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%'e provide perturbative, nonperturbative, and renormalization-group treatments of the sym-
metric electrolyte problem which permits us to obtain the corrections to the known Debye-Huckel
results in a systematic way. In addition, nonperturbative methods enabled us to obtain some results
for the case of dense electrolyte systems. The renormalization-group method is used to investigate
the possibility of phase transitions. Our results indicate the absence of phase transitions in three di-

mensions for a sufficiently diluted symmetric electrolyte in complete agreement with the results of
Kosterlitz.

I. INTRODUCTION

Recently a number of papers' have appeared in,
which the authors investigate the possibility of a phase
transition within the framework of the restricted primitive
model (RPM} of a symmetric electrolyte. The transition
is from a conducting state, where ions of opposite charge
are not bound to each other, to an insulating state where
such ions form dipoles, quadrupoles, etc., thus significant-
ly reducing the conductivity of the electrolyte. This con-
clusion has been reached on the basis of analysis of solu-
tions of an improved Ornstein-Zernike-type integral equa-
tion' and by analysis of a Padi: resummed series expan-
sion. '4 It is known, s however, that Ornstein-Zernike-type
equations effectively correspond to the so-called random-
phase approximation (RPA) and, hence, cannot give reli-
able results in the vicinity of the phase transition, if it ex-
ists. On the other hand, mathematical problems similar
to the electrolyte problem were studied independently by
many investigators. An example from solid-state physics
is the electron-hole plasma in semiconductors which at
certain conditions can form bound electron-hole pairs
called Wannier excitons. Formation of such pairs is pos-
sible, however, only under conditions far from equilibrium
so that conventional methods of statistical mechanics can-
not be used. Another example is from plasma physics.
For a two-component asymmetric ionic plasma, phase
separation was observed within the RPA approximation.
The third example is from general thceretical work on
phase transitions. It was established some time ago by
Kosterlitz and Thouless and, independently, by Berezin-
sky that the RPM in two dimensions does undergo a
phase transition of the above described nature but above
two dimensions it was shown later by Kosterlitz that
there is no phase transition.

In view of the diversity of results obtained by different
researchers working independently in different fields we
would like to present in this paper some sort of unified
treatment of the electrolyte problem ioritten in a language
accessible to the researchers in the field of electrolytes. It is
our purpose to demonstrate the connections between the
standard statistical mechanical treatments and those

which were developed in the context of field theory.
More rigorous treatments of these connections can be
found in Refs. 11—16. However, authors of these papers
were concerned mostly with establishing rigourous con-
nections rather than actual riumerical results and none of
these papers discusses the possibility of phase transitions
in electrolytes.

In reality the situation may be even more complex than
we might first realize, as it is explained in the review arti-
cle by Hansen. ' Only when the sizes of the ions (ma-
croions) are sufficiently larger than the solvent molecules,
so that ion-solvent correlations can be ignored, is the
RPM model applicable. In this case solvent effects are ef-
fectively presented in the form of a dielectric constant
which is assumed to be the same for all ionic concentra-
tions. This might be too crude an assumption, but at
present this is the only option for some sort of analytic
development.

This paper consists of six sections. In Sec. II we pro-
vide the major parameters of the theory and establish the
connection between the Poisson-Boltzmann equation and
the Sine-Gordon equation. In Sec. III we provide the
field-theoretic perturbation expansion calculations. We
develop a systematic way to obtain the corrections to the
Debye-Hiickel theory for the case of the virial expansion
and mean interparticle potential. We demonstrate that
the corrections to the Debye-Huckel theory effectively
lead to the renormalization (rescaling} of the ionic charges
as well as the Debye-Huckel screening length. In Sec. IV
we treat the same problem nonperturbatively by solving
exactly the Sine-Gordon equation in one dimension and
approximately in three dimensions. Then the standard
technique of instanton calculations' is applied to obtain
the fluctuation corrections in one dimension and in three
dimensions we provide the leading terms only leaving the
detailed calculations for future work. Section V is devot-
ed to the renormalization-group calculations. We employ
here a method' different from that used by Kosterlitz. '

This method permits us not only to reproduce his final re-
sults but also clearly exemplify conditions under which
his method is valid. Our presentation is made within the
language accessible to the researchers in the electrolyte
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theory so that all renormalization-group parameters are
properly identified with corresponding parameters used in
electrolyte theory. It is demonstrated that within the lim-
its of validity of the Kosterlitz method there is no phase
transition in the restricted primitive model of electrolytes
in three dimensions which is in agreement with
Kosterlitz's conclusions. ' Section VI is devoted to a brief
discussion of our results.
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(2.6)

The electrolyte is considered to be ideal when q~~ 1.
Second, we can define parameter g as

rameters. First among them is the nonideality parameter

II. GENERAL RESULTS
(2.7)

The equilibrium theory of electrolyte solutions is
developed in a close analogy with the statistical thermo-
dynamics of plasma. However, there are some very im-
portant differences which do not permit us merely to copy
results of plasma theory. Unlike the electron-ion plasma,
in electrolyte solutions solvent effects must be properly
taken into account, and positive and negative carriers
have the same or comparable masses (compared to the
large difference between ion and electron masses in the
plasma). Therefore, there is no small parameter associat-
ed with the mass ratio for the case of electrolytes and oth-
er small parameters must be introduced. To do so we
would like to review some of the characteristic parameters
of electrolytes. '9

First, there is a Bjerrum length, defined by

ekT ' (2.1)

' —1/2
2
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where e has the dimensionality of charge, e is the dielec-

tric constant of the medium in which the charge is im-

mersed, k is Boltzmann's constant, and T is the absolute
temperature. Second, the Debye-Huckel screening length
is defined as

~DH
(2.8)

It is clear that only when g& 1, the Debye-Huckel theory
can be of some predictive value. Given the above results
we have the following inequalities:

O; (ro; &ADH . (2.9)

All above estimates are based on the assumption that the
dielectric constant e entering Eq. (2.1) remains the same
when the concentration of ions is changed. Hence, it
should be considered to great extent as a phenomenologi-
cal parameter of the theory The. so-called restricted
primitive model of electrolytes implicitly includes the ef-
fects of short-range interactions by phenomenologically
postulating the interaction potential wj (r),

Vl9J
p Wo'. .
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1
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(2.10)

Evidently g & 1 and Eq. (2.6) can be considered only when

g »1, in which case ions in solution can be approximated
by point charges interacting via a Coulomb potential. Fi-
nally, we can introduce the parameter g,

I=
2 g cjZj (2.3)

where Z; is the valence of the ith ion, no; is the equilibri-
um concentration of the ith ion component in solution,
and the sum over i ranges over all types of ions present in
solution. Using the definition of the ionic strength I,

where q;i is the charge on the ions. For r »0; the
hard-core portion of the potential (2.10) is of little impor-
tance and can be ignored as a first approximation.

We would like to consider in some detail the case of
symmetric electrolytes, i.e., Z=Z& ———Z2, o =oi ——o2,
Z=1,2, . . . , N. The Poisson equation

where c; is the molar concentration of the ith component,
relation (2.2) can be rewritten as follows:

V P= — QZ~n~(r),

supplemented with the electroneutrality condition

(2.1 1)

j(,DH
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gZ no 0—— (2.12)

where Xz is Avogadro's constant. The average distance
between ions in solution ro; is of the order and closure relation

ro; —(no;)
—i/3 (2.5) eZ~Q

n&(r) =naoexp (2.13)

and the size of the ions is of the order cr;. Given these
definitions we can construct some dimensionless quanti-
ties which will provide us with necessary expansion pa-

produces for the case of 1-1 symmetric electrolytes the
following result:
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where we note no n——o for all a. Equation (2.14) upon
the substitution P +i—P can also be written as
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The last equation is the static case of the three-
dimensional version of the famous sine-Gordon equation.
Consideration of mixtures of 1-1 and 2-2 electrolytes, etc.,
would produce the double sine-Gordon and related equa-
tions. Here, for simplicity, we consider only the 1-1 case.
The above change from the potential P to iP turns out to
be an important element in the subsequent field-theoretic
formulation of the above problem.

III. SYMMETRIC 1-1 ELECTROLYTE
IN THE GRAND CANONICAL ENSEMBLE:

CONVERSION TO THE FIELD-THEORETIC FORM

Q(n+, n ),
n !

(3.1)

Q(n+, n )=I ff d r; exp
i'=1

n =n++n

Ue Usr

kT kT

(3.2)

We would like to consider the symmetric electrolyte
problem within the grand canonical ensemble. Such treat-
ment was first initiated by Edwards o in 1959. Many oth-
er authors made attempts to improve his results. '

However, these authors were more interested in
mathematical rigor and did not obtain numerical results
beyond that given by Debye-Huckel (DH). Another at-
tempt to go beyond the DH results within the framework
of classical statistical methods was made by Stell and Le-
bowitz. These authors, however, did not explicitly com-
pute the correction terms in the perturbation expansion
and, therefore, we are unable to use their results. An al-
ternative approach to the problem via the correlation-
function method was provided by Waisman and Le-
bowitzi' who used the so-called mean spherical approxi-
mation to the Ornstein-Zernike integral equation. As it
was noted by the authors themselves, their method is not
applicable in the vicinity of the phase transition (if such
exists) so that the question about the phase transition in
the symmetric three-dimensional electrolyte is thus far not
solved by conventional methods of statistical mechanics.
It is our purpose to provide here an alternative route to
the same problem which will enable us to study both the
correction to the DH results as well as to study the possi-
bility of the phase transition. The grand partition sum for
the 1-1 electrolyte system can be written in the usual
manner as follows:

(3.3b)

A, + lT exp——(@+IkT), the thermal wavelength ir
=(h /2mmkT)'~, m is the mass of the ion, o;J was de-
fined in (2.10}, 8(x) is just the usual unit step function,
and d is the dimensionality of space. In order to develop
the field-theoretic treatment, we would like to present the
partition sum, Eq. (3.1), as a sum on some d-dimensional
hyperlattice (assuming, as usual, the periodic boundary
conditions for volume A) with some lattice spacing a.
Then the step functions in Eq. (3.3) become unnecessary,
the integration over d"r; must be replaced by a summa-
tion, and the function r;J must be replaced by some lat-
tice propagator G' '(i,j},the explicit form of which is of
no i.mportance to us at this moment. What is, however,
important is the fact that each lattice site can be occupied
with either a positive or negative charge which permits us
to introduce the spin variables S(i)= I i for each lattice
site by analogy with the Ising model. Following Glimm
and Jaffe' we can write instead of Eq. (3.1}the expression
for the grand partition sum of the symmetric electrolyte
where A, + ——A, =A.,

:-=g A,"pa~
n =o Is„I ik CA

k=1,2, . . . , n

Q(n), (3.4)

where the symbol t S„J should be understood in the usual
sense of the Ising model, and

Q(n) = exp
1

n!

2

g S(ik)G' '(ik,ii)S(i))
E k~1

k, l =1

(3.5)

In the continuum limit 6'+(ij ) will be represented by the
logarithmic function in d =2 and by r in d =3, as usu-
al. The reasons for putting the Coulomb problem on the
lattice are twofold. First, because 6'+(ik, ik)=G' '(0) is
finite there is no need to introduce the repulsive short-
range potential as was done in Eqs. (3.1)—(3.3b). Second,
one is allowed to develop the field-theoretic formulation
in close analogy with that given for the Ising model.
After standard manipulation, ' ' we obtain, finally,
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:"=f D[P]exp —f d r (VP} —2A, cos(ag)
Sm

(3.6)

by noting

I=f d~k ln(k +co )=f d"k f dx
2k +x

(3.13)

where a=el/ekT It .is convenient at this point to re-
scale the field p (p=p/v 4~), and we shall omit the tilde
in the subsequent discussions and equations. Denoting
av 4ir=P we obtain

and using the standard result

d k =n I (1—d/2}x
k +x

(3.14)

D exp — r —,
'

V —2 cos . 3.7

Expanding cos(PP) in Eq. (3.7) and keeping only terms up
through quadratic order in P, we obtain

:"DH-exp(2A, V) f D[P]exp ——,
' f d r[(VQ) +re P ]

(3.8)

By analytic continuation to d =3 (3.11)becomes

V

24m
(3.15)

For the general case, dimensional regularization may pro-
duce well-defined poles in d which may be removed by re-
normalization if the problem is renormalizable.

Returning now to Eq. (3.10) and recalling that

where (2X) =X (3.16)

co =2AP (3.9)

The functional integral in Eq. (3.8) is Gaussian and can be
easily evaluated, producing the final result (2N)=2k, V, (3.17a)

we obtain in the limit where e (the charge) approaches
zero the following result;

=ln" =2k, V——,
' g ln

k +co
(3.10)

or

2A = =2nD
&2X)

V
(3.17b}

where cutoff ko is of order a '. Going from a summa-
tion to integration in the last term of (3.10}we obtain the
following expression:

g ln1
2m'

k +@7

f"dkk'(2 )I
2(2m )

(3.11)

where it was taken into account that Pk=P k. In the
limit when ko~&n (i.e., a~0) the above integral be-
comes divergent. This divergence occurs because the par-
tition sum implicitly includes both the interparticle in-
teraction energy plus the sum of energies of the Coulom-
bic interactions between the given charge and its own
field. Such interactions should be excluded by some sort
of regularization procedure, for example, by introduction
of the upper cutoff ko. Since there is no general method
for assigning a well-defined value to ko, the dimensional
regularization procedure is used instead. ' * ' The im-
plementation of this method can be illustrated by rewrit-
ing expression (3.11) in a space of arbitrary dimension d
so that it is equal to

M~DH &

DH
(3.18)

so that we obtain the following virial expansion:

(3.19)

We now write for the exponent in Eq. (3.7),

exp —f d r[ —,'(VP) —2kcos(PP)]

=exp(2A, V}exp ——,
' f d r[(VQ) +co P ]

In this approximation co =(8ne /ekT)no «whe——re
«=A,DH is defined according to Eq. (2.2). Whence, using

Eqs. (3.10), (3.15},and (3.17), we obtain back the already-
known Debye-Huckel result. 5 This time, however, we

clearly see how to improve it. Indeed, when we proceed
from the total expression (3.7) to its abbreviated version
(3.8) only the quadratic terms in P were preserved. In or-
der to obtain systematic corrections to the pressure we can
now write

V f d kin(k +co ),
4(2m )

(3.12)

where we have ignored the factor —1n(2m. ) because it will
contribute to the infinite energy and d is treated as an an-
alytic parameter. Integral (3.12) can be easily calculated

)&exp +2k, f d r cos(PP) —1—

=exp( —~DH[0]+~. f0]» (3.20)
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where SDH is the Debye-Huckel portion of the
above exponent as defined in Eq. (3.8) and

S;„,=2Af d r[cos(PP) —1 —(P /2)(}() ]. Expanding

[expS;„,(P)) in the power series, we obtain

DHf. Pl

—~OH[41
(3.22)

PV u 1 l=2X— +—in g ((S,„,[y]} ) „,
(3.21)

where the functional average is understood in the sense
that

Using results of the linked-cluster theorem we conclude
that in the diagrammatic expansion of Eq. (3.21) only the
connected diagrams must be included.

In order to accomplish our general discussion, we
would next like to show how to compute the correlation
function g' '. In the DH approximation we must consider
the following expression

(("'(Im)
z

——, exp [()( ) —P(m)] )D„T

D exp
&ekT

[(((~)—(()(i')] exp( —SDH[((])

f Dl((]exp( —SDH[(()])
(3.23}

Using the expression for the density p(r) =+, ,5(r —r; )S(r; ) we can rewrite Eq. (3.23) so that it equals

f D[(})]exp
' f p(Z)P(z)&z) exp( —SDH[(()])ekT

f D[4)exp( Sr H—[kl)
(3.24)

2

g"'(r, ,r, ) =const Xexp
ekT

exp( —
ar iq)

(3.25}

Using the relation between the correlation function and
the potential of the mean force roi2', we obtain

e2 exp( ~ri2)—(2}
CO(2 =— (3.26)

i.e., the attractive screened Coulomb potential, as antici-
pated. In order to obtain corrections to this result we

In Eq. (3.24} we have Gaussian integrals both in the
numerator and denominator. The integral in the numera-
tor can be calculated by the usual shift procedure.
Remembering that A, =lz exp[)M+(e~/2e)G' '(0)],' we
see for this case that the singular self-interaction terms
[involving G"'(0}]are canceled and we are left with the
expression

S;.,[0)= P' f 0'~'r . —
2

(3.27)

Computations with this expression go in exact analogy
with one-component scalar (() field theory, so that there
is no need to repeat here the diagrammatic rules. First-
and second-order diagrams for this case are depicted in
Fig. 1. Some of the higher-order diagrams are depicted in
Fig. 2. Calculation of the diagrams (a) and (b) of Fig. 1 is
trivial and is made with the help of Eq. (3.14) so that we
obtain (in three dimensions), for Fig. 1(a),

d3k 6

12—P~V (k +co )
' = V, (3.28)

(2n )' 32m'

and for Fig. 1(b)

should follow exactly the same procedure as that for the
"free energy" [Eqs. (3.19)—(3.21)]. Using formula (3.20),
expanding cos(P(()), and initially keeping only the quartic
term, we obtain for the S;„,[(()] the following expression:

'2
d k(4X3) —P V f (k +co )

2 (2m )
(k2 2) —2 V

(2~)' 128~' }' (3.29)
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(e) (c)

FIG. 1. First- (a) and second- [(b) and (c)] order Feynman di-
agrams for the virial expansion [Eq. (3.11)] resulting from a P~

interaction term coming from the cosine expansion in Eq. (3.20}.

FIG. 2. Representative fourth-order Feynman diagrams for
the virial expansion [Eq. (3.21)] resulting from a P field-theory
approximation.

In the computation of the expression in Eq. (3.29) we used the formula

f 1 ~~2 I (a —d/2)
( 2)dj2 a

(k'+a')
(3.30)

and took account of the translational invariance of the free propagator. The latter produced the volume factors in Eqs.
(3.28) and (3.29). Computation of the last diagram depicted in Fig. 1(c) is somewhat more lengthy and was already
described in Qhoiodenko and Freed. 2s For this case we obtain

V4x4X3X2 —g'
2 (2n)9, , [(k; +r02)][(k i+k 2 k3) +co —]

(3.31)

This integral is formally ultraviolet divergent as can be
seen from the power counting described in Kholodenko
and Freed. Its computation would produce the sum of
the singular (3—d) ' and the regular (nonsingular) terms.
To remove the singularity, the renormalization procedure
is needed. This procedure is well defined in the case
where only one coupling constant is present. In our case
S;„,[P], given by Eq. (3.27), is just an approximation to
the true S;„, and therefore it is necessary to perform the
renormalization procedure with an infinite number of
coupling constants. This is not possible in general, as is
well known, with use of the standard field-theoretic
methods. Thus we have three options: (a) artificially in-
troduce an upper cutoff in Eq. (3.31); (b) use the method
of insertions treating higher-order terms as composite
operators; (c) perform calculations of partition sum, Eq.
(3.7), nonperturbatively. The last option will be discussed
in some detail in Sec. IV. For the moment, we just ignore
the singular diagrams so that we can write, using Eqs.
(3.21), (3.28), and (3.29), the following approximation to
the virial expansion:

PV v 3 x 9=2no — + ~ +, ~ + . (3.32b)24'' 32m o 128m n o

It is relatively trivial to obtain a partial resummation of
all nonsingular diagrams of the type given in Figs. 2(b),
2(c), etc., and we leave this procedure to the reader. This
will create a subset of a countable infinity of nonsingular
diagrams. Further expansion of cos(PP) would create dia-
grams like those depicted in Fig. 3. One can easily en-

(e)

=2&— +, +, , + . . (3.32a)
P QP 3 Cd 9 QP

32~' ~ &28~' a'

If we choose an approximation in which 2A.=2no [see Eq.
(3.17b)], then ro -a. and we finally obtain

FIG. 3. Some representative Feynman diagrams for the viria1
expansion (3.21) resulting from terms of order P" (n &6) in the
expansion of cos(PP) in Eq. (3.20).
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large the list of above diagrams and compute those of
them which are nonsingular. Rather we would now like
to concentrate our attention on some principal questions
regarding the electrolyte problem.

Since the two-particle potential of the mean force plays
a crucial role in the computation of all quantities of in-
terest, we would like to compute the corrections to the
Debye-Hiickel result, Eq. (3.26), using the field-theoretic
methods. This computation will reveal some physical
features of the problem which are not accessible by other
methods. If we restrict ourselves to just the quartic (3.27)
and the P -order terms, then the diagrammatic expansion
of the Fourier-transformed binary potential formally coin-
cides with that depicted in Fig. 3 of Kholodenko and
Freed. For convenience, this result is reproduced in Fig.
4. From Kholodenko and Freed ' we already know that
the result of the diagrammatic expansion for the full in-
verse propagator can be conveniently represented as

[aiIz(k, ai )] —=wi2 (k,co )=k +to +X(k,co,A),
e2

Furthermore, dimensional analysis of Eq. (3.34), as com-
pared with Eq. (3.33), would require functions fi and f2
to be dimensionless. We already know that
[k ]=[ai ]=L where L is some arbitrary length and

[ ] implies units. Now according to Eqs. (3.10) and
(3.17b), [A,]=L; therefore, we anticipate that the most
general functional form offi and f2 should be

2
ki coi k

fi, i«m ~)=Pi,2
CO

(3.35)

mi2'(k, r0 )=k fi +co'f2 +O(k )

Because, by definition, co=0 if k =0, we can expand Pi 2

in the Taylor's series in k . For k~0 (large distances) we
can preserve terms up to quadratic in k. This then would
produce the following result for w i2'..

(3.33)
N=fi (k'+aT')+O(k ) . (3.36)

where the so-called mass operator X takes into account all
interaction effects. It is known (see, for example, Kholo-
denko and Freed2i) that X(a~2, A, ) can be generally
decomposed as follows:

Thus we can see that corrections to the Deybe-Hiickel re-
sult effectively renormalize the value of the screening pa-
rameter ir and the coupling constant e (i.e., the electric
charge) so that with good accuracy we can write

X(k,a),A)=k fi(k, ru, A)+to f2(k,a), A) . (3.34)
( ) ( ren)2 exp(

r
(3.37)

CO

( e rell
)
2 e i/f and (area)i /r2

f2

1

(3.38)

In order to demonstrate explicitly how this result is ap-
plied, consider the computation of the diagrams 2 and 3
in Fig. 4. Using the rules outlined in Kholodenko and
Freed, ' one sees that the above computations are basi-
cally the same as are done for the case of the virial expan-
sion [see Eqs. (3.14) and (3.30)] so that we can write

5 8

wi2 (k, co) =k +ai — —
2 + ' ' '3 ci) 9 co

8m A,

=k2+&21- ' " +O(k')
327r2 A2

3

=k +a. 1—3 K

sm no

6
+O(k')

32 no

k2+( ren)2+O(k4} (3.39)

FIG. 4. Diagrammatic expansion for the Fourier-
transformed potential of the mean interparticle force. Here only
the P and P terms of the expansion for cos~}were used. The
expansion is given without the combinational weights and
correct signs thus only exhibiting the topology of the relevant di-
agrams. Combinational weights are the same as those in the
standard P4—P6 field theory (Ref. 22}.

Although in this example only ~ gets renormalized, in
general both a. and e are effectively renormalized. These
results permit us to systematically improve the Debye-
Huckel theory.

At this point we would like to mention that because of
the connection between the potential of the mean force
cuIJ

' and the correlation function the above results imply
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exp( —Ic ~p )f rz -exp +
FkTr

(3.40)

The above differs from the commonly accepted DH re-

sult

exp( —Kp }
gi2 =&— (3.41)

The Debye-Hiickel g'&q' is meaningless when r ~0 because

gi2~ —ao. In contrast to this, expression (3.38) never be-

comes negative. We have to mention as well, a very close
connection between the diagrammatic expansion for the
potential of the mean force (Fig. 4) and the diagrammatic
representation of the virial expansion (Fig. 1).

IV. NONPERTURSATIVE TREATMENT
FOR THE 1-1 ELECTROLYTE MODEL

In Sec. III we obtained explicitly the first two perturba-
tive corrections [see Eq. (3.32b)] to the Debye-Huckel viri-

al expansion result. Before we proceed with the nonper-
turbative approachw, e would like to rewrite Equation
(3.32b) in a somewhat more transparent form. Let VDH

be the volume of the Debye-Hiickel sphere, i.e.,
VDH ~~ . In Sec. II we had introduced [see Eq. (2.5)]
the volume per ion V; —no, now we can define the di-
mensionless parameter y= V;/VDH ——g, where g was
defmed in Eq. (2.8). Using this parameter Eq. (3.32b) can
be written as

cutoffs, as it was explained already. Consequently, expan-
sion (4.1) should be replaced, in principle, by a double ex-
pansion in terms of parameters y and g (or its inverse) de-
fmed in Eq. (2.7). However, we know that the explicit in-
troduction of the cutoffs in the renormalizable field
theory can be completely eliminated by the appropriate
redefinition (renormalization) of the initial parameters of
the theory. An example of such redefinition was given in
Eq. (3.38). This procedure is not entirely systematic, how-
ever, within the limits of the perturbation expansion based
on Eqs. (3.20) and (3.21) even if the method of insertions
is used. Therefore we are forced to develop some sort of
nonperturbative treatment. This will enable us, in princi-
ple, to obtain the equation of state where only one param-
eter y, perhaps renormalized, is used. Unfortunately, the
nonperturbative approach is associated with serious
mathematical difficulties as well, so that systematic re-
sults have been obtained only for one- and two-
dimensional models. Here we just outline the
method and provide a very crude nonperturbative solution
solely for illustrative purposes. Systematic treatment
would require a separate lengthy investigation that is
beyond the scope of this work.

We begin with Eq. (3.7) which we can rewrite as fol-
lows:

:-=exp(2A, V):-so

D exp — l'

PV
l y 3 2 9 3 0 4=2no 1 — + 2y + 3y +0(y )

48~ 64~' 256~'

(4.1)

Equation (4.1) does not include the ion size. As it was
demonstrated in Sec. III, ignoring the sizes of ions is im-

plicitly responsible for various kinds of divergences like
those coming from the diagrams depicted in Fig. 1(c) and
these divergences can be eliminated by the introduction of

+2k, [1—cos(PP)]I, (4.2)

where SG means sine-Gordon. This name comes from the
fact that the saddle point approximation to "so produces
the sine-Gordon equation which is the same as Eq. (2.15)
with rescaling of the field and replacement of 2A, with 2no
according to Eq. (3.17b). By replacement of P with P+5$
in Eq. (4.2) and assuming that 5$ «P we obtain with ac-
curacy up through quadratic terms in Q,

:"so——exP( Scifg)) ID[5—$]exP ——,
' f d r 5$[ V+2AP—2cos(PP)]5/ (4.3)

where P is determined from the solution of the sine-

Gordon equation,

V $=2AP sin(PP) . (4.4)

This equation has the following infinite set of constant
solutions:

If we choose m =0 and expand cos(PP) around P =0, i.e.,
we now have instead of /=/+A just /=5', then, keep-
ing terms up through orders quadratic in Q we shall re-
cover the Debye-Hiickel result using Eq. (4.3). The above
infinity of constant solutions needs to be understood in
physical terms. To accomplish this, we consider the one-
dimensional case, where Eq. (4.4) acquires the form

pp=nm, n =0,+1,+2, +3, .etc . (4.5)

%e can select from among this infinite sequence a subset
defined by n =2m, m =0,+1,+2, . . . such that the poten-
tial U(p) =2k, [1—cos(pp)] in (4.2) will be zero for all rn.

d =2AP sin(PP) .
dx

(4.6}

We first rescale our field p:p=tp/p so that Eq. (4.6) can
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If for the case of c„,the functional integration measure in

(4.3} is just a product of c„,i.e.,
g dc„=(SCI)' dxo g db„,
n=o

(4.23)

D[Q]=g dc„,
n=0

it should be replaced by the product of b„, i.e.,

(4.22) where the Jacobian of such a transformation is just
(Sc~[P])'/, as was demonstrated by Coleman. Going
back to {4.3) and combining all above results we obtain, in
one dimension,

2m
SG

n=O

' 1/2

+[exp( —Sci)](ScI)' g f db„exp
L/2f L /2—

2+~2=exp dk —,
'

ln
2s 2m

L (Sc()'/
1+ ~ exp( —Sz&)exp —,

' g lnE„——,
' g lnE„2' n=o n=1

(4.24}

where only the soliton solution is taken into account and

SCI is determined, according to the one-dimensional ver-

sion of Eq. (4.2},as follows:
exp —,

' g lnE„——,
' g lnE„

n=1

Sci[4]=f +2K[1—cos(PP)]

kn +67
=exp( —,'into )exp —,

' g ln
n=1 k g+N

(4.27)

(4.25) Using the fact that k„L=k„L+b,(k„},according to Eqs.
(4.19) and (4.20), we have

Using Eq. (4.10) written in normal units we can convert

Eq. (4.25) into the following expression: n n=
b,(k„)

(4.28a)

and

b,(k„)
k„'+k „'—2k„k„= I. (4.28b)

=2@2K,f dP sin(PP/2) =—~2k, =8 16K,

$( —co I p co

(4.26)

In the limit I.~ oo we can write approximately

k '„-2k„(k„—k„)+k„'
r

b,(k„)
=2kn (4.29)

where in the last line we have used equations (4.11) and
(4.14). To accomplish our calculations, we have to go
back to Eq. (4.24) and consider the following expression:

Substitution of this result into Eq. (4.27) then produces in
the limit I.~ oo

exp( z Into }exp
n=1

k2+co +2k„[—b,(k„)/L]
kn +63

k„f —b (k„)]/L
=exp( —,

'
Into )exp —g 2 2

n =1 kn+

f dk ln(k +co )
1 "

k
db(k)

(4.30)
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Here, in going from the summation to the k integration, we have performed an integration by parts. Going back to Eq.
(4.24) and collecting all terms we can now write the following result (d =1}:

I.
k

k +a)
so= exp — dk 111

IXI 2%
I

1/2
LQj 16K,

X 1+ exp
2%

16k, 1 " db, (k)
exp — f dk ln(k +co )

I.

(4.31)

k +co
=s&—exp — dk ln

4m' 2m'

1 1 LN
exp( —Scl —0)

o Xi Xp v (217)
(4.32)

or
(4.37)

:-so——=DHexp 21. exp( —Sci —cr)
2m

(4.33)
where I is determined by the integral

where o is defined as follows:
y y 2sin2 cF

0 2

0 = ——,lnscI+ d1 1 db, (k) ln(k +c0 ) .
4m — dk

oo p
—&3'

yy = =0.822 .
(1+8 «)

(4.38)

Sci was given in Eq. (4.26) and:-DH is the one-

dimensional realization of the Debye-Hiickel partition
function [Eq. (3.10}]. Generalization of the above results

to three dimensions is rather straightforward apart from
the fact that Eq. (4.4) cannot be solved exactly in three di-
mensions. It is known, however, that at large distances
the numerical solution of Eq. (4.4) virtually coincides with

the one-dimensional result, Eq. (4.14), with the replace-
ment of x —xo by I

"—ro I

If, for illustrative purposes, we adopt the three-
dimensional version of Eq. (4.14) as a solution to Eq. (4.4),
then ro must be interpreted as the position of the soliton
in three-dimensional space. Instead of Eq. (4.26) for the
classical action, we shall obtain

If we accept Sz& given in Eq. (4.36), then omitting fluc-
tuation corrections, except the Debye-Huckel type, we can
write instead of Eq. (4.33) the following three-dimensional
result:

V 3 2':-so-exp — co + V exp( —Sc& )
[(2ir}3]i n

(4.39)

Using the result (4.37) for Sc& in the exponent of Eq.
(4.39), the exponential can be expanded in a power series
in A, /co3 which should be compared with that presented in
Eq. (4.1). If we accept that 2A=2no, we o,btain instead of
(4.1}the foBowing result:

Sc&[P]=8k,f d r sin (PP/2), (4.35)
P y y

"
( —1)" 32@I

=2no 1 — +kT 48~ (v p~)' „, n! y

n

where Eqs. (4.2) and (4.10) were used. Since identifying
x ~o wjth

~
r —ro

~

requires r be sufficiently large, we

neglect ro relative to r, choose ro to be at the origin of the
spherical system of coordinates, and obtain from (4.35)

(4.40)

Here we explicitly see that now the small parameter is ac-
tually y

' (not y) so that the above result is essentially
nonperturbative.

More quantitative calculations, including the fluctua-
tion corrections, are rather cumbersome and will be
presented in subsequent publications. The difficulties
presented by these calculations lie in the fact that, unlike

Sc&[P]=32mAfdr r sin (PP, /2) . (4.36)

Taking into account the explicit three-dimensional gen-
eralization of solution (4.14} and making an obvious
change of variables, the following relation is obtained:

At this point we must take into account two things. First, we have to include not only solitons but antisolitons according
to Eq. (4.14). Second, we have to take into account that position xo of the center of the soliton could be anywhere on the
x axis. This then leads to a grand canonical ensemble of solitons and antisolitons so that the final result for =so will be
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the one-dimensional case [Eq. (4.27)], the ratio of deter-
minants would require some sort of renormalization pro-
cedure already encountered in similar two-dimensional
calculations. ' The systematic renormalization pro-
cedure would involve rather lengthy calculations and,
therefore, is not presented.

V. THE RENORMA. LIZATION GROUP ANALYSIS
OF THE 1-1 ELECTROLYTE MODEL

In Secs. III and IV we discussed various methods for
the computation of the grand partition sum for the 1-1
electrolyte system. These methods permit us to write an
equation of state as a power series in terms of the parame-
ter y, Eq. (4.1},or its inverse, Eq. (4.40). Because of the
approximative nature of such expansions, it is illegitimate
to draw any conclusions about the possible phase transi-
tion in the above electrolyte. This was confirmed later by
more rigorous renormalization-group calculations for
two-dimensions by Kosterlitz. ' Since the three-
dimensional case cannot be analyzed in closed form by
methods described up to this point, the renormalization-

group method is the only reliable alternative.
Kosterlitz' considered the problem of phase transition

in d-dimensional Coulomb gas. He came to the con-
clusion that there are no phase transitions in the dimen-
sionalities higher than two. We provide here an alterna-
tive renormalization-group method which was originally
developed in the unpublished work by Raby and Ukawa
and presented with some very minor numerical errors (for
the case of two dimensions} in the review article by Ko-
gut. ' Here we generalize the method of Raby and Ukawa
to study the same problem in d dimensions. We shall
demonstrate here under what conditions results of Koster-
litz' can be reproduced and when his derivation becomes
incorrect. For the cases where Kosterlitz's method fails,
more sophisticated methods are needed ' and they will not
be presented here.

It is convenient to rewrite the partition sum (3.7} in
somewhat different form,

-"A= f D[0]exp —f ~ x[ 2~CA(
I

—2A, cos(+A)]
4

pA (x)=f,1"p exp(ip. x)p(p),
1

0&p &A' (2~)»
(5.4)

where the high-frequency part is obtained as

h (x) =PA(x) —PA (x)

p &exp rp x p
1

(5.5)

Use of the above definitions permit us to rewrite Eq. (5.1)
as follows:

:-„=f D[P»]exp —,
' f d"xPAV'P» exp»:"'(PA ),

(5.6)

where

:"'(PA ) =f D[h ]exp —,
' f 1"x h 7 h

+2k, cos[P(PA +h )] (5.7)

The orthogonality of h (x) and P» (x) with respect to in-
tegration over x (Ref. 36) eliminates the cross terms and
D[P] is replaced by D[P~ ]D [h]. We now want to com-
pute =(PA ) perturbatively. Analogously to Eq. (3.22), we
define now the averaging procedure as

f D[h]exp —,
' f 1»xhV'~h ( )

~ ~ ~

f D[h)exp —,
' f d»xhVih

4

(5.8)

Then by writing

(5.9)

where

P'(p)=P( —p) .
The cutoff A implicitly takes into account the finite size
of macroions in solution. Following the standard pro-
cedure described by %ilson and Kogut, we subdivide the
domain of momentum integration into two parts: a low-
frequency part 0 &p & A' and a high-frequency part
A' &p & A. Then, as usual, define a field PA, according to

where we have introduced field P»(x) via
I~=f D[h]exp —, f d x hV h (5.10)

p»(x) =f » exp(ip. x)p(p),1 p
0&p&A (2~)»

(5.2) and substituting Eq. (5.9) into Eq. (5.6) we obtain the fol-
lowing cumulant expansion by analogy with Eq. (3.21):

ln =2k, f 1 x(cos[p(p»+h)])»

+ —,'(2A)2 f d»x f d»y(cos[p[QA(x)+h(x)]jcos[p[QA(y)+h(y)]) )»+ . (5.1 1)

Here ( . )» means cumulant average, i.e.,
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(cost p[pp(x)+h(x)] jcosI p[(I)p(y)+h(y)) j &»

= &cosIp[4g (x}+it(»]jcosIp[dg(y}+ii(y)] j &»
—(«st p[kg (x}+ii(x}]j &h (cosI p[@p (y)+ii(y)] j & p, (5.12)

The overall multiplicative constant exp(lnvY) appearing
due to Eq. (5.9) can be dropped because it does not affect
the renormalization procedure. Computation of averages
can be done easily using the shift procedure, described
after Eq. (3.24), by rewriting cos[p(4& +h)] in exponential
form,

cos[p(pp+h)]= —,
' Iexp[ip(pg+ii)]

Obtaining the cumulant average of Eq. (S.12) using the
shift procedure produces the following result:

2 A'(o}[A'(x—y}—1)«sIP[NA(x)+PA(y}] j

+ —,'A (0)[A i(x—y) —1]cosIp[pz (x)—4& (y)] j .

(5.17)

yielding the result

+exp[ ip(p„—+ i] )]j, (S.13)
Introducing the relative coordinates a =x—y and
5= —,

' (x+y), we take advantage of the weak spatial varia-

tion of the low-frequency field 4~ (x) by preserving only
first-order terms in a,

(cosp(p~ +h ) &i, ——A (0)cos[+z (x)], (5.14)
(In'p (x)—4'w (y) =a.VPw(5) . (5.18}

A(x) =exp
2p G( ](x) (5.15)

Expression (5.17) can now be rewritten as

—,
'

A z(0)[A'(a) —1]cos[2p(I)„(5)]

+ —,
' Az(0)[A 2(a) —1]I1—p2[a Vp~(5)] j . (5.19)

1 exp(ip x}
X = PA'(p(h (2e.)d p2

(5.16)

Substituting Eq. (5.11) into Eq. (5.6) with averages given

by formulas (5.14) and (5.19) we obtain the final result
(with accuracy up to terms of order I, )

:-~-exp —„'(2A, )2A (0)a] I d"x

&& 1 O[ke ]exp —[I+—,'(2L) )2 eeA (())]f d «[ —,'(YI)e)e —2LA(())eae(P&e )] (5.20)

Here u] and a2 are defined as follows:

a, = ~y A-'y —1, (5.21)

(p') =p /[1+2k, p a2A2(0)],

I][,'=A,A(0) .

(5.25)

(5.26)

a2 —— yy A y —1 (5.22}

[1+2k, P a A (0))'~ P

We now must redefine p and A, accordingly,

(5.24)

In order to accomplish the renormalization transforma-
tions, we would like to specify A', defined in Eq. (S.4), as
4'=IX, O~ I & 1. Now in order to bring the momentum
integration in the expression (5.4) back to the form given
by Eq. (5.2), we have to rescale the momentum variable
p=p'l. After these preliminaries, we can rewrite Eq.
(5.20) as follows:

P

:"A(A,,P)=exp A, A (0}a]f d x:"2i(&',P'), (523)

where we have redefined field (3{)„in the following marmer:

Q(A, ,p) 2 2 0'(2][,',p')
(5.27)

where the thermodynamic potential 0= PV. Write-
F=Q(A, ,p)/ VkT, then we obtain

F=F' AA(D }a[, —. (S.28)

which provides the final recurrence relation. This latter
recurrence plays an auxiliary role and va11 not be con-
sidered subsequently.

Using the fact that S[IYI] must be dimensionless, we

Equations (5.25} and (5.26) provide the necessary re-
currence relations for the development of the
renormalization-group method. Before we proceed, we
have to notice that the factor Jd x in the exponent of
Eq. (S.23) is just the volume of the system. Taking a loga-
rithm of both sides of Eq. (5.23},we obtain
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G„'"(x)=dAA"-'f(A
~

x
~
), (5.29)

where f(A
~

x
~

) is some function coming from the angu-
lar integration. To understand this result we recall the
well-known formula

conclude that P varies inversely with the square root of
the units of distance. If we rescale the distance
(x~x/P ) in Eq. (5.11), we find that the smallness pa-
rameter is AP -A,A,ri -i1 . Thus this method of renormal-
ization is valid when the nonideality parameter g is less
than 1. For other conditions alternative renormalization
must be used. We will consider only the case q ~ 1 which
then will effectively lead us to the result of Kosterlitz. '

It is convenient to choose the parameter I defined above
arbitrarily close to unity, then /A=A —dA. For the
propagator Gr',

"' defined in Eq. (5.16) we then can write
the following expression:

Results are particularly transparent in d =2 and 3. In the
first ease, we obtain f(0)= I/2n and in the second

f(0)= I/2m . Consideration of the general case is left for
the reader. Using above results we can rewrite Eq. (5.34)
for x =0 as follows:

A(0)=1—,for d=2P 1 dA
2 2m A

A(0)=1 — dA, for d =3 .
p2

2 2~2

(5.37)

(5.38)

By combining Eqs. (5.26), (5.37), and (5.38), we can write

5A, =A, —A,
'= —A[A(0) —1]=A, , for d =2P dA

4m A'
(5.39)

I d~qF(q', q p)

=Cd i I dqq" ' J d8(sin8)" F(q,pqcos8),

(5.30)

5A, =A, —A, '=A, , dA, for d =3 .
(2m. )

Analogously, we also obtain (d =2,3)
r

1+2iL p a2A (0)

(5.40)

where Cd, is defined according to

C =2&"/r(d/2), (5.31)
=2P A, a2.

A
(5.41)

a2 ——p dAA a2, (5.32)

and I"(x) is just an ordinary gamma function. Given Eq.
(5.29) we now want to compute a2 defined in Eq. (5.22).
Using the definition of A (x) given in Eq. (5.15) and com-
bining it with result (5.29) we obtain, after rescaling of
variables in Eq. (5.22), the following result:

5A, = —A, , for d =2P2 da
4w a

(5.42)

Instead of a momentum cutoff A it is convenient now to
introduce the real-space cutoff cr;=A '=a which was
defined in Sec. II. In terms of this cutoff, Eqs. (5.39),
(5.40), and (5.41) can be rewritten as follows:

where a2 is just a simple number coming from the follow-
ing integral:

Q'2= X X X

M, = —A, , for d =3P2 da

(2m) a

5(P )= —2A, P a2aida .

(5.43)

(5.44)
The function f(x) has been defined in Eq. (5.29). The
dimensionality of space d does not appear explicitly in
Eq. (5.32) (apart from the different value of a2 in dif-
ferent dimensionalities). Consider now the approximation
for A (0). We have, according to Eq. (5.15),

2 2

A(x)=1 — Gh '(x)=1 — f(Ax)A dA . (5.34)
2 2

At this point it is convenient to recall that 13 =4@a [see
Eq. (3.6)] and a =e /ekT=A& [see Eq. (2.1)]. Also in
the regime at which the given renormalization-group
treatment is valid, we can identify A, with no, according to
Eq. (3.17b). Using all these facts we can rewrite Eqs.
(5.42)—(5.44) in somewhat more suggestive form,

To obtain A (0), we need only to calculate f(0) which can
be obtained from the definition (5.16) and formula (5.30}.
It follows that

(d —].)/2

da
5np ———noir, for d =2

~a da
6llp = —fl p for d =3

1T a

(5.45)

(SA6)

5(kii) = 2(4mno) a2—Aria d.a . (5.47)
(d —1)/2

(2~)" 1((d —2)/2)

2 (d —2)8(d /2, (d —2) /2}
(5.35)

By recalling the definition of the nonideality parameter r}
defined in Eq. (2.6), we obtain that combination
nok~ ——q . We define now a new variable y =noa in two
dimensions so that

I (d/2)l'((d —2)/2)
I (d —1)

(5.36)
dy=a dno+noda

Using here results of Eqs. (5.45)—(5.47), we obtain

(5.48)
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dy = —an pA.ada +2n pa da

=npo(2 —As)dn, for d =2 .

Similarly, in three dimensions we define y =n pa, then

T= Tc

B
dy = —noa da+3lipn du

=npo 3— do, for d =3 .
KQ

(5.50}

The reason for introduction of the new variable y becomes
more apparent if we notice that the condition

2 —As =0, for d =2 (5.S1)

(5.52)

where t =lna. Similarly, we can obtain the equation for x
using Eq. (5.47},

X = —32n~a2(x+2)~y = —256m a2y (5.53)

The last line assumes that x «1 [see Eq. (5.51) and the
definition of x]. Multiply Eq. (5.52) by 2y and Eq. (5.53)
by 2x so that we obtain

dt
= —2Xy (5.52')

dx = —512m aqxy
2 (5.53')

The above equations may be combined to give

dX

dt dr

where c =256m ai. This then gives

x —ey =const.2=

(5.54)

(5.55a}

Finally, we can redefine the cutoff a in order to absorb
the constant c, i.e., a~(c)'~ a (recall that y=npa )
After these manipulations Eq. (5.55) can be rewritten in
1ts final forms

x —y =const.2 2= (5.55b)

This is just the equation for hyperbolas in the (x,y) plane.
The constant on the right-hand side of Eq. (5.55) is evi-

dently different for each hyperbola. The (x,y) plane is

provides the estimate of the temperature of the phase tran-
sition. The existence of the phase transition requires not
only the existence of the fixed point (line) relevant to this
transition but also the investigation of the stability of the
above fixed point (hne). However, since our main purpose
is to apply the renormahzation procedure to the three-
dimensional case, we will not investigate the stability of
the fixed point (line) for the two-dimensional case. For
the latter case, we are only interested in illustrating that
our renormalization procedure reproduces the earlier re-
sults of Kosterlitz.

For the d =2 case, we define a new variable x =A,s —2.
Then Eq. (5.49) can be rewritten as follows:

FIG. S. Renarmalization-group trajectories given by Eq.
(5.551). The arrows indicate the direction of the flow described
by the equations of motion (5.52') and (5.53') when the succes-
sive renormalization-group iterations are performed.

separated onto two domains by the equation

x —y =0.2 2= (5.55c)

This is graphically depicted in Fig. 5. Unlike the naive
estimate, Eq. (5.51), the critical temperature is now deter-
mined by Eq. (5.55c) which in the usual system of units

can be rewritten as follows:

(2—As} =nba (5.56}

where a -o.; as it was already mentioned.
Consider now the case of three dimensions. Then Eq.

(5.50) can be rewritten as follows:

y = —Xy (5.57a)

dA, s
dx = da = cy (x+3)—~dr (x+3)dt, —

ma

(5.57b)

= —3[cy (6x+9)+1], (S.S8)

where c & 0 is some unimportant constant and it was as-
sumed that x «1. Equations (5.57) and (5.58} should be
compared with Eqs. (5.52) and (5.53). The presence of the
extra term in Eq. (5.58) compared to Eq. (5.53) compli-
cates matters considerably. Even if we ignore this term,
which is proportional to x, on the right-hand side of Eq.
(5.58), we still will be unable to perform the same kind of
integration as in the two-dimensional case. Moreover, the
assumption x «1 is also, in fact, incorrect. Indeed, let
x =0 and consider the steady-state solution of Eqs. (5.57)
and (5.58). ~e see that Eq. (5.57} admits any value of y
but Eq. (5.58) gives for y the following result:

9' = —1. (S.59)

This relation can never be satisfied because y =noa &0.
Hence we see that the system of equations [(5.57) and

where we have defined a new variable x via x=k,P/
(ma) —3. For this variable we obtain
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(5.58)), or more generally,

dt
= —3(x+3)[cy (x+3) +1], (5.58')

do not have any physically acceptable fixed point. Conse-
quently, there is no equilibrium phase transition for the
restricted primitive model of the three-dimensional sym-
metric electrolyte solution in the domain of t7 ~ 1.

VI. DISCUSSION

In spite of the rather extensive analysis of the electro-
lyte problem, many questions still remain to be investigat-
ed. First the given methods do not permit us, in their
present form, to study the problem of phase transitions
for the case of asymmetric electrolytes. So:ond, we have
studied only the equilibrium phase transitions. Meantime
it is known that even for the primitive model nonequili-
brium phase transitions can take place. Third, we com-
pletely ignored boundary effects in our work. They might
be of crucial importance for the above problem. Fourth,
the nonperturbative analysis of Sec. IV also involves re-
normalization effects which would lead to a
renormalization-group analysis very different from that
presented in Sec. V. Future, more systematic, treatments
are necessary to provide more definitive answers to above
posed questions. Also, the conclusive answers could be
obtained only by comparing the theoretical results with
thorough experimental measurements. Some available ex-

perimental data indicate that for electrolytes prepared
from solvents with low dielectric constants, such as ben-
zene or diethyl ether, there are some miscibility gaps
which could be interpreted as "liquid-vapor-type" phase
transitions involving the ions of the electrolyte. ' A
similar conclusion was reached by the authors of Ref. 38,
who observed the miscibility gap in sodium-liquid am-
monia solutions with Na+ and solvated electrons
representing the ionic solute. Experimentally the above
gaps were characterized by noticeable changes in the elec-
tric conductivity, as it was explained in the Introduction.
Above experiments show that the complexity of the prob-
lem of phase transitions in electrolytes is only indirectly
related to the RPM presented in our article because of a
number of reasons. First, within the framework of the
RPM model we considered only the symmetric electrolyte.
Second, the highly polarizable groups in the macroions of
the electrolytes studied experimentally may provide a sig-
nificant non-Coulomb contribution to the interion poten-
tial. Third, one of the most recent model calculations for
the case of square well fluid indicates that the improved
Percus-Yevick (PY) computational procedure produces
the standard mean-field results for the exponents y and
5, and the question of phase transition in the Yukawa
fluid, directly related to our problem, remains open within
the PY approach although, as authors indicate, some non-
classical behavior in this case is expected. These and oth-
er factors already mentioned will be considered in future
publications.

G. Stell, K. %u, and B. Larsen„Phys. Rev. Lett. 37, 1369
(1976).

2H. Friedman and B. Larsen, J. Chem. Phys. 70, 92 (1979).
M. Medina-Noyola, J. Chem. Phys. S1, 5059 (1984).

4G. Stell and J. L. Lebowitz, J. Chem. Phys. 49, 3706 (1968).
5R. Brout, Phase Transitions (North-Holland, Amsterdam,

1965).
S. Koch, Dynamics of First Order Phase Transitions in Equili

brium and Nonequi/ibrium Systems, Vol. 207 of Lecture Notes
in Physics (Springer-Verlag, New York, 1984).

J. Hansen and P. Vieillefosse, Phys. Rev. Lett. 37, 391 (1976).
J. Kosterlitz and D. Thouless, J. Phys. C 6, 1181 (1973).

9V. Berezinskii, Zh. Eksp. Teor. Fiz. 61, 1144 (1971} [Sov.
Phys. —JETP 34, 610 (1971)j.

' J. Kosterlitz, J. Phys. C 10, 3753 (1977).
"A. Lenard, J. Math. Phys. 2, 682 (1961).
'2D. Brydges and P. Federbush, Commun. Math. Phys. 73, 197

(1980).
' T. Kennedy, Commun. Math. Phys. 92, 269 (1983).
~4T. Kennedy, J. Stat. Phys. 37, 529 (1984).
'5J. Glimm and A. Jaffe, Quantum Physics (Springer-Verlag,

New York, 1981).
'6J. P. Hansen, J. Phys. (Paris) CoHoq. C7 45, 97 (1984).
~7R. Rajaraman, Solitons and Instantons (North-HoHand, Am-

sterdam, 1982).
'SJ. Kogut, Rev. Mod. Phys. 51, 659 (1979).
'9A. Kholodenko and K. Freed, J. Chem. Phys. 78, 7412 (1983).
20S. Edwards, Philos. Mag. 4, 1171 (1959).
2~E. %"aisman and J. Lebowitz, J. Chem. Phys. 56, 3086 (1972);

3093 (1972).

2D. Amit, Field Theory, the Renorma/ization Group and Criti-
ca/ Phenomena (Mt:Graw-Hill, New York, 1978).

2 A. Kholodenko and K. Freed, J. Chem. Phys. 78, 7390 (1983).
24P, Ramond, Field Theory: A Modern Primer (Benjamin,

Reading, Mass. , 1981).
2sN. Krall and A. Trivelpiece, Principies of Plasma Physics

(McGraw-Hill, New York, 1973).
26S.-k. Ma, Modern Theory of Critical Phenomena (Benjamin,

Reading, Mass. , 1976).
27T. Hill, Statistical Mechanics (McGraw-Hill, New York,

1956).
A. Kholodenko and K. Freed, J, Chem. Phys. 80, 900 (1984).

2 L. Landau and E. Lifshitz, Statistical Physics (Pergamon, Ox-
ford, 1980), Vol. 5.

OR. Rajaraman and M. Lakshmi, Phys. Rev. B 25, 1866 (1982).
3'C. L. Hammer and J. Shrauner, Phys. Rev. B 29, 232 (1984).
32R. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D 11,

3424 (1975).
iiS. Coleman, in The Whys of Subnuclear Physics, edited by A.

Zichichi (Plenum, New York, 1979).
3~A. Loeb, J. Overbeek, and P. Vhersema, The Electrica/ Double

Layer Around a Spherica/ Colloida/ Partic/e (MIT Press, Cam-
bridge, 1961).

35M. Creutz„L. Jacobs, and C. Rebbi, Phys. Rep. 95, 201 (1983).
6K. G. VA'lson and J. Kogut, Phys. Rep. 12C, 75 (1974).

37H. Friedman, J. Phys. Chexn. 66, 1595 (1962).
38P. Chieux and M. Sienko, J. Chem. Phys. 53, 566 (1970).
i91.. Micr-Y-Teran, E. Fernandez-Fassnacht, and S. Quinones,

Phys. Lett. 107A, 329 (1985).


