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The stability of Taylor vortices and the axial variation of the wavy vortex wavelength in finite

Taylor-Couette geometries are studied with a model amplitude equation including nonpotential

terms induced by long-wavelength inhomogeneities of the flow. The results confirm the importance
of end effects in the selection and stability properties of wavy flows in agreement with various ex-

perimental results.

I. INTRODUCTION

The successive bifurcations leading to chaotic flows in
Taylor-Couette experiments when the outer cylinder is at
rest have been studied in great detail both theoretically
and experimentally. However, the stability properties and
selection mechanisms of the convective patterns remain
poorly understood. ' Moreover, it is expected that the
mechanisms driving the system to its chaotic regime find
their origin in the characteristics of the flow at the first
instabilities. Hence there is actually a renewed interest in
the study of the transitions to Taylor and wavy Taylor
vortices and very careful experiments have been per-
formed recently to study the stability regimes and the
transitions between different wavy flows in different
geometries.

From the theoretical point of view, the amplitude equa-
tion formalism which led to significant progress in the
study of Rayleigh-Benard experiments, has been applied
to the transition to axisymmetric Taylor vortices includ-
ing fluctuations and end effects. ' However, when az-
imuthal perturbations have to be taken into account the
derivation of amplitude equations becomes more intri-
cate and the drift flows may play an important role
even at the lowest order of the small-gap problem. ' As
the transition to wavy flows appears at higher orders of
the amplitude equation expansion, a consistent derivation,
even of the linear part of such equations, becomes very
difficult. Indeed, owing to the radial dependence of the
Couette flow, the couplings between the different com-
ponents of the velocity field lead to equations of great in-
tricacy where most of the parameters have to be estimated
numerically. Furthermore, the convergence properties of
the procedure are not known. Important works which are
now classics in the field have been devoted to the estima-
tion of the stability boundaries of Taylor and wavy Taylor
flows along these lines but they were not able to predict
the experimentally selected azimuthal wave numbers nor
to incorporate satisfactorily the finite end effects in their
analysis "'

This is why we recently proposed to discussed the onset
of wavy ftows with a model amplitude equation derived
from the slow-mode dynamics of the system. ' This for-
malism was already applied to other convective instabili-
ties and to nonlinear systems with reaction-diffusion

dynamics. Other attempts devoted to theoretical
descriptions of wavy flow properties have also been made

by introducing phenomenological assumptions in the am-
plitude equation formalism or by assuming the validity
of a gradient expansion of the phase dynamics. '

However, in these approaches, crude approximations
are made on the structure of the nonlinearities of the ki-
netic equations by neglecting nonpotential terms arising
from the coupling with drift flows and from the renor-
malization of the wave speed. As these terms, like in oth-
er hydrodynamical systems, ' ' may modify the stability
domain of the patterns, their phase dynamics or the pat-
tern selection in high ramping rates, one has to include
them in the analysis of Taylor flows beyond their onset.

The aim of this paper is to introduce more realistic
nonlinear couplings in the slow-mode dynamics, their
structure being inferred from the structure of the non-
linearities of the Navier-Stokes equations, and to test the
corresponding model equations on experimental observa-
tions. In Sec. II we derive and discuss the slow-mode
dynamics proposed to describe the transition to axisym-
metric Taylor vortices (TVF) and to wavy vortices (WVF).
In Sec. III the resulting phase dynamics are obtained and
their relevance to the interpretation of experimental re-
sults is discussed in Sec. IV.

II. MODEL AMPLITUDE EQUATIONS

The derivation of model amplitude equations takes ad-
vantage of the time-scale separation near the instabilities
and uses the standard procedure of adiabatic elimination
of the fast modes. It may be summarized as follows.
Starting from the Navier-Stokes equations for the velocity
fluctuations (u=u 1„+Ule+w1,; with x,8,z as cylindri-
cal coordinates) around the Couette flow [the fluid of
kinematic viscosity v is contained between two cylinders
of radii p (x =0) and p+d (x =1) and length L; the
outer cylinder is at rest while the inner one rotates with an
angular velocity 0; the axial and radial coordinates are
scaled by d, the velocity components by v/d; the time by
v/d and the pressure by pv /d j, it is convenient to first
eliminate the pressure and the axial velocity from the
linear part of these equations. Then by considering that
the onset of Taylor and wavy Taylor Aows are very close
together for small gaps, the slow modes are defined from
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where [V(Ai,x}I is a set of orthonormalized functions
determined by the linear axisymmetric problem. The slow
mode is the Fourier transform X( z, 8, t) of Xz" (t). The
asymptotic time evolution of its slowly varying envelope
cr(z, 8, r}

[X(z,8, t) =cr(z, 8,t}expiq, z+c.c.]

is calculated through the following small-gap decoupling:

1 xV;,x xV j,x = x =0.5,j. (2)

U(A, &,x) is determined from the eigenvalue problem,

the projection of this linear dynamics on the eigenfunction
associated to the eigenvalue vanishing at threshold, A, &,

u= g fdqXq~' (t) V(A Jx) exp[i (qz+m8)],
m, j

V(A,„x) =u (A i,x)I„+U(i„,x) 1s+ io(A„,x }1,,

20d
(DD q—cg—)(DD* —q )u —q g(x)v =0,

y

(DD' —q —co)V+2 2
u =oQd

y 1 —g
(3)

The boundary conditions are u =Du =U =0 at x =0, 1

and D =(8/Bx), D'=(8/Bx)+(dlp+dx); g(x) tends to
0.5 in the small-gap limit ri=(p/p+d)~1. The Taylor
number is defined as

T =2Q d ri /y (1—ri )

and oi is the growth rate of the velocity field fluctuations
around the Couette flow.

By expanding the corresponding eigenvalue of the
nonaxisymmetric linear evolution matrix in ( T —T, )/T„
(q —q, )q, &m /q, p the linear part of the slow-mode
dynamics takes the form (13)

2 2

(q —q, )
4q,

(J) T Tc
&oXq (t)= .

C

qc TP ~c 4rri 1 —q1+, +
3q Tc q 1+p

'2 '4

—Epm +im 0)4 1 —g
1+7l

2—2ko(q —q. )
m 1 —g
q,
' 1+g

1+2 q —qc 1 —g
c 1+ (4)

where ro
' ——12.56, q, =3.12, T, =1708, (o=0.144,

Q, =Qri (3+ri)/(1+i}) ~Q/2 as ri~l

2
q =qc 1+

34oq.

]/2
C

Tc

T Tc
=q, 1+0.24

(6)

E =16 1+
C

4
3qc ~

24 (1+ri)' —2

~ ( I+ri)'(3+ri)

As shown by Dominguez-Lerma et ai. , ro, q„T„and
go are only slightly i) dependent and will be considered as
constants in the following. Moreover, the wave number
corresponding to the maximum growth rate of axial per-
turbations is found to be

in agreement with their calculations. The projection of
the Navier-Stokes equations on V(A,„x)combined with
the small-gap decoupling (2) eliminates the dependence on
the radial coordinate thought to be irrelevant in the
description of the basic characteristics of the flow. The
approximations made are justified by the close vicinity of
the two first thresholds (i.e., the Taylor and wavy flows)
and to the particular form of the functions of the set

I V(AJ, x)I. '

The linear evolution of the Fourier transform X(z,8, t)
of the slow mode is then given by

AX(z, 8, t) = ~ —Tc qc +~z 1 —q1—
C q~ 1+g

'2'
2T, pT 4 2 go—

2 ~ 2 qC+' c qc 4qc

2 '2
240 1 —il 2 2 2 2 1 —i)

(q, +B,)Bs—Eo Bs+QiBe 1 — (q, +iB, ) X(z,8, t) .2 1 —q
q2 I+g ' ' 1+g q, 1+q

If one performs the standard multiple scale analysis on
this expression one obtains the lowest-order linear part of
the amplitude equation for the vortices by writing

X(z,8, t) =o(z,8, t) expiq, z+c.c.

The exact computation of the nonlinear terms within
the framework of the amplitude equation or of the slow-
mode formalism is out of the scope of our analysis as it
requires a precise knowledge of the set of eigenfunctions
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V(AJ. ,x) and the complete adiabatic elimination of all the
fast modes. However, one may guess a meaningful ap-
proximation for the nonlinearities of the slow-mode
dynamics from the structure of the nonlinear couplings
between the velocity components in the Navier-Stokes
equations. This is sufficient for our purpose which con-
sists in deriving a simplified version of the original
Navier-Stokes equations, appropriate to describe the
relevant aspects of the dynamics of the system near the
first instabilities. We do not intend to obtain an approxi-
mate solution of these equations at a given order since the
complexity of the calculations then often masks simple
and meaningful aspects of the problem and we feel that it
may be preferable to perform such expansions from a sim-
plified model able to describe the experimentally relevant
facts eventually at the lack of quantitative precision. It
turns out that the nonlinear couplings between the u and
w components of the velocity field lead after adiabatic el-
imination of the fast modes to cubic contributions to the
nonlinear slow-mode dynamics. The construction of these
nonlinear terms is similar to the Rayleigh-Benard case
with the difficulties encountered in the case of the realis-
tic no-slip boundary conditions. Hence we will approxi-
mate these terms in real space by g I

o
I

o, where g has to
be determined by suitable approximations or by the fitting
of experimental data or numerical analysis. "'

Other nonlinear contributions arise from the coupling
between the u, u, and w components of the velocity field.
These contributions come from the wB, u and wB, U of the
nonlinear coupling (u V}u. According to the structure of

the slow-mode dynamics it turns out that these contribu-
tions lead to a term proportional to iq, o.m„where R is the
slow-z varying part of w averaged over the gap

w, = f dx[V(A, i,x)] w, =w, (0.5) . (&)

Hence that part of the axial velocity which varies slowly
in the z direction may be approximated by

2
cl w Bgp (10)

and from the radial equation it turns out that p, may be
written as

p, (x,8,z)=pa(z, 8)+h
I
o

I
[V(A.&,x)] +

where po(z, 8) is an arbitrary function which may in turn
be determined by the continuity equation which requires
that

1

x N+ gU =0

leading to

f d», w, =h'ds
I
o

I

' .

From Eqs. (10) and (11) we obtain

(12)

The evaluation of w, requires the solution of its kinetic
equation,

[(8, V'—+QBs)w+ 8,p+u Vw] I, =0 .

] ' x'
w, (,8, ) =B,p (,8)—,'x( —1)+ha,

I
o

I

' f d ' —x f dx' f"d "[V("i "}]'

=B,po(z, 8)—,'x(x —1)+—,'(x —1)hB,
I
o

I

'.

Moreover, from (12) we also have

f dx B,po(z, 8)= —f dx hBz fo I

x (x —1)

+h'Be fo f' (15)

and finally

w, = ——,
'
B,po(z, 8)——,

'
h 8, I

o
I

or

, = —,
'

h 8, I f

—12h 'Be
I

8,'p (,8)= —3hB,'
I

I' —12h'8
I

The approximate amplitude equation may then be written
as

r 2

~oui (z, 8, t) = ~ e 1+ ibad 1+2 I 1 —q [1—(e+ 1}P] i Be+go 8, 1+ . 8,2 Z

3lgc 2lgc 1 + 'g Vc 2lCfc
r

4'+ .
lac 1+Vj

4r

a, 1+ a, a,—SC, a,+n, a, 1+. a, .~(z, 8, t}
1 2 2 1 —q 2 1 —g

2iq,
' 1+q iq, 1+q

—g I
cr(z, 8, t)

I
o(z, 8, t) +iq, o (z, 8, t)w, ,
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with

5, ro, =g'8,'
f
a

f

' —g "Bg
J

cr
f

' .

In fact an eventual computation of g,g', g" should require
various integrals on elements of the set I V(kj, x ) I.
%'e did not perform these calculations but from dimen-
sional arguments it may be expected that
g'=g "(1+g/1 —ri )=g /3.

To summarize the present discussion, let us stress the
fact that we derived a system of partial differential equa-
tions governing the axial and azimuthal dependence of the
local velocity field coupled to the slowly varying drift
flow. These equations consist in a simplification of the
original Navier-Stokes equations based on the
phenomenology of the system and on the structure of the
nonlinear couplings. The approximations made allow one
to avoid the explicit computation of the nonlinear cou-
plings which make the multiple scale analysis completely
untractable near the transition to wavy flows. However,
all the physically important qualitative features of the
problem are present, and, if one performs the multiple
scale analysis on this equation, the lowest-order amplitude
is recovered. I.et us finally point out that the approach
used here was also able to improve the understanding of
other convective phenomena beyond threshold. ' '

0.2

0.1

1.6 2.0
I

X/d 24

FIG. 1. Stability limits of Taylor vortex flows vs reduced
wavelength [e=(T T, )/T, ]—: (I) marginal stability curve, (2)
Eckhaus stability limits, (3) Do ——0, (4) D =0. k corresponds
to the maximum growth rate, ko is the critical wavelength„while
the dots and crosses are the experimental results of Ahlers et al.
(Ref. 25).

III. PHASE DYNAMICS AND STABILITY LIMITS
OF TAYLOR AND WAVY VORTEX FLOWS

2repo=ao~. q o (20)

e' —3(o5 g qDo=go, , —2 5o
&—go25' g

X(z,8, t)=croexpi [(q, +5o)z+qo(z, t)]+c.c.

For increasing values of the Reynolds number one has to
take into account the deviations of q from q, and higher
contributions in e to the phase dynamics. We then obtain

A. Phase instabihty of axisymmetric Aows

From the kinetic equation (19) the relaxational charac-
ter of the amplitude and the diffusive character of the
phase of the vortices are obvious. Hence the amplitude
fluctuations may be adiabatically eliminated. In the case
of axisymmetric Taylor vortices, the phase dynamics may
then be written at the lowest order in e= ( T —T, )/T, as

X(z,8, t)=trexpi[(q+5)z+g(z, t}]+cc.
Hence the stability domain of the flow defined by D )0

is reduced versus the Eckhaus domain in agreement with
the experimental data. The various stability limits com-
puted for the amplitude equation and our slow dynamics
are given in Fig. 1.

The experimental stability limits obtained by Ahlers
et al. are also reported on this figure (dots). Moreover
as observed by these authors the wavelength selected after
a sudden increase of the bifurcation parameter (crosses) is
shown to be close to the maximum linear growth rate of
the unstable modes which corresponds in our description
to A, =2~ti, ' [cf. Eq. (6)], ko ——2mq,

'
being the critical

wavelength.

B. End effects on the stability of wavy flows

In the case of a finite annulus the axial inhomogeneities
of the flow induce nonvanishing contributions of the drift
flow to the nonlinear terms of the kinetic equation (19)
able to affect the phase dynamics. Effectively, if we let
the phase fluctuate, a wavy flow of axial wavelength
2mq

' and wave number m may be defined by

ryp=DB, @,
where

e 3go5 —g'q
D =go 2 g

~=~( 1+~/gqc'k)

by writing

(21} X( , zt8) =oo(z, t)sin[qz+yo(z, t)]

+2a (z, t)cos[qz+y (z, t)]

X slilrrl (8—8o+Qt) .

Here also, the symmetry breaking associated with the
transition to organized flows induces a time and space
scale separation between phase and amplitude. The relax-
ational evolution of the amplitude may be adiabatically el-
iminated, the asymptotic evolution of the system being
governed by the diffusive phase dynamics. In the case of
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4m p 1 —t) T Tu(m—~q)
+g'oc)g cr (z)

q, 1+q
—2go (z)=0,

where

(24a)

q,
' I + t) 4q,

'

(24b)

As o has to vanish at the cylinders ends [cr (0)
=cr (L)=0], it may be written as

cr~ (z) =o sing (z),

Eq. (19), and slightly beyond the onset of wavy flows, cro

is nearly homogeneous, while o is modulated by end ef-
fects. ' Moreover, the two parts of the flow remain phase
locked (this is no more true for increasing values of T and
may lead to further instabilities) and (po=y . It turns out
then that the phase dynamics may be described by the fol-
lowing kinetic equation:

rod%'o=Do~sko+g qdzcrm (23)

o was explicitly calculated for q=q, in Ref. 13.
similar calculation may be performed for q&q, since by
inserting the expression for the flow given by Eq. (22) into
the kinetic equation (19), the stationary amplitude of the
azimuthal part of the fiow, cr, is given by

-2 — 2
crm =2 &m —fo I.

2

(27b)

leading to

o (z)=
'2 ' 1/2

8mzP 1 rI —T —Tw(m q'L) . nz

q, 1+g gT, I
(27c)

By increasing the Reynolds number, e and conse-
quently k increases, leading to a more angular shape for
cr, whose maximum tends to e /g.

Since the flow has to flt into the annulus, it turns out
that the local axial wavelength, deduced from Eqs. (23)
and (18) of Ref. 13 may be written as

g'o 1 L. —1

1+ — dz'sin P (z') —sin (() (z)
Do I 0

Slightly beyond this threshold, the small-k limit may be
taken in Eq. (25) and one has

2
' 2

ko ~d

' I/2 (27a)
2E(0) vrzZ- Z

L I.

go(1+k )
da(1 —k sin a)

&m 0
(25b)

or, near threshold,
r

L 4g'm P 1 —t)
N ggo2 I+r)

'2
T Tgf

)( 1 —2 sin
~ 2 7TZ

I. (29)

ancl

0 =2s kz/(1+kz)g

(1+k )
L =2 I('. (k),

2
4m2p 1 & T —T (m, q)

E

(25c)

(25d)

(N being the number of vortex pairs in the column).
The corresponding variation of the wavelength along

the annulus for increasing values of the Taylor number
may be visualized in Fig. 2. One sees that the vortices are

1.2 T =Tt, ~TB~T2~T1=TM

Since this solution only exists for

L &L, =de.(go/e )'i

e & go(hard/L )',
the corresponding threshold is defined by

T=Tw(m, q;L)

0.5

m= 2, I =60, g =cL'l

0.7
1

ZtL

2
2

1+ 2 + 2(q —q, )
16m 1 —t) 3' z q 2

q,
' 1+q 4q,

'
2 2 '2 2.

%k I +rl nd+ 2
4pyg 1 —g I

FIG. 2. Variation of the local wavelength of wavy vortices vs

their axial position for different Taylor numbers [the units are
arbitrary but it should be noted that, by using Eq. (29) and the
numerical values of Q, g'0, Ts deduced from Eqs. (4) and (26)
one obtains, for q=0.9 and m =2, 3 a variation of the wave-

length within the range of experimental data (Refs. 2 and 5)].
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R/Rc

1k-
194
190

Re=123 f =54 /=0. 88 m=2

N=30 29 28 27 26 25 2L 23

185

15 179

178
120

173
1.4

1.8
I

1.9 2.0 2.1
) (8+11 T(N) QN-1) ) (N-2}

2.2

1.2-
FIG. 3. Transition mechanism between wavy vortex flows

with different number of vortex pairs: the dashed lines are the
minimum local wavelengths; the dash-dotted lines are the max-
imum wavelengths; 'L{N) is the mean wavelength of a flow with
X vortex pairs.

compressed at the ends and expanded at the center of the
cylinder in agreement with different experiments. i 5

When the local wavelength reaches the stability bound-
aries, a transition occurs by the suppression or addition of
a vortex pair in a way which is very similar to the experi-
mental observations. This transition mechanism is
schematically illustrated in Fig. 3.

IV. DISCUSSION

The transitions between wavy flows with different num-
ber of vortex pairs and due to the mechanism discussed in
Sec. III were computed for realistic values of the parame-
ters. The results, displayed in Figs. 4 to 6 show a reason-
able agreement with the corresponding experimental
data. '

We effectively see that the stability domain of wavy
vortex flows is considerably reduced and takes a nearly
triangular shape. The following behavior of the system is
expected for slow increases of the Reynolds number
beyond the WVF threshold: the axial wavelength of the
flow loses its uniformity and the vortices are expanded at
the center of the column and compressed near the ends;
when the local wavelength reaches the phase instability
boundary (Do ——D~~ ——0) the fiow should reorganize itself
by losing or gaining a vortex pair; successive transitions of
this type will occur till the flow reaches a point where a
reorganization of this type is not possible anymore within
the stability limits of the flow.

In this case it has to modify its azimuthal wave number
as well. But, if there is no overlapping between the
respective stability domains (cf. also Fig. 8), the flow is
expected to become ill defined, including defi':t activity
and temporal behavior before reaching a new organized
pattern with a different m at a higher value of the Rey-
nolds number.

1.6 1.8
l

2.0
I

2.2 ) /d 24

The curves presented in the figures were obtained with
the values of the parameters ro, q„go,Eo,P given in Eq.
(5), rl and I corresponding to experimental values. In the
computation of the stability limits, the nonlinear coupling
constants only appear via the ratio g'lg which was as-
sumed to be of the order of one-third as a result of scaling
properties. As this ratio affects the variation of A, ;„and
A, ,„with 8/R„its value defines the shape and area of
the stability domain of wavy flows but does not affect the

R/R

0„=0
R,=123 t =70 /=0. 88m=2

1.5-
180
177

1?3
1/s,~172

167
167
163

1-3-158162

157

M=38 37 36 35 34 33 32 31

l2 — R=R

1.6 1.8 2.0 2.2 ) /d 24

FIG. 5. Transitions between different wavy flows as in Fig. 4
but for a higher value of the aspect ratio.

FIG. 4. Transitions between wavy vortex flows with different
number of vortex pairs for values of the parameters correspond-
ing to the experiments of the Oregon group (Refs. 3 and 5). The
Reynolds numbers corresponding to the transitions are indicated
on the left of the figure (above the transition line: theoretical
value, below the transition line: experimental value).
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R/R /=0.9 I =54 m=3

0„=0
1.5-

1.3-

Ill
/ 'I

x
I

N= 29 28 Z7 26 25 24 23 22 21 20

iC

of the problem and this may explain the relatively scat-
tered experimental data.

For example, a variation of i) from 0.88 to 0.9 for
I =30 leads to a 10% shift of the threshold of wavy flows
with azimuthal wave number 2, and a 40% decrease of
the corresponding wave height at saturation (T»T, ).
Furthermore the viscosity dependence of the experimental
observations is not reflected in our model as the viscosity
dependence of the linear terms has been incorporated in
the Reynolds number. A viscosity dependence should
nevertheless appear in nonlinear couplings but as we took
g as a constant, it does not appear in the maximum wave
height which is proportional to

1.2-

I

l,6 2.0 2.4 2.S X/d

o„(L/2)/o(0)=8m'pq, '[(1—i))/(1+rl)]'

X[T—Tii (m, q;L)] /( T—T, ) .

FIG. 6. Transitions between wavy vortex flows with different
number of vortex pairs for values of the parameters correspond-
ing to the experiments of the Santa Barbara group. Dots and
crosses correspond to experimental results (Ref. 2).

0.6

m=4

0.2

1.5 1 6 R/R~

FIG. 7. Reduced wave heights vs Reynolds number for dif-
ferent values of the azimuthal wave number (q =0.885,
I =31.02).

origin nor the mechanism of the deterministic transition
between wavy flows with different numbers of vortex
pairs.

More recently, Bust, Dornblaser, and Koschmieder
studied the amplitudes and wavelengths of wavy vortices
in water and 10-cs silicone oil. Their apparatus having a
radius ratio of 0.885 and an aspect ratio of 31.02, the first
wavy vortex state to appear after a slow increase of the
Reynolds number is expected to be a state with 15 vortex
pairs and an azimuthal wave number 4, ' the threshold
being R =1.19R,. This seems to be the experimental sit-
uation. Moreover, the increase of the wave height and of
the wavelength at the center of the column is in qualita-
tive agreement with the present theoretical analysis.
Values of the wave heights obtained from our model are
given in Fig. 7. They are very sensitive to the parameters

In fact, for increasing values of the Taylor number, as al-

ready mentioned in Ref. 13, the nonlinear couplings in-

volving axial or azimuthal flows should be slightly dif-
ferent leading to a viscosity dependence of the wave
height. However, this dependence, appearing through
terms proportional to m q, p, is not expected to be as
important as the experimentally observed one.

It is now clear from the above discussion that the slow-
mode dynamical concepts used here, by avoiding the com-
plexity and inconsistencies of the higher-order amplitude
equations, are able to give some insights on the pattern-
selection mechanisms for Taylor and wavy vortex flows as
well as on transition mechanisms between simultaneously
stable flows.

As in other problems where transitions occur via the
spontaneous breaking of continuous symmetries, one ex-

pects, in the wavy mode regime also, the nucleation of
long-range phase fluctuations inducing dislocationlike de-
fects in the flow. According to the stochastic analysis of
this phenemenon, the probability associated to such de
fects, should be maximum near the stability boundaries,
where the phase diffusion coefficient vanishes. As a high
defect probability may lead to the complete deorganiza-
tion of the structure and to spatial chaos, this could ex-
plain the presence of chaotic regions between different
wavy flow regimes as observed by Donnelly et al. " and
confirmed by King and Swinney. This is illustrated in
Fig. 8. This figure shows the stability domains of wavy
flows with different azimuthal wave numbers and com-
puted from Eq. (28) for il =0.875 and I =80. It has to be
noted that near onset the whole flow is affected by the end
effects and the approximation (29) is valid. However, for
increasing e'~, i.e., for increasing R or m, the z-dependent
wavelength is no more sinusoidal but has a kink shape. In
this case the wavelength is nearly constant over most of
the annulus height and is rapidly decreasing near the ends.
%%en the corresponding healing length becomes less than
a mean wavelength, we may consider that the flow
remains stable. This defines the curves R~(m) and leads
to the peculiar shape of the stability domain for m =6
which is reminiscent of the results of King and Swinney.
Furthermore this argument justifies the possibility of a
reappearance of flows with low m at higher values of the
Reynolds number. For example, flows with 40 vortex
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g =0.875 ~=80

1.8

2.0

FIG. 8, Stability diagram and transitions between different
wavy flows for realistic values of the radius and aspect ratios.
A~(m) are the loci of critical Reynolds numbers associated to
wavy flows of azimuthal wave number m [cf. Eq. (25)]. R ~(m)
is defined in the text. The dashed lines are stability boundaries
while the dotted regions are the stability domains of m =2 and
m =6 flows. Plain arrows represents the theoretical succession
of patterns in a quasistatic experiment while the dash-dotted ar-
row represent sudden increases of the bifurcation parameter.
Hatched regions on these arrows correspond to high defect ac-
tivity associated to low values of the phase diffusion coeffi-
cients.

pairs and m =5 may reappear at R =1.868„m=4 at
8 =2.05R„rn=3 at R =2.48.„and m =2 at
R =3.9R, .

Hence if one starts an experiment with a quasistatic in-
crease of the Reynolds number, the present model
predicts, for rl=0. 875 and I =80, the appearance, at
R/R, =1.16, of a flow with % =40 vortex pairs and
P?l =2.

The stability domain of the m =2 flow is the lowest
dotted region of the diagram. By increasing R beyond
1.168,„successive transitions then occur as i.n the previ-
ously discussed experiments, leading to a decrease in the
number of vortex pairs down to 33. Beyond this point no
further variation in the vortex number is possible and any
m =2 flow becomes unstable. The next transition leads
then to a m =6 flow. Between these two states an intense
dislocation activity is expected due to the proximity of the
stability limits (hatched regions of the phase diagram) and
to the absence of overlapping between the respective sta-
bility domains. A rapid increase of R, on the contrary,

may lead to an arbitrary succession of fiows with increas-
ing m. Moreover, beyond R u (6), we see that on the
A, =2d line, for example, a region exists between two
m =6 regimes where any wavy flow is unstable. In the
case of a rapid increase of R and with an initial flow in-
cluding 40 vortex pairs one should then observe the fol-
lowing flow sequence: (N =40,m =6)~chaotic regime
~(N =40,m =6).

To conclude, let us emphasize that the various examples
discussed here show the importance of local drift flows on
the stability of the Taylor and wavy Taylor vortices in the
presence of slight axial inhomogeneities. The simple form
used to describe these flows in our model is able to repro-
duce at least qualitatively many experimental observa-
tions. As a consequence, all the stability properties of
wavy flows, which have inevitably axially inhomogeneous
envelopes due to end effects, are expected to be extremely
sensitive to these nonpotential drift terms which need to
be included in any further study of pattern selection in
Taylor-Couette experiments.

However, in order to be able to describe the next insta-
bilities by lifting, for example, the locking approximation
for the phases of the axial and azimuthal parts of the
flow, a more precise knowledge of the nonlinear coupling
constants is required as a better insight of the validity
range of the approximation made so far. Effectively, the
validity of the model is expected to depend on the distance
e= ( T —T, )/T, to the instability of the Couette flow and
on the smallness of the gap between the two cylinders.
But, as the convergence radius of the multiple scale ex-
pansion performed to obtain Eq. (4) is not known this
dependence is difficult to assess. Hence the situation
should be similar here to what happens in the study of
Rayleigh-Benard convection where various models have
been studied numerically and analytically and tested ex-
perimentally, For example, experimental results were
shown to be consistent with the Swift-Hohenberg model
up to a distance @=2 above the onset of convection. 2s

Furthermore, in the present case, the predictions of the
lowest-order amplitude equation agree with the experi-
mental study of the onset of Taylor vortices. As the
model discussed here is a natural extension of it and is al-
ready able to qualitatively reproduce various experimental
observations, we suggest that it could be useful for a
quantitative study of the selection and stability properties
of wavy flows in different geometries, including the effect
of nonpotential drift terms.
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