001 lat-
tices until an edge of the lattice was reached by the
growth process. Similar results were obtained for the har-
monic measure of other fractals, such as screened growth
clusters with fractal dimensions of 1.25 and 1.75 and per-
colation clusters at the percolation threshold (D=1.89).
For the D=1.75 screened growth fractals clusters con-
taining 18000 occupied lattice sites were used. The per-
colation clusters were grown on a square lattice to a size
of 75 000—200 000 occupied lattice sites using the
methods of Leath and Alexandrowicz assuming a per-
colation threshold probability p, of 0.5927. In all cases
the distribution of contact probabilities E (8} for 8=10
total contacts can be described approximately by

TABLE IV. The surface mass exponents y, and yJ" obtained from estimates of the harmonic mea-
sure for both semilattice and off-lattice DLA aggregates.

Semilattice model Off-lattice model

0.523+0.005
0.493+0.005
0.474+0.004
0.461+0.005
0.450+0.004
0.442%0.004
0.436+0.004
0.431+0.004

0.390+0.004

0.463+0.003
0.436+0.005
0.420+0.006
0.409+0.007
0.402+0.006
0.379+0.007
0.394+0.006

0.529+0.007
0.500+0.007
0.481+0.007
0.468+0.007
0.458+0.007
0.450+0.007
0.~~~+0.007
0.439+0.007

0

0

0.396+0.009

0.470+0.007
0.443+0.007
0.429+0.007
0.419+0.007
0.413+0.008
0.409+0.008
0.406+0.009
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FIG. 11. Distribution of the number of contacts during simulations in which 20000 site semilattice DLA aggregates were explored
using random-walk trajectories with absorbing boundary conditions. (a} shows the contact distribution, where N (8) is the number of
unoccupied surface sites contacted e times after a total of 8 trajectories. Here results are sho~n for the lowest curve: 8=34, fol-
lowed by 8=138, 549, 2187, 8709, 34672, 138034, 549 521, 2 187674, and 8 709253. (b) shows how the number of sites contacted o.
times after 8 particles have been added depends on 8 for various fixed values of o. The lowest curve is cr =1, followed by o =2, 3, 5,
10, 19-20, 38—40, 75—80, 150—160, and 299—320. In those cases where a range of o values (al —o2) is given results have been aver-
aged for all those sites contacted between o

&
and a q times inclusively.

ln[ pl (p)]
p( ) f lnp

lnL lnp, „
(8.3)

plus correction terms of the order of 1/lnL. For conveni-
ence we have expressed lnp, „and lnL as functions of
InM using the following relation 9'

lnpmax =— (8.4)

for small values of o. In all cases the effective exponent r
has a value close to one. The results of these simulations
are summarized in Table V.

For the ease of the off-lattice DI.A clusters the har-
monic measure was estimated for clusters of different
masses. The contact number distribution N (10s) was
determined for 23 different cluster sizes in the range
10&M &50000 lattice units. Twenty-rune such simula-
tions were carried out (see Table VI).

Figure 12(a) shows some of the results obtained from
the simulations for clusters of size 500, 2000, 5000,
20000, and 50000 lattice units.

Using the data for N (8)=N(p) we have tested the
scaling prediction (4.10). From this prediction we have

lnL =df 'lnM . (8.5)

We have again written n(p)=pN(p) where n(p), as de-
fined in (4.10), is the number of sites with hit probabilities
between Inp and lnp+dlnp, while N(p) is the number of
sites with hit probabilities between p and p+dp. Note
N(p) is the same, numerically, as E (8) with p =a/8.

Figure 12(b) shows the results obtained by scaling N(p)
[equivalent to scaling N (8}using Eq. (8.3)]. It should be
noted that the scaled probability distribution functions in-
tersect the x axis at —y„and have a maximum value of
about 1.0 as is expected~'26 from (4.2) and (4.4}. The scal-
ing collapse is not particularly good but is clearly improv-
ing as the cluster mass increases. Consequently we con-
clude that our results are consistent with (4.5). A better
way to obtain the function f in (8.3) and therefore the
data collapse would have been to extrapolate ln[n (p)]/lnL
as a function of 1/lnL. In this way one could get rid of
the 1/lnL correction terms.

It should be noted that for DLA (unlike the screened-
growth clusters ) we cannot determine the small parts of
the growth probability measure and consequently only ob-
tain part of the function f[q(x)]. The fact that f[q(x)]
for the harmonic measure of DLA clusters (and other
fractals) has a quite flat region near its maximum value
can be related to the fact that (8.2) is approximately

TABLE V. Effective values for the exponent ~ which describes the contact distribution N (8) after
8=10 random-walk trajectories have been used to estimate the harmonic wave size for various random
fractals. The exponent r was obtained by least-squares-fitting straight lines to the coordinates
(lnN (10 ),incr) for the sites which had contact numbers o in the range o 1 & o & o2.

Screened growth
Screened growth
Screened growth
Percolation

DLA

1.25
1.5
1.75
1.89

(1.75 hull)
=1.70

0.91+0.18
1.10+0.03

1.043+0.03
0.881+0.028

1.174+0.018

o'I =5,o2=25

0.94+0.21
1.11+0.07

1.034+0.04
0.865+0.030

1.166+0.026

o I ——10,op ——100

1.13+0.14
1.24+0.06

1.165+0.03
0.951%0.030

I.24+0.06
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TABLE VI. Values of the exponents yl —ys and y „estimat-
ed by probing the surfaces of screened-growth clusters with

random-walk trajectories. For each value of the fractal dimen-

sion 25QOOO random walks were used to estimate the harmonic
measure for six different clusters at about 20 stages during their
growth.

Surface size
Exponent

$1
r2
r3
f4
r5
j 6

y7
QS

f CN

1.25

0.677+0.016
0.619+0.015
0.582+0.015
0.557+0.016
0.539+0.017
0.526+0.019
0.51620.020
0.508+0.020

0.449+0.022

Fractal dimension
1.SO

0.591+0.005
0.547%0.004
0.519+0.005
0.499+0.005
0.485 +0.OOS

0.474%0.005
0,466%0.005
0.459+0.006

0.407+0.011

1.75

0.517+0.003
0.488%0.0Q3

0.470+0.003
OA58+0. 003
0.448+0.003
0.440+0.003
0.434%0.003
0.429+0.004

0

0.387+0.007

correct and that the effective exponent r has a value close
to 1.0 (Table V).

The scaling relation (8.3) has recently 6 been confirmed
also for the screened-growth model, " ' for which exact
knowledge of the growth probabilities allowed a better
test. We have also checked for DLA whether we could
exclude a conventional sealing relation such as

N~(8, M)-M fs(oM~), (&.6)

where N (8,M) is the number of sites that have been hit
cr times in a simulation camed out using a cluster of mass
M with 8 random-walk trajectories. Attempts to collapse
the curves N (8,M) for clusters of different mass M onto
a single curve using a=1.0 and P=y =0.4 were not
successful.

Simulations have also been carried out to measure the
number of contacts N(R)dR at a distance of R+dR/2
from the seed or origin of the DLA aggregate. Off-lattice
DLA clusters of 50000 particles were generated and their
harmonic measure was estimated using 5X10 off-lattice
random walkers. Figure 4(b) shows the dependence of
N(R) on R obtained from these simulations. This figure
indicates that N (R ) has an approximate power-law

dependence on R

N(R)-8

The exponent 5 has a value of 8.3+0.6 for distances, R,
in the range 100(R &300 particle diameters from the
growth site or seed. In this regard the distribution of con-
tact probabilities inside a DI,A aggregate is similar to that
found in a star with 14 or 15 arms.

To explore the contact probability distribution further
170 semilattice 2D DLA clusters were grown to a mass of
50000 occupied lattice sites and 10 random walkers were
used to estimate the harmonic measure for each cluster.
Figure 13 shows the results obtained for the contact num-
ber of the unoccupied surface sites in each cluster normal-
ized by the maximum contact number for each cluster.
Here NT~(8) is the number of sites which have been con-
tacted cr or more times after 8 random-walk trajectories.

The surface mass exponents y„have been determined
for 2D percolation clusters by probing the surface of
growing percolation clusters ' using random walkers.
Percolation clusters were grown to a size greater than or
equal to 10 occupied lattice sites on a square lattice and
the harmonic measure was estimated at about 30 stages
during the growth process (for clusters in the size range
10—10 occupied lattice sites) using 10' random-walk
probes at each stage. From 30 such simulations the values
of the exponents y„were found to be y, =0.483+0.005,
y2

——0.460+0.005, y3 ——0.445+0.006, y4 ——0.434+0.006,
yg ——0.425+0.006, y6 ——0.419+0.006, y7 ——0.413+0.006,
ys ——0.409+0.007, and y „=0.372.

For both percolation clusters and DLA aggregates the
dimensions D(q) that describe the harmonic measure have
also been estimated using the box counting method. '

Table VII compares the quantities D» and Dyj for per-
colation clusters, semilattice DLA and off-lattice DLA.
Except for the case q=2, j= 1 our results support the
idea that D»

——Dy& for q =j+1. Our method of estimat-
ing the harmonic measure gives relatively good results for
the values of the measure where the measure is large but
poor results in those regions where the measure is small.
Consequently we expect our results to be most accurate
for large q or j. The relatively poor agreement for small q
or j is probably a consequence of our inability to deter-
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FIG. 12. (a) The distributions in the number of contact probabilities o for semilattice DLA clusters with masses of 500, 2000,
5000, 20000, and 50000 occupied lattice sites. The results for 11 simulations, each employing 10 random-walk trajectories per clus-

ter, are shown. (b) The site contact number distributions X (10,M) shown in (a) have been used to obtain the contact probability dis-

tribution n (p) =pN (p) which have been plotted to exhibit the scaling form given in Eq. {8.3).
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and/or clusters and the range of exponents has been ex-
tended up to y8. The exponent y,„has also been deter-
mined from the maximum number of contacts at each
cluster size. The results shown in Table IV are in good
agreement with our earlier work.

IX. THE OCCUPATION PROBABILITY MEASURE
FOR SCREENED-GRO%TH FRACTALS

O.l 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 1.0

FIG. 13. The number of perimeter sites contacted cr or more
times, NT (,8}, as a function of (o,„—o }/o,„. These results
were obtained from 170 simulations using 50000 site off lattice
DLA clusters and 8=106 trajectories per cluster. o,„and
(o,„—o }/o,„were determined separately for each cluster be-

fore the results were averaged.

mine the value of the harmonic measure in those regions
where the measure is small (the strongly screened interior
regions of the cluster).

In our earlier work the exponents y&, y2, and y3 which
describe how the effective surface masses Mi, M2, and

M3 as seen by random wa-lk probes, increase with increas-

ing cluster mass were determined for several screened
growth clusters with fractal dimensions of 1.25, 1.5, and
1.7S. In this work 25000 random-walk trajectories were
used to estimate the harmonic measure for six clusters at
each of the three fractal dimensions. Using the same 18
screened growth clusters these exponents have been
redetermined using 250000 random-walk trajectories

In the case of the DLA model the harmonic measure is
equivalent to the measure defined by the growth probabil-
ities for the fractals (i.e., the occupation probability mea-

sure). In other cases these two measures are not
equivalent. For the case of clusters grown using the
screened growth model" ' (a model for which the frac-
tal dimension is known exactly) the occupation probability
measure has been estimated from the computer simula-
tions in which clusters with fractal dimensions of —, and

—,
'

were generated on 1001X1001 square lattices (see Fig.
14). A family of "moments" pi can be defined for this
measure in the same way that the moments pj were de-
fined for the harmonic measure,

' 1/j

Here the probabilities p; are the growth probabilities for
the ith unoccupied surface site (growth site). We have
determined the dependence of the moments pj on the
cluster mass M. From simulations carried out for the
case D= —', and formulations carried out using screened

growth clusters with a fractal dimension of —,', we find

TABLE VII. A comparison of the exponents D~ and Dy» for the harmonic measure of 2D percola-
tion clusters and both off'-lattice and semilattice DLA aggregates.

Exponent

Percolation clusters

p, =0.5927 D =1.89
Dq Dy»

Off-lattice DLA
(D =1.71)

j =1,q =2
j =2, q=3
J =3,q =4
j =4, q =5
j =5,q=6
j=6,q =7
j =7, q =8
j=8
J=oo

1.017+0.009
0.947+0.008
0.886+0.013
0.869+0.018
0.84820.024
0.83520.029
0.82S+0.036

0.913+0.009
0.869%0.009
0.841 +0.011
0.820+0.011
0.803+0.011
0.792+0.011
0.781+0.011
0.773+0.011
0.703+0.011

0.980+0.010
0.856+0.005
0.810+0.006
0.782+0.006
0.763+0.008
0.754+0.010
0.748 +0.012

0.71

0.905%0.012
0.85S20.012
0.823+0.012
0.800%0.012
0.783+0.012
0.77020.012
0.780+0.012
0.751+0.012
0.677+0.015

QI

y2
y3
f4
f5
p6
y7
fs
P 00

0.973+0.003
0.875+0.006
0.837+0.007
0.811+0.008
0.79120.009
0.775+0.010
0.761+0.011

Semilattice DLA (D =1.70)

Dr»

0.889+0.009
0.838+0.009
0.806+0.007
0.784+0.009
0.765+0.007
0.7S1+0.007
0.741+0.007
0.732+0.007
0.663+0.007
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TABLE VIII. Values for the exponents yl —ys and y„
which indicate how the surface masses pl —

LM, 11 and 1/p, „ in-

crease with increasing cluster size for screened-growth clusters
with fractal dimensions of 3 and —,. The surface masses are de-

fined by the growth probability measure. For the D= 3 clus-

ters the results from 60 simulations were used and for D= 3.
32 simulations were used.

0 -"-

1.0

X
Og

FIG. 14. Correlation dimensions D~ for screened growth
clusters with various fractal dimensions. For D =

3 and D = —,,

D2 was obtained from the relation Dq=yiD. For D~2 [the
Eden model (Ref. 28)] Dt ——2, y ~

——1 and for D ~1, D, =y, =0.

Exponent

y1
y2

y3
y4
y5

y7
y&

y co

0.253+0.047
0.210+0.045
0.191+0.043
0.180+0.041
0.174+0.041
0.169+0.040
0.166+0.039
0.164+0.038

0.138+0.041

D=—5
3

0.539+0.007
0.482%0.009
0.450+0.009
0.429+0.010
0.416+0.010
0.406+0.010
0.397+0.010
0.393+0.010

0.347%0.009

power-law relationships between the moments p& and M
(the cluster mass)

YJ'PJ-M (9.2)

Effective values for the exponents yt are given in Table
VIII. In the course of some earlier work the density-
density correlation functions were measured for the active
zone (occupation probability measure) of screened-growth
clusters with fractal dimensions of 1.25, 1.50, and 1.75.
In all cases the correlation function C'(r) was found to
have the form

C'(r) -r (9.3)

for distances larger than a few lattice units and smaller
than the overall size of the cluster. The exponents y were
found to have values of about 2.05, 1.45, and 1.00, respec-
tively, for D =1.25, 1.50, and 1.75.

X. SUMMARY

We have investigated the distribution of hit probabili-
ties near the surface of a variety of fractal and nonfractal
objects. The moments of this distribution for both fractal
and nonfractal objects are characterized by an infinite set
of exponents. In the ease of nonfractal objects (needle, po-
lygon, stars), the hit distribution is characterized by a
power law. As a consequence the infinite set of exponents

are not independent but have a linear dependence in q. In
the case of fraetal objects like DI.A, screened-growth
models, or percolation clusters the moments seem to devi-
ate from such a simple linear law. This has the conse-
quence that n (p) is described by (4.10) and not by a sim-
ple power law.

This departure from a simple power-law behavior has
recently been found in the voltage distribution that arises
when a current is passed through a percolation at the per-
colation threshold. s'6 The hit probability and the voltage
distribution in fact are very similar: the hit distribution
can be related to the density of the random walkers on the
surface of the cluster, and the density can be obtained by
calculating the voltage drop on the surface sites assuming
that the aggregate is a conductor of constant potential.
Therefore this distribution is related to the voltage distri-
bution on the surface fractal.
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