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Low-dimensional chaos in surface waves: Theoretical analysis of an experiment
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A detailed theory of the appearance of low-dimensional chaos in a hydrodynamic system is

presented. The system chosen has been subjected to a careful experimental study; it involves dynam-

ics of surface waves in a cylinder of fluid which is oscillated vertically. All the major experimental

findings are rationalized by the theory. It should be stressed that in addition to low-dimensional

nonlinear evolution equations the theory results also in an approximate solution of the original par-
tial differential equations.

I. INTRODUCTION

The prediction that chaos should arise as a low-
dimensional phenomenon, even in systems that are
described by partial differential equations (PDE's), goes
back to the seminal paper of Ruelle and Takens from
1971.' However, the relevance of this prediction to real
hydrodynamic systems was established only a decade
later, after the experimental observation of Feigenbaum's
period-doubling cascade in a Rayleigh-Benard system by
Libchaber and Mauer. ~ Since then a growing number of
experiments have appeared that prove directly (by measur-
ing dimensions, Kolmogorov entropies, and Lyapunov ex-
ponents) that chaos sets in with low-dimensional attrac-
tors. These experiments led to a renewed interest in the
rather old problem of how to reduce the infinite degrees
of freedom pertaining to hydrodynamic systems to the fi-
nite degrees of freedom pertaining to states at the onset of
an instability.

A formal theory of such a reduction exists; in principle
it is based on the center-manifold theorem and on
normal-form theory. A particularly compact representa-
tion of such a formal theory has been presented by Coullet
and Spiegel. In a subsequent study, Arneodo, Coullet,
and Spiegel have applied this general framework to the ro-
tating thermohaline system at the point of triple instabili-
ty. They derived nonlinear ordinary differential equa-
tions (ODE's) for the three critical degrees of freedom and
showed that chaos occurs arbitrarily close to the point of
instability. The rotating thermohaline system, however, is
not easily accessible to experiment and therefore has not
been subjected yet to experimental studies. The reason is
that the salinity and temperature gradients are coupled
and thus cannot be varied independently. To our
knowledge, in no case to date has there been a theory
which describes how the reduction from the infinite to the
finite occurs in practice for a hydrodynamic system on
which detailed experiments have been conducted. In this
paper we describe a study of such a system.

The experiment we chose to analyze consists of a fluid
layer in a vessel which is forced to oscillate vertically.
The wave patterns which develop at the free surface of the
Auid are examined. This system was studied experimen-
tally for the first time by Faraday in 1831.' In that exper-

iment Faraday found that the free surface oscillated at
half the oscillation frequency of the vessel. About forty
years later the problem was investigated again by
Matthiessen" who observed a synchronous response. The
discrepancy between this and Faraday's result led Lord
Rayleigh' to make a further series of experiments which
supported Faraday's view. Rayleigh also suggested' a
theoretical approach which led to Mathieu's equation for
the vertical displacement of the free surface. However, it
was only in 1954 that a complete theory for the linear
problem was established. The theory, proposed by Benja-
min and Ursell, who have also studied the system experi-
mentally, resolved the discrepancy in the previous obser-
vations and accounted for the various spatial modes that
were observed. ' More recently Keolian et al. ,

' Gollub
and Meyer, ' and Ciliberto and Gollub, ' have repeated
the experiments with the aim of studying nonlinear phe-
nomena. It is to the experiment of Ciliberto and Gollub
that we address our attention. Preliminary announce-
ments of our theoretical results appeared in Refs. 18.

The advantage of the experiment of Ref. 17 is that
there is a point in parameter space where the transition to
chaos occurs essentially directly from the quiescent state.
This is in contrast to all previous experiments where the
chaotic motion sets in after a series of bifurcations that
result in a space- and time-dependent state before the on-
set of chaos. In those cases the theoretical analysis called
therefore for working around a coinplicated state.

To establish a theory for this experiment' we chose to
adopt the method of Coullet and Spiegel. This method
has the advantage that the amplitude equations for the
critical degrees of freedom are derived directly in normal
form (see below).

The hydrodynamic equations in our example contain a
time-periodic acceleration term due to the forced oscilla-
tions of the vessel. They therefore fall in the following
class of PDE's (cf. Sec. III),

B,U =Mi(t)U+Iil [U], (1.1)

where U=(Ui, U2, . . . , U~) is a set of field variables
U, (r, t) which are elements of A, the space of real func-
tions defined in a region V of the physical space,
A, =(X,, A,i, . . . , A,t ) is a set of P parameters, Mi(t) is a
linear operator having 2m-periodic time dependence and
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where the amplitudes a satisfy the nonlinear ODE's or
amplitude equations

a=Ja+G(a) . (1.4)

Here F„(r) are vector functions belonging to A (the
direct product of P' with itself N times), i and j are in-

dices which run over the critical and stable modes, respec-

tively, a;(a) and pj(a) are nonlinear functions of a, a;
given by

a, =a;+v;(a) (1.5)

with v; strictly nonlinear and pj strictly nonlinear as well,

J is a diagonal matrix (or in Jordan form} having eigen-

values with zero real parts and G(a) is a set of strictly
nonlinear functions of a.

The solution (1.3) and the amplitude equations (1.4) are
derived simultaneously in a perturbative manner to the

prescribed order in the amplitudes a. It is evident from

Eq. (1.3) that the time dependence of the solution U is

determined by that of the critical amplitudes a; (or a, ).
This is a manifestation of the center-manifold theorem

which proves the existence of an invariant manifold pj(a}
(cf. Sec. V). The amplitudes a in turn satisfy amplitude
equations (Eq. (1.4) whose nonlinear part G (u }has a nor-

mal form (i.e., contains the least number of nonlinear

terms). This form is achieved by means of a nonlinear

transformation which is applied implicitly to the original

amplitudes a,. and whose inverse is given by Eq. (1.5) (cf.
Sec. VI).

The paper is organized as follows. In Sec. II we review

the experiment. In Sec. III the PDE's describing the
problem are set up. In Sec. IV we use linear analysis to
identify the critical point and modes which correspond to
the experimental conditions. In Sec. V we describe the
center-manifold theory which allows the reduction of the
PDE's to a finite system of ODE's and show its applica-
bility to our example. Section VI describes (following
Coullet and Spiegel) a general framework for implement-

ing this reduction. Using this framework we evaluated in

Sec. VII the solution U and the amplitude equations to

N[U] is a nonlinear operator (at least quadratic). The
boundary conditions may be written as

BgU =0 on BV,

where 8& is a time-independent linear operator. The
PDE's considered by Coullet and Spiegel differ from (1.1}
in that they are autonomous. This difference presents no
difficulties and with minor modifications we can still fol-
low the method.

Consider now a point Q in parameter space at which d
spatial normal modes become marginal (in the sense that
they have no exponential growth or decay in time) while

all other modes remain stable (i.e., decay exponentially).
We call such a point a critica! point and its corresponding
marginal modes critical modes Th.e formahsm provides a
method for the evaluation of an approximate solution to
Eq. (1.1) for A, =Q, which has the form

d

U(r, t)= g a;[a(t)]F;(r)+g p&[u(t)]FJ(r), (1.3}

third order in the amplitudes a. In Sec. VIII we analyze
the amplitude equations numerically and compare the re-
sults with the experimental ones. Finally, in Sec. IX, we
discuss some of the assumptions underlying the theory.

II. THE EXPERIMENT

The experimental set up consists basically of a plexi-
glass cylinder of radius R =6.35 cm containing water of
depth h =1 cm which is mounted on a cone of a
loudspeaker which oscillates accurately in the vertical
direction. When the amplitude of the oscillations exceeds
some frequency-dependent threshold value, surface wave
patterns appear on the free surface of the water. The pat-
terns were studied by refraction: an expanded parallel
laser beam traverses the cell vertically and iinpinges on a
translucent screen located above the fluid surface. The in-
tensity field on the screen is converted to an analog signal
by a vidicon camera and then digitized.

The basic modes that span the surface deformation are
r

cos(18)
~&("& "'X sin(ie)

where r is the radial coordinate, 8 the azimuthal coordi-
nate, Ji are the Bessel functions of order I, and the al-
lowed wave numbers ki are determined by the boundary
conditions. The modes can be denoted by the double in-
dex l, m. A portion of the experimental phase diagram is
shown in Fig. l. Below the parabolic stability boundaries
the surface is essentially flat. Above the stability bound-
aries the fiuid surface oscillates at half the driving fre-
quency (i.e., the cylinder oscillation frequency) in a single
stable mode. In a stroboscopic measurement synchron-
ized at this frequency these signals appear stationary. In
the shaded regions the two modes compete with each oth-
er and give rise (in the stroboscopic measurement) to slow
periodic and chaotic motions. The frequency of the slow
periodic motion appeared to be about 2 orders of magni-
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FIG. 1. Experimental phase diagram. The regions denoted
(4,3) and (7,2) display stable patterns. In the shaded regions one
sees slow periodic and chaotic motions.
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FIG. 2. Time signals (in the stroboscopic measurement} of
the (4,3} and the (7,2} modes in the region of periodic competi-

tion.

tudes smaller than the driving frequency. The asymmetry
in the phase diagram between the two modes suggests that
the (4,3) inode damps the (7,2) inode while the latter

pumps the former. Figure 2 shows time signals of both
modes in the region of periodic motion. The seven-fold

mode seems to lead the four-fold mode by a phase close to
90'. In the chaotic region ample evidence for the low

dimensionality and the fractal structure of the attractor as

well as evidence for the existence of a positive I.yapunov
exponent have been found. '

Clearly the most interesting point in the experimental

phase diagram (Fig. 1) is the point where the critical lines

of the two modes meet. It appears there that the system
becomes chaotic straight from the quiescent state. It thus

seems worthwhile to develop the theory around this point.
We shall refer to this point as the critical point and denote
i't by A,o.

Ciliberto and GoBub have also studied the angular dis-

tribution of the wave patterns in the region of competition
between the 1=4 and 1=7 modes. Figures 3 shows the

angular power spectrum P(1) at two different times. It is

clear that in addition to the (4,3) and the (7,2) modes,
many other modes with 1=1,3,4,7, 8, 11,14, 18,21,25, etc.
are present. Given the fact that the dimension of the
strange attractor found here was smaller than three, it is
difficult at first sight to rationalize the active participa-
tion of so many modes. It will be seen that the theory,
which provides an approximate solution of the space- and
time depende-nt surface deformation, resolves this riddle.

Consider a fluid layer of height h in a cylinder of ra-
dius R. Construct a Cartesian coordinate system which
moves with the cylinder such that xy is the horizontal
plane and the free surface of the fluid, in the quiescent
state, is at z=0. For simplicity we shall neglect the
viscosity of the fluid but keep in mind that viscous dissi-
pation does exist in the system. The equation of motion
for the velocity field v is then'

1+(V V)V= ——VP+[g —A cos(cot)]z,
I; p

(3.1)

where p,p,g, A, and co are the density, pressure, gravita-
tional acceleration, and the amplitude and frequency of
the oscillation, respectively. Since the velocities involved
are all subsonic we can assume that the fiuid is in-
compressible

V V=O. (3.2)

V /=0.
Integrating Eq. (3.1) we find'

(3.3)

ay =—V.V= ——+[g —A cos(cot)]z . (3.4)
Bt 2 p

We are interested in the motion of the free surface
z =g(x,y, t). The pressure at the free surface is

1 1P=y + (3.5)

where y is the surface tension of the fluid and R i and R2
are the principal radii of curvature at a given point of the
surface. For small g we can estimate P as'

P =r[Vik i (Vi—k I
Vik I

')] (3.6)

where Vi =B„X+8»Y. Expanding the z-dependent terms
in Eq. (3.4) around z =0 and then inserting Eqs. (3.6) and

z =g(x,y, t) we obtain finally the following equation of
motion correct to third order in g and P:

The advantage of neglecting the viscosity is that one
can define' a velocity potential P such that V=V/.
Equation (3.2) can now be written as

= [g —A cos(cot)]g — Vip —%2(g,g), z =0
Bt P

(3.7)
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FIG. 3. Time-resolved angular power spectra showing the I

modes found experimentally to be involved in the deformation

pattern.

(3.8}

In deriving Eq. (3.7) we have neglected the nonlinear
surface-tension term since it is smaller than the other non-

linear terms by a factor of y/ph co —10 . We have also
neglected nonlinear terms containing the time derivative

8, . These terms are not expected to contribute significant-

ly to the long-time behavior of the amplitude equations.
To close Eq. (3.7) we need an equation for g which is



34

provided by the kinematic surface condition

D g' BP

Dt Bt Bzfg(x,y, t) z]—= +V~/. V~(— =0 .

„(t)
U(r, t)=g f„(x,t) .

vn tz (4.2)

Again we expand around z =0, and use Eq. (3.3) to obtain

the equation (correct to third order)

BL Bh N)—(g,P), z =0 (3.10)
Bt Bz

where

X,(g,y)=V, g V,P+gV, P+ —g V& +(Vik Vi,l, , ay ay

(3.11)

The boundary conditions for the velocity potential are

ft =&~ Jt(kl r)cos(18+q~), (4.3}

where k~ r is the trtth zero of dJ~/dr, N~ is a normaliza-
tion constant, and g~ is a constant phase. Since no rota-
tional motion has been observed in the experiment it is
sufficient to include in {f„]only cosine terms with con-
stant phases (see also the discussion in Sec. IV). The func-
tions ft chosen above are eigenfunctions of Vj,

Vj'„=—(hk„)'f„. (4.4)

The functions f„should satisfy the boundary conditions
U [Eqs. (3.12) and (3.13)]. We therefore

choose

on the walls, and

(3.12a) To evaluate the z dependence of P„(t,z) in Eq. (4.2) we
solve Eq. (3.3) with the boundary condition (3.12b) utjhz-
ing Eq. (4.4). The evaluation is presented in Appendix A.
We find there that

(3.12b)

=0 (3.13}

at the bottom (z =h), where n is a vector normal to the

walls. For the surface deformation g we choose the boun-

dap( cond1tlon

hk„(z —1) —hk„{z—1)

P„(t,z)=P„(t) hk„-hk„
e "+e

(4.5)

where P„(t)=—P„(t,z =()}.
We now insert the expansion (4.2) jnto the hnearjzed

p«biem, set z =0 and take the inner product of the re
suiting equation with f„. We then obtain

on the walls at the free surface. This condition means

that the contact angle is 90'. (For further discussion of
these boundary conditions see Secs. IV and IX).

Making the transformations (x,y,z)/h ~(x,y,z), cot ~t
and pltohz —+p we arrive at the dimensionless equations

(z =0)

U„=K&„(t)U„,
where

U„(t)=

(4.6)

(4.7)

~= ~ —N, (gy),
Bt Bz

(3.14a)
—X„

K I „+Acost 0 (4.8)

y
z Vz —g+A cost g N2(g, g), —

hco2 ph
z

(3.14b)

where the forms of X& and N2 remain unchanged. These
equations have the general form of Eq. (1.1}with U—:(()
and A, —= (A, co}.

ykI„=—
AN P

X„=—hk„tanh(hk„),
2

+g

(4.9)

(4.10)

IV. LINEAR ANALYSIS

Having established the PDE's description of the system
we proceed to a linear stability analysis of these equations.
%e shall construct a theoretical phase diagram in the vi-

cinity of the critical point Q, compare it with the experi-
mental one, and argue that no modes other than the (4,3)
and (7,2) ones are expected to become marginal at A,o.

Let us expand the solution of Eqs. (3.14),

((x,y, t)
t}=

~(
(4.1)

in terms of a complete orthonormal set of functions

{f„(x,y) j belongtng to ~~, where rt js a set of judices
characterizing the spatial structure off„. Thus

(4.11)A

hfdf

Equation (4.6) is a Floquet problem. Let W~ be the

fundamental matrix [i.e., the matrix whose columns are

the independent solutions of Eq. (4.6)]. Then, according

to Floquet's theorem,

kg„=Zg„(t)e (4.12}

where Z~„(t) is a 2n.-periodic matrix and L~„ is a time-

independent matrix whose eigenvalues are the Floquet
characteristic exponents (FCE). An important point is

that by examining the real parts of the FCE's we can de-

lineate the stability of the spatial mode n at a point A, in

parameter space and thus identify critical points and

modes.
The system (4.6} is equivalent to the Mathieu equation
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g„+X„(I„+A cost)(„=0,
which can also be written as

g„+(0„'+X„Acost $„=0,

(4.13a)

(4.13b}

etc., where

0
(0)+n =

I (0)
n

(4.17a)

where

~n 1 &n0„:—
CO

yk„2
+g

P

1/2

(4.14)

U„(r)=U„"'(t)+AU„'"(t)+ .

and inserting the expansions in Eq. (4.6) we find

——X„"' U"'=0,
Ctt

(4.15a)

(4.15b)

(4.16a)

is the dimensionless natural frequency of the n mode. For
the experimental conditions X„-O(1),I „-O(10 '), and

~
A

~

-O(10 }. The solutions of the Mathieu equation
are well known. ' The stability diagram for this equa-
tion is shown in Fig. 4. The tongues correspond to
mode-locked states in which the motions are either 2m or
4m periodic with an exponentially growing envelope, thus
corresponding to FCE's with positive real parts. The
boundaries of the tongues as well as the regions separating
them correspond to FCE's with zero real parts. Upon
adding a damping factor to the Mathieu equation (which
may account for the viscous dissipation} the tongues are
shifted upward and the regions separating them acquire
FCE's with negative real parts. The boundaries still cor-
respond to FCE's with zero real parts and thus constitute
neutral stability curves.

To simplify the stability analysis of all spatial modes at
the critical point it is desirable to have analytic forms for
the stability curves. These are usually derived by pertur-
bation techniques. Since

~

A
~

&&I „&1 is a small pa-
rameter, perturbation methods do apply to our case. I.et
us derive the equations for the stability curves of the n

mode I „=I „(A), to first order in A. Expanding I „and
U„(t) in A,

0 0

l ~ +cost 0
(4.17b)

The coefficients I'„',I'„",. . . in Eqs. (4.15a) are deter-
mined by looking for periodic solutions to Eqs. (4.16}.
The eigenvalues of I(.„'

' are +i (X„I'„')'~i. For U„'0' to be
2m periodic we require

(4.18a)

while to obtain 4n-periodic solutions we require

I'„'= (m+ —,
' ), I =0, 1,2, . . . .

Xn
(4.18b)

The coefficients I'„" are determined by the requirement
that the right-hand side of Eq. (4.16b) should be orthogo-
nal to the null space of the adjoint of (d/dt —K„' ') where
the inner product consists of integration over the period
of the solutions. The results are the following. When
U~ is 2K periodic,

1'„"=0, for every m

while when U„'" is 4m periodic,

+— m=01—2
(1)

0 ~)Q

(4.19a)

(4.19b)

I„= (m+1) +O(A ), m=0, 1,2, . . . .
+n

For 4m-periodic solutions,

I „= + —,'A+O(A ), I =0
Pk 4y

(4.20)

(4.21a)

Thus the stability curves in the A —I „planes, to first or-
der in A, are given by the following equations. For 2n-
periodic solutions,

1(-(0) U(() It-(()(t)U(0)
N tf 5 (4.16b) I'„= (m+ —,')'+O(A'), m =1,2, . . . .

Xpf

(4.21b)

The boundaries of the tongues depicted in Fig. 4 can be
easily identified with Eqs. (4.20}and (4.21) for m =0, 1,2.

The stability diagrams in the A-I „planes, each pertain-
ing to a different spatial mode, are not of much interest
for us, since it is the interaction between different spatial
modes at given A and ~ values that we want to study.
What we would like to have, rather, is a single stability (or
phase) diagram in the A-co plane composed of critical
lines of all spatial modes. This diagram is easily obtained:
the map from a I „axis to the co axis is given by [see Eqs.
(4.10) and (4.14)]

FIG. 4. Stability diagram for Mathieu's equation. The I „
axis is measured in units of g„'. The shaded tongues corre-
spond to unstable motion. The solid and dashed lines corre-
spond respectively to 4m.- and 2m.-periodic motions.

(4.22)

Thus inserting Eqs. (4.20) and (4.21) in Eq. (4.22) and ex-
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panding to first order in A we find the following critical
line equations. For 2m-periodic solutions,

+O(A ), m =0, 1,2, . . . .
m+1

For 4m-perj. odic solutions

co=2'„(1+&„A)+O(A ), m =0

+O(A ), m =1,2, . . . .
m+1 j2

(4.23)

(4.24a)

(4.24b)

Notice that the infinite series of tongues, pertinent to each
spatial mode, accumulates in a finite interval [0,2'„] on
the ~ axis.

Having obtained the stability curve equations we may
construct a theoretical phase diagram in any range of in-

terest. All we must do is to look for spatial modes rj, and

tongues m, for which co in Eqs. (4.23) and (4.24) falls in
the prescribed range. In Fig. 5 we show the theoretical
phase diagram in the range covered by the experiment.
The (4,3} and (7,2} tongues are positioned fairly closely to
their experimental counterparts. However, the mode
(11,1), which is not seen experimentally, is found be-

tween them. The reason for this is the boundary condi-
tions chosen in Sec. III. In fact, if we pick the boundary
conditions /= /=0 at the walls, the (11,1) mode is pushed
outside of the region of interest, and the modes (2,4} and
(10,1) creep in. Our conclusion is that the experimental
boundary conditions are probably neither, but a mixture
of the two. We thus disregard the (11,1) mode from now
on but keep in mind that the boundary conditions that we
chose are not exact (cf. the discussion in Sec. IX).

Due to the absence of viscosity the stability curves start
at A=O and not at a finite A value. Thus while the co

coordinate of the critical point, estimated to be
coo —c04 3+c07 i+0 ( 10 '~0), is predicted fairly well, the
A coordinate cannot be determined from the theory. We
note that there are additional tongues which fall in the
range of interest (i.e., M& 3 & cu & 2r07 2), all of them being
extremely narrow since their equations are not linear in A.
Those which belong to modes having wave vectors com-

FIG. 6. Distribution of the FCE's in the complex plane.

parable to k4 3 or k7 2 are sparse and bounded away from
the close vicinity of the critical point. Those correspond-
ing to modes with considerably higher wave vectors may
become dense (as n, m ~ 00 ); however, due to the viscous
dissipation they lie well above the critical point. It is
therefore safe to conclude that only the (4,3) and (7,2) spa-
tial modes become marginal at the critical point and that
the distribution of the FCE's in the complex plane is qual-
itatively as shown in Fig. 6.

U. APPLICATION OF CENTER-MANIFOLD THEORY

According to the linear-stability analysis of Sec. IV,
when viscous dissipation is taken into account, the FCE's
spectrum, for A, =ho, has the form depicted in Fig. 6.
Each of the (4,3) and (7,2) modes has an FCE equal to
i/2. All other modes have FCE's whose real parts are
bounded well away from the imaginary axis. When one
has such a situation in a case of autonomous equations of
motion one can use the center-manifold theorem to
reduce the nonlinear dynamics to a set of ordinary dif-
ferential equations. We shall firstly review this theorem
and then rectify the fact that in our case we have explicit
time dependence such that the theorem is of use to us as
well. Let us start with the definitions of an invariant
manifold and of a center manifold.

Invariant manifold. Consider the equation

X=X(X), (5.1)

where XER". A set of S cc R" is said to be an invariant
manifold for Eq. (5.1) if for Xo CS, the solution X(t) of
Eq. (5.1) with X(0)=Xo is in S.

Consider now the system

IO2 IO3

X=WX+f(X,Y),

I'=BI'+g (X, I'),

(5.2a)

(5.2b)

FIG. 5. Theoretical stability boundaries as predicted by the
linearized theory without damping. The mode (10,1) has a
tongue to the left of the mode (4,3). The ordinate is
A=2h fA[.

where LEE", FE-A, and A and 8 are constant ma-
trices such that all the eigenvalues of A have zero real
parts while all the eigenvalues of 8 have negative real
parts. Let the functions f and g be C2 with f(0,0)=0,
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Df(0,0)=0, g(0,0)=0, Dg(0,0)=0. (Here Df is the
Jacobian matrix of f).

Center manifold. An invariant manifold y =h(x) for
(5.2) is called a center manifold if h: I "-+I is smooth
and h (0)=0 and Dh (0)=0.

The center-manifold theorem. There exists a center
manifold for {5.2), F=h(X),

~
X

~
&5, where h is C .

The flow on the center manifold is governed by the n

dimensional system

A; =K,A;+G,.(A),

where E; is a time-independent matrix given by

(5.10)

where A and A in Eqs. (5.8) and (5.9) include also the
critical degrees of freedom a, and u„ that is,
A =(gs&, $43, (qz, p7z, a„a,}. Inserting now 8 =8(A) and
& cost =~,+~r, into Eq. (5.4a) we arrive at the finite sys-
tem of amplitude equations

S=AS+f(S,h(S)) . (5.3) (5.11)

The significance of this theorem is that the solution S(t)
of Eq. {5.3) provides a good approximation for the long-
time behavior of the solution X(t) of Eq. (5.2).
theorem is extendable to infinite-dimensional systems
(m~ao) as well.

As mentioned earlier our problem is not autonomous.
If we insert the expansion (4.2) into the nonlinear PDE's
(3.14) and denote the amplitudes of the critical modes

(4,3) and (7,2) by A; and those of the stable modes by B~,
we obtain

A; =Ki„;(t)A;+G;(A,B),

Bi Ki J(t)——Bq+ GJ(A,B),

(5.4a)

(5.4b)

A;=L;A;+G;(A B,r), (5.5a)

Bi LJBJ + GJ(——A,B,t ), (5.5b)

where U„:Z„(t) 'U„an—d G„are strictly nonlinear func-

tions of A and 8 having also explicit periodic time depen-

dence. This explicit time dependence can be removed by
introducing additional "critical" degrees of freedom a„
a, defined by

itQ~= 2A8

which satisfy the "amplitude equations"

(5.6)

(5.7a)

where the functions G„are strictly nonlinear in A and 8
From now on we shall confine ourselves to the critical
point Ao and omit the subscript A, from the equations. In
order to apply the center-manifold theorem we make the
system (5.4) autonomous with the linear part having the
spectrum of Fig. 6. To obtain this form we use the
transformation Z„(t) ' where Z„(t) is defined by Eq.
(4.12). In Appendix B we show that

It is convenient to diagonalize the matrices K;. Thus

intr&ucing the complex conjugate pair ao ao

0 i —X;/0;
i X;/0; (5.12)

Equation (5.10) becomes

a =Ja+G(a)
where ao=(ao, ao, aors, rTos, a„rT, ), and

iQ, 0 0 0

0 —iQ, 0

0 0

0 0

(5.13)

iQb 0 0 0

0 —~Ab 0 0

0 0 )' 0
0 0 0 —i

(5.14)

where

i =a, b

pj~fa (t))FJ(x,y)+c.c. ,
jF stable

modes

(5.15)

(5.16)F„(x,y)= II /X f„(x,y) .
V2 n n

We note that G (a ) in Eq. (5.13) and p [u j in Eq. (5.15)
are as yet unknown.

Here, a:—(4,3) and b=—(7,2). If we define in a similar
fashion the amplitudes pi, pj of the stable modes we may
write the expansion (4.2) of U(x,y, z =0, r) as

U= g a;(t}F;(x,y)

A = —LG~ (S.7b)

B=B(A ), (5.8)

or going back to A and 8,

8 =8(A), (5.9)

Inserting Eq. (5.6) lilto the G„s lil Eq. (S.5) we obtain an
autonomous system which together with Eqs. (S.7) has the
desired properties of the system (5.2). (RecaH that the
eigenvalues of the L„'s are the FCE's). We thus have a
center IHamfold

To evaluate the nonlinear part G (a ) of Eq. (5.13) one
can choose between a number of standard methods. How-
ever, since a represents six amplitudes and we want to
derive 6 to at least cubic order, there is a large number
of nonlinear terms that might result. It becomes essential
therefore to construct the simplest or minimal nonlinear
equation. Such a construction is based on the theory of
normal forms. The essence of this theory is that a non-
linear transformation a =a+U(a) is applied to the origi-
nal amplitudes o, so as to establish the simplest or the
so-called normal form for the nonlinear part of Eq. (5.13)
while leaving the linear part unchanged. The formalism
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provides us with a method for the simultaneous derivation
of the solution U[x,y,a(t)] and the amplitude equations
for a already in normal form to a prescribed order in a.
Before applying this formalism let us review a few results

of normal-form theory.
A key concept in normal-form theory is that of reso-

nance. Consider the system

and where

g(x,y, t)
U=U(x, y, t)= ~( 0 )

(6.9b)

X=AX+f(X), (6.1)

A,, =(m, i, ) (6.2)

where XEC", 3 has eigenvalues A, =(ii, lz, . . . , A,„),and

f is a vector-valued polynomial in X of degree r & 2 with

f(0)=Df (0)=0.
Resonances. The n-tuple A, =(A, i, A,z, . . . , A,„)of eigen-

values is said to be resonant if there is an n-tuple
m =(mi, m2, . . . , m„} of integers, mk&0, gkmk&2
such that

= —X[/(z =0)],
z g=0

(6.10)

as one can easily infer from Eqs. (4.2), (4.5), and (6.5).
The operator M(t} in Eq. (6.7) can be written as [cf Eq..
(5.6}]

The advantage of this form is that we need not carry the z
coordinate dependence of P through nor set z =0 only
after the operation of M (t) and N, since now

for some A,, E A, . The relation (6.2) is called a resonance.
Poincare Theorem. If the eigenvalues A, of (6.1) are

nonresonant, there exists a formal nonlinear change of
variables x =y +h (y) with h (0)=Dh (0)=0 which
reduces (6.1) to the linear system

M(t)=M+(a, +a, )E,
where

(6.1 1)

(6.12)

X=AY. (6.3) and

Poincare-Dulac Theorem. When the eigenvalues A, of
(6.1) are resonant, there exists a formal nonlinear change
of variables x =y+h (y) which reduces (6.1) to the non-

linear system Note that

(6.13)

1'=31'+g(F), (6.4) Mf„=K„f„ (6.14)

where g(y) contains only resonant monomials [that is,

monomials yi 'y~ ' y„" such that A,, =(m, k, )]. The
system (6.4) is then said to have a normal form.

We proceed now to the derivation of the amplitude
equations. s I.et us first rewrite the PDE's (3.14) in a more
convenient form. We introduce the scalar operator X de-

fined in terms of the spectral decomposition

where

(6.15)

As pointed out at the beginning of this section we want
to transform the original amplitudes a which satisfy Eq.
(5.13}into new amplitudes a according to

x—=Qx„(,f„)f„, (6.5) a =a+u(a), (6.16)

and the scalar operator

I y 2

ha) ph
L

(6 6)

B,U=M(t)U+N[U], (6.7)

In terms of these operators the PDE's (3.14) can be writ-
ten as

a=Ja+G(a) (5.13a)

have a normal form. According to the formalism which
we now present, this transformation is implemented im-
plicitly and sequentially.

The first step in this formalism is to use the fact that
for sufficiently long times the motion lies essentially on a
center manifold. We can therefore write

where u(0)=Du(0)=0, such that the new amplitude
equations

where
U(x,y, t)= V(x,y, a(t)} . (6.17)

0 —XMr=— r+A cost 0 (6.8) Taking the partial derivative of V with respect to time
and using (6.16) we find

&i [U]= —'()'i0'~id' —P'i((}+ z 0'~iX4+0"i0 ~i'd, B,V=Ja.B V+G(a) 3 V. (6.18)

(6.9a)
Combining now Eq. (6.18) with Eqs. (6.7)»d (6.11) we
obtain
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W V= —G(a) 8 V+(a, +a, )EV+I)I[V], (6.19)

where

(P,g)= g(4;, ((I;),
i=1

(6.29)

&= IJa.B~—M . (6.20)

Here, 1 is the unit matrix. Ja 8 is a scalar operator.
In order to solve Eq. (6.19) we expand the two un-

knowns Vand 6 in Taylor series,
(yP), F2)=(P),P2)(y, (1~) . (6.30)

where (());,P;) is an inner product in function space. Now
let P),Pz E Hk and p, i((EA . Then $P),QP2 are ele-
ments of the product space RkA with the inner prod-
uct

V= g V(k)(x,y, a),
k=1

G= g G'"(a),
k=2

(6.2 la)

(6.21b)

Thus the operator W acts on HkA 2 and the inner
product in this space is given by Eq. (6.30). To solve Eq.
(6.22) it will be convenient to expand V' ' in terms of the
eigenvectors of W which span 9'kA . These are given
by the products e Fi ;(i =. 1,2) where

V(k) G (k).g V() )
+ I(k) (6.22)

where V'"' and G'"' are homogeneous multinomials in a
of degree k, and insert the expansions back in Eq. (6.19}.
A sequence of equations of the form

F.

(6.31a)

(6.31b)

then results, where I' ' depends on lower-order quantities
(i eon V(k 1)V(k2)V( l)and ong(k))
G'k 2', . . . , G' ') and therefore is known at each stage.
Note that I"'=0 since I is formed out of nonlinear
terms. V'" is also known since the amplitudes of the
stable modes P are nonlinear in a (or a) and to hnear or-J
der a =a. Thus Eq. (5.15) implies

V"'= g a;(t)F;(x,y)+cc.
i =a, b

(6.23)

(Z(k) 1(k) G(k).g V(1)) (} (6.24)

Equation (6.22) should be complemented by the solvability
condition

Note that Fj ;defined . above is equal to F~ defined by Eq.
(5.16). One can easily check that

W[e F&i )]=(cr . iQj}e—Fj k, .

W[e Fz i]=(ir .+iQj)e FJ 2, .

where

o =JL =iQ, (1,—I, )+iQk(ls —lk)+i (I, —I, ) .

(6.32a)

(6.32b)

(6.33)

[In Eq. (6.33) we considered the six-tuple L as a six-
component vector. ]

Let us also introduce the eigenvectors of the adjoint to
M,

where Z'"' is a multinomial of degree k which belongs to
the null space of the adjoint to

—X 0 (6.34)

W+Z(") =0 . (6.25)
These are given by

I,. T,.
e = Ai Qi

i =cr, b, c

where the I;,I; are integers, L =(I„l„ls,ik, l„I,), and

(6.26)

To find W+ and to impose the solvability condition we
need an inner product. Therefore we should be more
specific about the space on which W acts. Each V' ' is a
sum of monomials in a;,a; of degree k with coefficients
that may depend on spatial coordinates. The monomials
are elements of Pk, the linear vector space of monomials
of degree k in six variables. In that space we have the
basis vectors

1
Fj:1 ~ y, /Q, fj (+=

J

+= +
FJ:2 =FJ:~

(6.35a)

(6.35b)

+(Fj i,Fj i')=5jj 5ii ..

Expanding now V' ' as

Iil, L

(6.36)

(6.37)

and correspond, respectively, to the eigenvalues —iQJ and
iQj. From Eqs. (6.31), (6.35), and (6.29) and from the
orthonormality of the set Ifi ] it follows that

g (I;+I;)=k .
i =a,b, c

The inner product in that space is defined by

(6.27)
we find that

WV(k)=g[P' , (H iQ )e'F. —

(e'e )=5L.))r . (6.28) +P~ 2(rT +iQJ)e .F~ 2I . .(6.38)

The coefficients of the monomials in V' ' are in A
the direct product of function space with itself. An ele-

ment of this space may be written as P=(&'). The inner
2

product of two elements ()) and

/FAN

is

Taking the inner product of Eq. (6.38) with the vectors
e FJ+, , i =1,2 we obtain

P (o iQ )=(I(—' G("'8 V"' e F+ ),— (6.39a)
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P .(.cr +iQ )=(I'"'—6' 'c) V"',e F~+~), (6.39b)

Z(») g qL eLF+ (6.40)

insert the expansion in Eq. (6.25) and take the inner prod-
uct of the resulting equation with e F~.;. We then find

qj. i (cr —i Qj )=0,L

qj 2(o L+.i QJ ) =0 .

Thos

(6.41a)

(6.41b)

where we have used Eq. (6.22). For tuples L which corre-
spond to nonresonant monomials, cr +iQJ&0, and Eqs.
(6.39) can be solved for the coefficients Pj.i irrespective of
the form of 6'"'(a). For tuples L which do correspond
to resonant monomials we must set the right-hand side of
Eqs. (6.39) to zero in order to have a convergent expan-
sion for V'"'. Setting the right-hand side to zero, which is
automatically taken care of by the solvability condition
(6.24), imposes a restriction on 6'"'(a). It is this restric-
tion which determines the coefficients of the resonant mo-
nomials in 6'"'(a).

To exploit the solvability conditions we must find the
null space of W+,M(W+). To this end we expand Z' '

cr +i QJ ——0(e) where e-0(Qb —Q, ) &~1. We note that
at the critical point Q, +Qb ——1+0(e ) (cf. Sec. III).

As often occurs in problems of this kind, symmetry
considerations play an important role in simplifying cal-
culations. Let us present a symmetry argument which
will be used repeatedly in the following. The argument
stems from the rotational invarianee of the system. The
PDE's (6.7) are invariant under the transformation r~r,
8~8+Ho, V~ V. In particular choose 8O ——m. Then
from Eq. (4.3), f4&~f43 and f7z~ f7' —under the
transformation. For V"' [Eq. (6.23)] to be invariant we

require that
aq3 —+a&3,

Qp2 ~—0!72, (7.1)

F .~+abFb. , +a,E, .2+abFb:2

%e now turn to higher orders.

(6.23')

when the transformation is made. This can occur if the
amplitude equation (6.16) is invariant under the transfor-
mation (7.1). As we shall see below the requirement for
this invariance will save a considerable amount of calcula-
tion.

The terms of the linear order k =1 are already known:
6'"(a)=0, and V"'(a) is given by

z&. &
E~(W+ ), whenever cr i Q& ——0, —

zj..i E'M(W+), whenever a +iQ, =0,
where

z' =—e'F+
J :& J :I

(6.42a)

(6.42b)

(6.43)

A. k=2

We start with the identification of ~ (W+
~ » 2). us-

ing (6.42) and (6.33) we find that

1 1 1 1~~~+
I »=2) =spanIzn:i zn:z I n, m =abI,

%e can outline now the main steps that are involved in
the derivation of G(a) and V(x,y, a).

(a) We first utilize conditions (6.42) to find (W+ ).
(b) We then use the solvability conditions

(ZJ,;,I'"' O'"'8~V'") —=0 to evaluate the coefficients of
the resonant monomials in 6' '(a).

(c) According to the Poincare-Dulac theorem there ex-
ists a nonlinear change of variables which leaves out in
G'"'(a) only resonant monomials. We can therefore set
the coefficients of all nonresonant monomials in 6'"'(a)
to zero. In doing so we actually apply implicit nonlinear
transformations to the amplitudes a.

(d) Once 6'"'(a) is known, Eqs. (6.39) can be used to
evaluate V' '. The coefficients P~ ;of the resonant .terms
remain undetermined. In most cases we can either set
them equal to zero or use them to simplify the form of
6(k+1) 6

%'e illustrate this procedure in Sec. VII where we evalu-

ate 6"' V"' and G'"

VII. THE AMPLITUDE EQUATIONS
AND THE SOLUTION TO THE HYDRODYNAMIC

EQUATIONS

In this section we derive the solution V(x,y, a) and the
nonlinear part of the amplitude equations G(a) to second
and third order in a, respectively. To avoid Iiroblems of
small denominators in the expansion for V ' we shall
consider as resonances also relations of the form

6' 'c) V'"=(O' 'F ., +O' 'F„,)+c.c. . (7.2)

Here 6,' ' and Gb
' represent, respectively, the quadratic

part of the amplitude e uations for a, and ab. The
resonant monomials in 6 '(a) are obtained by inserting
Eq. (7.2) into the solvability conditions. The solvability

condition (z, '.
i
', I' ' —G' 'c)~V"') =0, for example,

yields (6,' ', a,a, )=(I' ', a, Fa,+. )aind thus 6,' ' should
contain the term (I' ',a,a,F,+i)a,a, . We nevi not e.valu-
ate G~

' and G~
' (the quadratic parts in the amplitude

equations for a, and ab) since these are complex conju-
gate to 6~ and Gb, respectively. The results for 6,
and Gb 'are as follows:

+(I ~abac+a:& )abac ~ (7.3a)

where rve have adopted the notation

L =(l„l„lb,lb, l„l, )

=:(l,), (1 ) (lb)b(lb)g(1, ), (1, ), ,

and where zero powers are ignored. Thus, for example,
L =1,1, stands for L =(1,0,0,0,0, 1), L =2~1, stands
for L =(0,0,0,2, 1,0), etc.

To exploit the solvability conditions we first evaluate
the quantity 6' '.8 V"'. Using Eq. (6.23') for V"' we
immediately find
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Gb =(I abacFb:) )abac

+(I"),a.a,pb+(}a.a, .

1„1 X„
n:I (7.7b)

By the angular-symmetry argument presented at the be-
ginning of the section, the coefficients of the last terms in
Eqs. (7.3) should vanish (the amplitude equations should
be invariant under the transformation a,~a„ab~—ab). In Appendix C we evaluate I' '. For k =2 we
find

0 0
I(2) ( + —

) V(i)+~[ V(i)V(i)] (7 4)

The term /(/[V("V"'] wiH not contribute to the coeffi-
cients in Eqs. (7.3) since it does not contain monomials
whch involve a, . Substituting Eq. (7.4) in Eqs. (7.3) we
find

I'„.I
1 &n

1+20„20„ (7.7c)

(7.7d)

11 11
where n is either a or /). The coefficients p„",2', p„",2',

'n'n n
P„",i", and P„2ar.e the complex conjugate of those
displayed above, respectively. The coefficients of mono-
mials which involve both a, and a, vanish since
I' ' —6' '() V"' does not contain such monomials.

We consider monomials which involve two of the four
amplitudes a„a„ab,ab. For these monomials Eqs. (6.39)
together with Eqs. (7.2), (7.5), and (7.4) imply

(2)6, —— O'au, ,
a

(7.5a)
P~ (j(/ [V(i)V(i)] &LF+ )

0'
J

(7.8a)

Gb = — +b+c
b

(7.5b)

o~+~Qj
(7.6b)

where use has been made of Eq. (7.4) and of the ortho-
gonality of the functions f( . Since N [V"'V"'] does not
contain monomials which involve a, or a, all coefficients
Pj.; for stable modes and for monomials I. which involve
a, or a, should vanish. The remaining terms (involving
either a, or a, ) are evaluated according to Eqs. (6.39).
The results are the following:

(7.7a)

We turn now to the derivation of V' '. We shall see
that the expansion

(6.37')
i,j,L

contains not only the critical modes (4,3) and (7,2) but
also spatial mode (l,m), with /=0, 3,8, 11,14. The ap
pearance of these stable modes corroborates the experi-
mental angular power spectrum shown in Fig. 3.

We consider first monomials which contain a, or a, .
Since V'2' should be invariant under the transformation
r ~r, 8~8+m we cannot associate the monomials a,a„
a,a„a,a„a,a„with Fb ;nor the .monomials aba„
aba„aba„aba, with E, ,;. The coefficients of these
terms should therefore vanish. Moreover, for stable
modes Eqs. (6.39) imply

(7.6a)iQ—J

+i QJ
(7.8b)

l =l1+l2 (7.9a)

/ =
I /i —/21 ~ (7.9b)

None of these conditions is satisfied when all the three in-
dices l, l „and 12 represent critical modes. We therefore
conclude that both P, , and Pb ;vanish f. or the monomials
I. under consideration. We also conclude that among the
stable modes, only those for which / =0,3,8, 11,14 show
up. [Only these l values satisfy the conditions (7.9} when
li and 12 represent the critical modes 4 and 7.] The coef-
ficients corresponding to these spatial modes are derived
by straightforward calculations according to Eqs. (7.8).
The results are the following:

n iQ„ Q„gjp n

2v 2X.(2Q„—Q )
""' 2Q X

2 iQ„
2v 2X„(2Q„+Qj}

iXJO„
j:i 2~2~i Qi nnj

Pl J

(7.10a)

(7.10c)

where n is either a or b and jE- I(/, m) 1/ =0.8 if n =a
and l =0, 14 if n =II,

Accordin(I to Appendix C and Eq. (6.23'), the spatial part
of %[V" V"'] contains the combinations V)f; V)fj and

f;f where i and j represent critical modes. According to
Eq. (4.3) the inner products (f(, ~,f),,~,,f(,~ )

(P'+& P'j'&,,f, ) do not vanish only when

1 I~

2v 2(Q, +Qb —QJ )

I I-

2v 2(Q, +Q„+Q, )

Q Qb Q Qb Q, Qbg.
++ bJ' + ++ b bJ+++ Q Ja b a b a b j

r

Qa Qb Q, 2 Qb 2 Q Qb+J-+ + abj + a+ + b abj + + Q abjJ - —h — k + k E — I
a b a b a b j

(7.10d)

(7.10e)
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b 0,
2~2(n, —n. —n, ) x.

Qb Q, 2 Qb 2 Q, nbXjJ,bj
—ji k, — kb K,bj+ 'I,bj

Xa Xb Xaxb nj
(7.10f)

E Qa

2~2(nb —Q, +Qj) X,
Ob Q, QbJ.

x '" x ' x ' '" xxnb a b a b j
(7.10g)

where jG f(l, m) II=3, 11}.Here,

K. j=(f.fm fj»
J„j (Vif—„—Vif,fj ),

(7.11a)

(7.11b)

x
u„.i —— a„a,—a„a,+ a„a, , (7.13a)

(2) 2
n 2 5 —2 ~ F

2 1 1

uj. i ——g (Pj.i a„+P~ ia „+.Pj ia„a.„
n =a, b

(7.11c)

(7.11d)

The coefficients Pj "3, Pj.2, Pj..2", Pj.'2, Pj '3, Pj 2., , and.
1 lb

Pj.3 are the complex conjugate of those displayed above,
respectively.

We may write now on the final form for V' ',

1 1a b
1 1 b

+~j:1 +a+b +~j:1 +a+b

11 11
+Pj:1 aaab+Pj:1 aaab ) ~ (7.13b)

and S2 ——
I (1,m)

I
I =0,3,8, 11,14} (with this notation some

of the coefficients P&.1 are zero, for example, Ps .1
——0).

ua:isa:1+ g uj:1Fj:1 ~

(2) (2) (2)

n =a,b jCS2

where

(7.12) B. k =3

As before we start with the identification of
M(W

I
k.3). Using (6.43) and (6.33) we find that

1 1 1 1 1T1~ 1 1 1-~(~+
I k=3) spanIz;1 z:1 zn":2 za:2 I

ri in I k =& b}',

where the prime denotes that each vector z„.; appears only
once [~(W+

I k —3) is spanned by 32 independent vec-
tors]. Proceeding in exactly the same way as for the case
k =2 we find

m=a, b .

+ g' (I' ',z„b )a ajak, (7.14)
l, k =a, b

where n =a,b and the prime denotes that each monomial
is counted only once. Equation (7.14) contains eight
terms of which four are forbidden by symmetry. For

~ these four terms are a ab
I
ai

I
ab I

a
I ab, and

ab I a,
I

. Every term in the amplitude equation for a,
should be invariant under the transformation (7.1). The
monomials displayed above fail to satisfy this require-

gas'=(I"'
I ab I'aaPa+:1»

g, 3 (I,ab aaFa 1——) . .
(3) (3) 2 — +

(7.16a)

(7.16b)

(7.16c)

The form of Gb
' is symmetric to that of G,' ' where a

and b are interchanged everywhere.
The evaluation of the coefficients g,';' in Eqs. (7.16) is

straightforward but involves tedious algebra. We report
here only the results,

ment. Among the four terms left in Eq. (7.14) the term
a„ Ia, I

can be ignored since Ia, I
=A /4«n„. The

form of G,' ' is therefore given by

G'"=g"i'
I a. I

'a. +g'2 I
ab I'a. +g"3'ab a

where

(3) 1

j&S2
J y ~j ~ 9j aja Uj Iaja +~aa ~ (7.17a)

ga2 =(3) 1 j 1 lb Qj 1 lb Qb 1 1 Qb ] 1 Q&a + &y a b y b a
2V 2 . X J X. j X ~J X jJ bja 1j Hajaj&+2 j j b

Aj 1 Ib+ (&j' —vj' ')Ib,, +2S,b R,b, — (7 17b)
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(3) QJ z 0, 2

x -x"
jEs2 j 0

QJ 1 lb Qb 1 lb QJ 2 Qj 1 lb
Vj + Qj H/j p Vj Ipj p Vj Imp +Spb + ab

Xj Xb Xj Xj

(7.17c)

where

ll ll 1]I m I nc Im+ &:2., =p; -p,':-
'$ 2

S,b —— (Q, k,'+2Qbkb )(f,fb,f, ),0 8

3ihS„= Q, k, (f„f,),
8

iQ,
R,b

—— '
(Vif, Vifbfb, f, )0

(7.18a)

(7.18b)

(7.19a)

(7.19b)

2
(

I
Vd'b

I
'f. f.} (7.19c)

We shall not evaluate V' ' here but only note that in
addition to the critical modes it contains new stable
modes jCS3, where Si ——

I (l, m)
~

l =1,10,12, 15,18,21j.
To summarize this section lei us combine the results

obtained for 6' ' and V' ' and write the final forms for
the amplitude equations and for the solution V(x,y, a).
The amplitude equations read a, (t) =a(~)e"~, ab(t) =b(~)e "~ (8.1)

I

to calculate the coefficients theoretically for the specific
experimental conditions. However, several difficulties,
pertaining to the basis functions fi [Eq. (4.3)], aris~
when we embark on such a calculation. The first difficul-
ty is related to the inexact boundary condition Bg/Bn =0
which results in an inaccurate set of basis functions. The
unknown constant phases rti present another difficulty.
Thirdly, the absence of orthogonality relations for the in-
tegrals (7.11a) and (7.11b) with respect to the radial index
m calls for an evaluation of a large number of integrals.
Thus, instead of a direct evaluation we choose to treat the
coefficients of the nonlinear terms, in this case, as free pa-
rameters (see also the discussion in Sec. IX).

Since the experimental system is dissipative we add to
the amplitude equations (7.2} small phenomenological
damping factors. By "small" we mean smaller than
0 (Qb Q, ) —(see also the discussion in Sec. IX).

As a first step we wish to eliminate the trivial, fast time
dependence that results from the response at half the driv-
ing frequency. To this end we introduce slowly varying
amplitudes a(~) and b(~) defined by

CXg =iQgQg+iyie Cg+iyi
~ tran ~

O!g

+iy,
~
ab

~

'a, +iy4ab'a. ,

&b ='Qb&b+1'51e" orb+i 52 I
txb

I &b

+i@Ia, I'ab+154a'. a

where y; and 5; are real and given by

(7.20a)

(7.20b)

=(—L.+1((}.)ti+1 I 1~i+i I i ~

u
~

'~

+iI i ~

b
~
a+iI 4tTb2, (8.2a)

where r=et and e is a small parameter of 0(Qb —Q, ).
When we insert Eqs. (8.1}into Eqs. (7.2) we find

+~A gbA

40, '
40b

~ (3)'Vj+1= —
&gaj ~

~ (3)5t+1= —igbi, J = 1,2, 3 .

(7.21a)

(7.21b)

17
=( I.b+iPb)b—+id ib+ib2

~
b

~
b

+i hi ~

a
(

b +i b 4ba i, (8.2b)

The space- and time-dependent solution reads

V= g [a;+u'; '(u)+u, ' '(a)]F;(x,y)
i =a,b

+ g uj~'(a)FJ(x, y)
j&S&

+ g uj '(a}FJ(x,y} +c.c. ,
j&53

(7.22}

where u'; ' and uj
' are given by Eqs. (7.13a) and (7.13b),

respectively, and F;=F~ 1. Note that E—q. (7. .22) has the
form of Eq. (1.3).

where

I;=y;/e, b, ; =5;/e,

P, b
——(Q, b

——,
' )/e,

(8.3)

(8.4)

TABLE I. Parameters used to reproduce the phase diagram.

and L„Lb are phenomenological damping constants.
Equations (8.2) can be integrated numerically to explore

the phase diagram. The values of the parameters used are
displayed in Table I. We discuss the part of the phase di-
agram that pertains to the immediate vicinity of the eriti-

VIII. NUMERICAL RESULTS AND COMPARISON
WITH THE EXPERIMENT

The analytic expressions obtained for the coefficients
y;, 5; in the amplitude equations can be used, in principle,

co, =49.4490 sec
~b =50.2265 sec
g, = 1.9249
gb = 1.9684
L, =I. =5XIO /e

yz ———5.0X 10-'
5,=6.S X10-'
y3 ——S3——8.5XIO z

@4=&4=0
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FIG. 7. The theoretical phase diagram in the immediate vi-

cinity of the critical point. A is 2h
I A! . G.D4

!,
'se(- 'I

Q.OB

cal point (which, strictly speaking, is also the range of va-

lidity of our theory). The theoretical phase diagram is
shown in Fig. 7. The main characteristics of Fig. 1 are
reproduced: (i) the asymmetry between the modes, i.e.,
the fact that the (4,3}mode damps the (7,2} mode whereas
the (7,2) mode pumps the (4,3) mode, (ii) the existence of a
region with slow periodic competition between the modes,
and (iii) the existence of a chaotic competition. Notice
also that the boundaries between these regions converge
close to the critical point, as seen experimentally. %e
note, however, that the chaotic region contains periodic
windows as well as long chaotic transients. We also note
that a more careful search reveals very small chaotic re-
gions in the "periodic" regime, close to the "boundary"
with the chaotic regime. The slight disagreement with the
frequency range between Figs. 1 and 7 is due to the inex-
act boundary conditions used in the theory. The variance
in values of A can be easily fixed by adjusting the parame-
ters of Table I. We did not attempt to obtain a "best" fit.

In Figs. 8, 9, 10, and 11 we show typical behaviors
which are encountered when the phase diagram is
traversed along the co =99.68 sec ' line. Belo~

pIG. 9. The signal and power spectrum for !ab! at
A =80.4 pm, co=99.68 sec ' (periodic mode competition
domain).

A =—2It
I
A

I
=80.08 m the quiescent state prevails. At

a =80.16 (Mm (Fig. 8) the seven-fold mode prevails. The
magnitude of its amplitude

I ab(t)
I
=

I
b (r)

I
grows to a

value of about 0.027 and remains stationary at this value.
The amplitude of the four-fold mode decays to zero. At
A =80.4 (ttm (Fig. 9) slow periodic mode competition
takes place

I
ab(t)

I
[as well as

I
a (t)

I ~ oscillates with a
single frequency f=0.021 sec ' (and its harmonics). At
A =81.0 pm (Fig. 10) the competition becomes chaotic.
lab(t) I [as well as

I a, (t) I] has a broad-band power
spectrum. Finally, at A =82.0 pm (Fig. 11) the four-fold

Q.Q6;

0.04 .

0.02 '

G.G5 " 0.00-
0

(
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l
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I
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aL, I !

0 0.02 0.04

I= [sec'I
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pre. g. Time signals for !a, ! and!a&! at & =go. l6pm,
~=99.68 sec ' [(7,2) single mode domain].

FIG. 10. Time signal and power spectrum for ! ab! at
3 =8 l.0 pm„~ =99.68 sec (chaotic mode competition
doBlaln).
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plG. 11. Time signals for
I
&, I

and
I

&& I
at ~ =8& 0 0m

~=99.68 sec ' [(4,3) single mode domain].
FIG. 13. Time signals for a andor ia, i

and iab i
at 2 =79.066

sec (periodic window in the chaotic domain

mode prevails: initially both modes grow b tes grow ut eventually
e our-fold mode damps the seven-fold mode and

~
a, (r)

~

becomes stationary ( 0.068).
The slow periodic competition is further illustrated

'

'g . 13. Figure 12 corresponds to a point in the
s ra in

periodic regime, while Fig. 13 pertains to a point inside a

m e seems to grow first and then to pump the four-fold
mode.

To validate what seemed to be a chaotic motion we

positive value typically of 0(0.01}has been found in the
chaotic regime.

IX. SUMMARY AND DISCUSSION

In this paper we have shown that it is possible to ob-
tain, theoretically, low-dimensional chaos from a set of

0.08-

0.02

t (sec(
FIG. 12. Time signals for ~a, ~ and ~u at A =

sec periodic mode competition domain).

hydrodynamic PDE's in a system of experimental interest.
tarting with the hydrodynamic equations (3.14} we de-

riv a set of four nonlinear amplitude equations (7.2) in-
c u ing the coefficients (7.3) (with the exception of the

call
damping actors which were introduced phenom 1enomeno ogl-
ca y). An expansion (74) for the solution to the hydro-
dynamic equations in terms of the amplitudes and
spatial-vector functions was also derived. For the experi-
ment under investigation we were able to rationalize
essentially all the major experimental findings: the appear

istence o
ance o regu ar and chaotic mode competitions th e ex-

ence o an asymmetry between the (4,3} and (7,2
modes, the qualitative structure of the phase diagram in
t e close vicinity of the critical point and the appearance
of the stable modes in the solution to the hydrodynamic
equations.

As noted before the energy dissipation in this system
has been taken into account phenomenolo ically. The
neglect o dissipation in the hydrodynamic equations ap-
peared to us unavoidable in order to make the problem
tractable. We note in this context th t th d'a e issipation o
energy is mainly due to friction at the vessel w ll d
to visco us dissipation in the air layer above the free sur-

1

ace notice that the kinematic viscos't f
arger than that of water). ' Withou d'

os1 y o air is much
i out issipation, howev-

er, t e center-manifold theory would t beno app 1cable,

be ossible n
nor would the comparison with th e experimental results

possible (no strange attractor, for example, would ex-
ist). We therefore had to

'
o introduce phenornenological

amping factors. These factors are small and thus do not
affect the normal-form analysis. We could therefore in-

alon w
troduce them at the end of the d

' t' . W
a ong with the damping factors we should also h
duced small

ou a so ave intro-
small real parts to the coefficients of the nonlinear

terms in Eqs. (8.2). Theseqs. . . hese, "owever, did not appear neces-
sary to reproduce the phase diagram.

an ular s m
%e might expect that the breaking of tho e continuous

ance of
gu ar symmetry would be accompanied b th

of a slow rotational degree of freedom. Such rota-
y e appear-
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tional motion, however, has not been observed in the ex-
periment. We therefore ignored this degree of freedom in
our analysis and adopted basis functions whose angular
parts are either sine or cosine terms with constant phases.
This and the boundary condition Bg/Bn =0 led us to the
functions ft given by Eq. (4.3). As already pointed out
in Sec. VIII these basis functions become problematic
when we come to evaluate the coefficients y; and t);. The
difficulties we presented there can be avoided by a slight
modification of the experiment, i.e., by using a rectangu-
lar cell and a fiuid which wets the walls more efficiently.
For such an experiment we can employ the analytic ex-
pressions (7.17) for the nonlinear terms and obtain,
theoretically, numerical estimates for y; and 5;.
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APPENDIX A: EVALUATION
OF THE Z DEPENDENCE OF THE VELOCITY

POTENTIAL

W„=Z„(t)e ", Z„(t+2n)=Z„(t), (82)

U„=[Z„(t)] 'U„

satisfy the equation

(84)

U„=L„U„+G(u,t), G(u, t +2m) =G(u, t) . (85)

Taking the time derivative of U„, using the identity

Z„'=Z„'Z„Z„'and Eqs. (81) and (84) we find

U„=[Z„(t)] '[K„(t)Z„(t)—Z„(t)]U„

+[Z„(t)) 'G(u) .

Taking now the time derivative of Eq. (82) and combin-

ing the result with Eq. (83) we find

L„=[Z„(t)] '[K„(t)Z„(t)—Z„(t)] . (87)

Inserting Eq. (87) into Eq. (86) we obtain the desired re-

sult (85) where

where L„ is time independent. By definition 8 „satisfies
the linear equation

8'„=K„(t)IV„.

We want to show that the transformed amplitudes

To derive Eq. (4.5) we first insert the expansion
P(x,y, z, t)=g„P„(t,z)f„(x,y) into the Laplace equation
')7 ))() =0 and use the eigenvalue equation %if„=—h k„f„
to obtain

G(u, t)=[Z„(t)] 'G(u) .

APPENDIX C: EVALUATION OF I(")

(88)

2

2
=h k„p„.

We now solve Eq. (Al) with the boundary condition

According to Eqs. (6.19), (6.21), and (6.22), I' ' is given

by

0 0
J(k)

( + —
) V(k —i)

=0 at z=l . (3.12b')

The general solution of Eq. (Al) can be written as

P„(t,z)=a„(t)e " +b„(t)e

Adopting the notation P„(t)=$„(t,z =0) —we find

kl, k2 y 1

k)+k2 ——k+1
k), k~

k)+k2 ——k

(Cl)
P„(t)=a„(t)+b„(t). (A3)

b„(t)=a„(t)e

Solving Eqs. (A3) and (A4) for a„(t) and b„(t) and plug-

ging these amplitudes in Eq. (A2) we arrive at the desired
result.

APPENDIX 8: THE TRANSFORMATION Z„(t}

Consider the system

U. =K.(t)U„+G(u), K„(t+2m)=K„(t) .

Let W„be the fundamental matrix of the linearized prob-

lem U„=K„(t)U„. Then W„can be written as

Inserting Eq. (A2) into the boundary condition (3.12b') we
find

kl, k2, k3

k) +k2+k3 ——k

where

(kg } (k2)X)[V ' V ']=—ViV2
' ViV) ' —(ViVi '

)V)
'

(k) } (k~) 1 (kl ) (k~} 1 (kl) (k2}»[V ' V ']=——,'~iV2' &,V, ' ——,'~V, ' V, ',
(C2b)

X,[V ' V ' V ']=—'V ' V, ' q,'V, '(k } (k )

(ki) (k2) (k33
+V) '

WiV)
' ViXVi ', (C2c)

(k, ) 2 (k, ) (k, )—v, vv, yv,
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The expansion (6.37) for V' ' can be written as

(k) (k)V —g uj.tFJ .i

(C4)

ln terms of the multinomials uj. the terms appearing in
Eq. (Cl) read

(C5)

j n =a,a, b, E
(k~) (k2)

() „[uj:i~ +uj:2 ]
(C6)

(k, ) (k, ) , «+j 2 2 (k, ) (k, ) (k, ) (k, )

jVi[V ' V ' ]=——,
'

Q
' (V)fj"V)f k'k; f,—f„)[uj.,' +u, .z ][u '. , —u '.,],

j,rn +j
(k] ) (kp) ) Qjnfpg (k}) (k/) (k2) (k2)

+2[V ' V ' 1=——.
' g ' (~)fj'~-)f' +&j& ff )[u, :i' +u, :2' 1[u ':i +u ':2]
j ~ XjX~

(k)) (kp) (k3) 1 (k&) (k&) (k2) (k2) (k3) (k3
jV)[V ' V ' V '1= g &n«'knfjfmfn 2fj~)f~—~)fn)luj:)' —uj:2 ][urn':) —um:2][u. i +u'. z ]

j, rn, ll

(k)) (k2) (ki) l t +rn +n
Z Z (k)) (k)) (kt) (k2) (k3) (k3)«'k~fjf~f. +fj~ifm. ~En)[u, :)' —uj:2' l[u ':i+u ':2][u. i +u. z ] .

2 2 ' Xg

(C7a)

(C7b)
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