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for E s. (3a)—(3c); X =cop ——0,FIG. 1. (a) z trajectory for qs. —;— =0
A (t) =cos(t;); 1=1 x (0)=y(0) =0, z(0) = —1. {b as
Fourier trans orrnf {FFT)of the z trajectory, F(z).
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and (2) A (t) is prescribed to be given by

A (r) =cos(a)r) cos(co'r),

in which ~ and co' are incommensurate. This second case
eras recently discussed by Pomeau et al. and was shogun

to exhibit a continuous poorer spectrum as weB as a rapid-
ly decaying correlation even though it does not possess a

positive Liapunov exponent. The first case, on the other

hand, does possess a positive Liapunov exponent for ap-

propriately chosen initial conditions, as AH as nonchaotic
dynamics for other initial conditions. These behaviors are
a consequence of the simple, linear feedback term, x, in

Eq. (4).
We will describe the behavior of both cases in three dis-

tinct situations: (1) coo ——0 (and %=0 for case 1); (2)
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FIG. 2. (a) z trajectory, coo——0, A (t) =eos(cot) cos(co"t), co=17711/28657, ~'=4637/13313, A, =5, same initial conditions as in

Fig. 1. (b) FFT of the z trajectory, E(z). (c) Expanded scale for b.
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In case (1), Eq. (4) becomes
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co~0 (N =0 for case 1); and (3) too&0 ( N = 1 for case 1}.
In situation (1) both cases yield explicit integrals for the
solutions. The power spectra show well-defined peaks in
case (1) but an apparently continuous spectrum in case (2),
and the Liapunov exponents are zero. In situation (2),
both cases may be described by time-ordered exponential
solutions which cannot be rendered in any simpler form.
In case (1), the power spectrum still shows well-defined
peaks and the Liapunov exponent vanishes. In case (2) the
power spectrum appears continuous, a correlation shows
rapid decay, but the Liapunov exponent is zero. In situa-
tion (3), case (1) exhibits chaos, i.e., a positive Liapunov
exponent, for appropriate initial conditions. Case (2), on
the other hand, is the same as in situation (2). Greater de-
tail for each situation appears below.

Situation (1): ~0——0 and E=0. This situation reduces
the problem to two variables, y and z. They satisfy the
equation

which has the solution

A (t) =3 (0)cos(cot}+A (0)sin(cot) .

This expression is easily inserted into solution (7) and the
integrals are easily executed. In case (2), A (t) is given by
(5), and insertion into solution (7) again leads to easily ex-
ecuted integrals. Thus, in each case we have explicit in-
tegral solutions. In Figs. 1 and 2, we show plots of z(t)
and its corresponding power spectrum for each case. The
Liapunov exponent in each case is zero, as can be deduced
analytically as well as numerically. In case (2) the power
spectrum appears continuous. For A (t) given by (5) with
incommensurate ~ and co', the nonlinear combinations
created by the solution (7) create harmonic mixtures and
overtones in an apparently continuous manner.

Situation (2): coo+0 and N =0. Now we are back to a
three-variable problem. However, for case (1) the x-
feedback term has been eliminated and A (t} is again given

by Eq. (9). In essence this makes case (1) equivalent to a
special case treated by Pomeau et al. in which the
prescribed electromagnetic field is given by a pure tri-
gonometric function instead of by a product of two such
functions as in Eq. (5). In each case we know A (t) expli-
citly and can express Eqs. (3a)—(3c) in the form

0 —coo
d

coo 0
dt

0 2A, A (t)

—2A,A (t) y

0 z

(10)

Because the coupling matrix does not commute with itself
at unequal times, the solution to this equation must be ex-
pressed in terms of a time-ordered exponential:s

(c)
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FIG. 2. (ConII'.need).
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FIG. 3. (a) FFT for the z trajectory for Eqs. (3a)—(3c), coo= l, 3 (t)=cos(cot)cos(co'r), co=34/55, co'=34/89, A, =5, same initial
conditions as Fig. 1. (b) Expanded scale for a. The peaks identical by arrows are simple combinations of ~ and co', (Mao —¹o')/n.,
to within +0.0005. From left to right, the values for (M, X) for each peak are: ( —21,—34), ( —8, —13), (26,42), ( —16, —26),
( —3, —5), ( —24, —39), (10,16), ( —11,—18), (2,3), ( —19,—31), (15,24), ( —6, —10), (7,11), ( —14, —23), (20,32), ( —1, —2),
( —22, —36); ( —9, —15), (4,6), ( —17,—28), (17,27), ( —4, —7}, ( —25, —41), (9,14), ( —12, —20), {22,3), (1,1), ( —7, —12), (6,9),
( —15,—25), ( —2, —4), ( —23, —3), (11,17), {—10,—17).
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situation is identical with case (2) in the previous situa-
tion, we will only discuss case (1). Now it is impossible to
solve explicitly for A (t) and one is forced to analyze a
five-variable system of coupled first-order equations
equivalent to Eqs. (3a)—(3c) and (4):

X = —QP(P ~ (12a)
%hile this expression cannot be rendered in a simple, ex-
plicit, reduced form, it does not introduce sufficient com-
plexity to create chaos. In case (1), representative figures
for z(t) and its power spectrum are given by Figs. 1(a)
and 1(b) of Pomeau et al. Well-defined peaks are seen
in the power spectrum. On the other hand, for case (2)
Figs. 2(a) and 2(b) of Pomeau et al. provide z(t) and its
power spectrum. Now, a continuous spectrum is again
seen; nevertheless, the Liapunov exponent in each case is
zero. Once again this may be demonstrated analytically
because Eq. (10) is linear and A (1) is independent of the
initial values for x, y, and z. Consequently, not only is
x +y +z conserved, but (M)z+(by) +(M) is also
conserved, that is, the norm of any tangent vector to the
flow is conserved. The numerical algorithm for comput-
ing the Liapunov exponent will automatically yield zero
in such a situation.

We have studied in detail the origin of the apparently
continuous spectrum. Pomeau et cil. used co=17711/
28657 and co'=4637/13 313 in their numerical computa-
tions. We have instead looked at a succession of Fibonac-
ci series ratios which exhibit the same behavior as seen by
Pomeau et al. when these ratios are comparable to the
values quoted above. Specifically, if 1,1,2,3,5,8,13,21, . . .
al'e tile Flbollaccl numbers Fi,Fz,Fi,F4,Fg, . . . , iespec-
tively, then we choose co=F„/F„+i and co'=F„/F„+z.
Thus, F22/Fz3 ——17711/28657. However, an apparently
continuous spectrum can be obtained for co=F9/Fio
=34/55 and co'=F9/Fii ——34/89, as is shown in Fig.
3(a). We have enlarged the initial portion of this spec-
trum in Fig. 3(b) and have identified many of the peaks as
simple combinations of co and co'. The combination
34co' —2lco, i.e., F9co' —Fsco is particularly small (0.0069)
and its mixture with other combinations as well as its
overtones produces the apparently continuous character to
the spectrum. As the Fibonacci index n increases, a cor-
responding combination with the value
Q„=F„F„/F„+z F„ iF„/F„+ i

—appears and is even
smaller, e.g., for n =20 this difference is now 0.000035.
This value makes it a practical impossibility to enlarge the
spectrum enough to be able to see and identify the discrete
peaks which we have shown for n =9. As n —+ Do, 0„~0
and the spectrum becomes truly continuous, correspond-
ing to a quasiperiodic trajectory.

Situation (3): co~0 and N =1. Since case (2) in this

y =coox —2A,A (t)z,

z =2k,A (t)y,

A = —Q)8

(12b)

(12c)

(12d)

8= cod +2& . (12e)
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We have studied this system extensively. For special ini-
tial conditions [x(0)=y(0)=0, z(0)=1, A, =0.5] a con-
tinuous power spectrum for z(t) is found as well as a
positive Liapunov exponent' ' (0.196). It is also possible
to choose a different set of initial conditions
[x(0)=z(0)=0, y(0)=1, A, =0.05] such that nonchaotic
dynamics is observed, that is for which the Liapunov ex-

ponent vanishes ( &0.003). Our analysis elucidated the
mechanism for this behavior in terms of a periodically
perturbed pendulum dynamics which is embedded in the
Bloch-Maxwell system. The pendulum dynamics is
known to be a generic source of chaos in classical systems,
as was shown by Chirikov. ' This pendulum mechanism
has its origin in the simple, linear x-feedback term in Eq.
(12e).

The Sloch-Maxwell system with a semiclassical radia-
tion field is on the borderline between chaotic and non-
chaotic dynamics. We have shown that diagnostic cri-
teria for chaos such as a continuous power spectrum or a
rapidly decaying correlation are not definitive. Only the
positivity of the maximum Liapunov exponent confirms
bona fide chaos in a bounded, first-order differential,
phase flow. In the Bloch-Maxwell system, chaos is possi-
ble only if there is feedback on the radiation field. Other-
wise the system is at most ergodic. Even when chaos is
possible for certain initial conditions, it is also possible to
exhibit nonchaotic dynamics for different initial condi-
tions. Therefore, criteria based solely upon the structure
of the Hamiltonian or its eigenspectrum cannot be correct.
The Bloch-Maxwell system appears to be the minimal sys-
tem in which each of these distinctions may be demon-
strated.

'P. I. Belobrov, G. M. Zaslavskii, and G. Kh. Tartakovskii, Zh.
Eksp. Teor. Fiz. 71, 1799 (1976) [Sov. Phys. —JETP 44, 945
(1977)].

~P. W. Milonni, J. R. Ackerhalt, and H. %'. Galbraith, Phys.
Rev. Lett. 50, 966 (1983).

3G. Casati and I. Guarneri, Phys. Rev. Lett. 50, 640 (1983).
4R. F. Fox and J. Eidson, Phys. Rev. A 34, 482 (1986).
~Y. Pomeau, B. Dorizzi, and B. Grammaticos, Phys. Rev. Lett.

56, 681 (1986).

6C. Grebogi, E. Ott, S. Pelikan, and J. A. Yorke, Physica 13D,
261 (1984).

7M. Shapiro and G. Goelman, Phys. Rev. Lett. 53, 1714 (1984).
SR. F. Fox, Phys. Rep. 48, 179 (1978), see p. 238.
9G. Benettin, L. Galgani, and J. M. Strelcyn, Phys. Rev. A 14,

2338 (1976); G. Benettin and L. Galgani, J. Stat. Phys. 27,
153 (1982).

~08. V. Chirikov, Phys. Rep. 52, 265 (1979).


