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The generalized hypernetted-chain free-energy forxnulas derived earlier are used for an accurate
analysis of the phase properties in the binary ionic mixtures with dielectric screening of the elec-

trons. The miscibility of iron atoms in the hydrogenic solar plasmas has been treated as a specific
example. It is found that while the extent of the electronic screening effect is substantial, the result-

ing change in the phase diagram is not sufficiently large as to be able to account for the solar-
neutrino problem.

I. INTRODUCTION

In an earlier paper, ' hereafter referred to as paper I, we
have derived free-energy formulas applicable to the
electron-screened ion plasmas in the hypernetted-chain
(HNC) approximation. ' In the derivation, we have care-
fully taken account of the density and temperature depen-
dence in the effective interionic potential arising from the
static dielectric screening of the electrons. The formulas,
expressed in terms of the ion-ion correlation functions and
the screening function, enable us to circumvent the more
cumbersome and less accurate calculations involving the
thermodynamic integrations.

The simplicity and accuracy thereby achieved are valu-
able in the analyses of phase properties such as miscibili-
ties and phase separations in multi-ionic plasmas. It has
now been well established that a wide variety of binary-
ionic mixtures phase separate at lower temperatures. A
reliable treatment of such a problem calls for extremely
accurate evaluations of the free energies, however, since
the characteristics of the phase separation depend on deli-
cate balance between various contributions in the free en-

ergies before and after demixing.
In the present paper, we consider such a miscibility

problem in hydrogen-iron mixtures under conditions ap-
propriate to the solar interior, as a useful application of
the free-energy formulas obtained in paper I. We take the
temperatures and the pressures of the solar plasmas in the
vicinity of 1.5)&10 K and 10' Mbar. The relative con-
centration of the irons near the thermonuclear burning re-
gion is assumed to take on a value close to the cosmic
abundance (2.5 X 10 ' ionic mole fraction).

Highly charged (i.e., high Z) elements are efficient
scatterers of the electrons in a plasma, and thus have sub-
stantial effects on its transport properties. The solar
abund'mce of high-Z elements such as iron near the ther-
monuclear burn region can significantly influence the rate
of fusion of ct particles that generates solar neutrinos be-
ing monitored in the Cl experiment. ' Pollock and Al-
der in particular have suggested that the solar-neutrino
dilemma, a large discrepancy between the observed solar-
neutrino counts, and the calculated capture rates for the
standard solar model, might be resolved, if iron had lim-
ited solubility in a hydrogen plasma at the pressures and

temperatures appropriate to the solar interior; a coales-
cence of irons would lead to the decrease in the opacity
and hence the temperature, to suppress those thermonu-
clear reactions that generate neutrinos detected on the
earth. They evaluated the solubility of irons in hydrogen
plasmas using the classical Debye-Huckel theory for both
electrons and ions, and concluded that the plasma could
possibly undergo phase separations at concentrations of
irons well below the cosmic abundance.

Following the suggestion of Pollock and Alder, several
authors " advanced refined calculations for the misci-
bility of irons in solar hydrogen plasmas. Alder, Pollock,
and Hansen9 treated the interionic correlations in the
HNC approximation, and thereby improved on the calcu-
lation based on the Debye-Huckel approximation. The
Debye-Hiickel theory is not valid for the iron-rich phase,
where strong coupling effects between ions are crucial;
even near the critical point for demixing, accuracy of the
Debye-Hiickel theory appears insufficient. 9 On the other
hand, Alder et al. have completely neglected the electron-
ic screening effects on the thermodynamic properties of
the plasmas. They treated the electrons simply as a uni-
form neutralizing background, and thereby modeled the
uniform electron system as a finite-temperature ideal Fer-
mi gas. Pitzer'0 reconsidered Pollock and Alder's analy-
ses, and improved on the short-range behavior of the
Debye-Huckel correlation functions phenomenologically.
Deutsch, Gombert, and Minoo" investigated quantum ef-
fects of the electrons on the miscibility calculation, based
on the nodal expansion method where the bare Coulomb
potentials are replaced by their pseudopotentials. All of
these investigators have yielded negative answers in
resolving the solar-neutrino dilemma through the idea of
limited miscibility.

In this paper we revisit the miscibility problem of iron
atoms in hydrogen plasmas under the solar-interior condi-
tions, with special emphasis on the role of the electronic
screening. Conduction electrons behave semiclassically
since the Fermi temperature is somewhat lower than the
solar-interior temperature. Such a nondegenerate electron
gas acts to screen the ion-ion interaction quite efficiently,
and hence modify the thermodynamic properties of the
plasma substantially. A possibility may exist, therefore,
that the miscibility of irons in the solar hydrogen plasma
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is altered significantly by inclusion of the electronic
screening effects, leading to a resolution of the solar-
neutrino dilemma. We will find through quantitative
studies that the extent of the screening effects is indeed
substantial but that the resulting change in the phase dia-
gram is not sufficiently large as to be able to account for
the solar-neutrino problem.

The present calculations improve over those of Alder,
Pollock, and Hansen, the leading calculations hitherto
advanced, in two ways: We take account of the electronic
polarization, in the framework of the linear-response
theory to the ionic field, assuming that the adiabatic ap-
proximation' is valid. We also take account of the ex-
change and correlation contributions to the thermo-
dynamic functions for the electron system, in a way con-
sistent with the screening function of the electrons. The
strong coupling effects between ions are treated accurately
in the HNC scheme, as Alder, Pollock, and Hansen have
done.

In Sec. II we introduce a model of the solar-interior
plasma and provide a theoretical framework in which to
study the miscibility problem. Section III investigates nu-

merically the electronic screening effects on the correla-
tion properties in solar-interior plasmas. In Sec. IV the
phase diagrams for those binary mixtures of the
hydrogen-iron plasmas are constructed, and Sec. V sum-
marizes with a conclusion. Some of the calculational de-
tails on the phase diagrams are described in the Appendix.

II. FORMULATION OF THE PROBLEM

For simplicity we model the central part of the sun as a
three-component plasma consisting of electrons, protons,
and ionized iron atoms with electric charge Ze; such a
model has been adopted by many of the previous investi-
gators. ' Under the solar-interior conditions, it has
been estimated that the ls electrons may stay bounded to
the iron nuclei while the 2s and 2p electrons are only par-
tially retained; Z may thus take on a value somewhere be-
tween 20 and 24. In this paper we treat a most asym-
metric case by assuming Z=24; this amounts to con-
sideration of a most favorable situation as far as the
proton-iron demixing is concerned.

We consider plasmas consisting of Ni ions (protons)
with charge Zie, X2 ions (irons) with charge Z2e, and N,
electrons in a volume V at a temperature T. The mean
ionic charge is defined as

{Z ) =x,Z, +x2Z, ,

xi( = 1 —x2) =Xi /X, with X =Xi+f2 The.
charge neutrality condition requires N, = (Z)&.

We shall describe the state of the plasma in terms of the
electronic parameters in the following ways: Defining the
Wigner-Seitz radius as a, =(3V/4irX, )', we set the
classical Coulomb-coupling constant as' '

I,=e'/a, kgT .

The dimensionless density parameter' is given by

r, =a,me /fi

where m is the mass of an electron. The degree of Fermi

degeneracy is then measured by the ratio 8 of the tem-
perature to the Fermi temperature, ' that is,

2/3

8=2 4
r, /I, .

9m
(4)

The Coulomb coupling constant of the ions may then be
given by' '

H=F, +K+ g U(q)[p(q)p( —q) —&(Z')]
2V (~0)

1 1+ g U (q) —1 p(q)p( —q) .
2V

~ 0) E(q 0)

Here K and F, represent the kinetic energy of the ions
and the Helrnholtz free energy of the uniform electron
background, respectively; U(q) =4me /q is the Fourier
transform of the bare Coulomb potential; p(q) refers to
the Fourier component of the charge-density fluctuations
defined as

p('q ) Z 1p I ('q ) +Z2p2('q )

where p (q) is the Fourier component of the ion number-
density fluctuations of the species o. As can be readily

In the ensuing calculations we choose r, and 8 as indepen-
dent variables.

Under the conditions appropriate to the solar interior,
those plasma parameters take on values I,=I;=0.05,
r, 0.4, and 8=4. This value of I; may suggest that the
coupling between ions is generally weak. %e nevertheless
emphasize the necessity for accurate treatment of the in-
terionic correlations beyond the Debye-Huckel theory, as
far as the calculation of the phase diagrams goes; the
strongly coupled ionic states are inevitably involved in the
iron-rich phase. The electrons, on the other hand, are al-
ways in a weakly coupled state. The principal problem on
the electrons is to account for the finite-temperature ef-
fects appropriately.

If the adiabatic approximation is adopted for the
response of the electrons to the ionic field, one can elim-
inate the electronic coordinates the system under con-
sideration turns into an electron-screened binary-ionic
mixture (BIM).' ' The Fourier transformation of the ef-
fective potentials P&„(r) between ions in the linear-
response theory is given by

P„„(q)=4irZ„Z„e /[q e(q, 0)],
where e(q, O) is the static dielectric function of the uni-
form electron system. The effective potentials thus de-
pend on the number density and temperature of the elec-
trons through e(q, O). Since the electrons are weakly cou-
pled, the local-field effects' between them can be neglect-
ed; e(q, O) can be evaluated on the basis of the random-
phase approximation (RPA) generalized to the finite elec-
tron temperatures. ' ' The validity and accuracy of the
adiabatic approximation for the electron system in the
partially degenerate regime (8& 1) have been investigated
in paper I.

The Hamiltonian for the screened BIM now reads
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g„„(r)=expI [P„„(r)I—kaT]+h„„(r) c„„(r)—}), (10)
I

seen from the Hamiltonian (7), the thermodynamic func-
tions of the screened BIM consist of three parts,

A =A, +A;d+Aex,

where A, is the contribution from the uniform electron
gas; A;d, the ideal-gas contribution of the ions; A,„, the
excess contribution due to the ionic interaction. To be
consistent with the choice of e(q, O) here, we evaluate the
thermodynamic functions of the uniform electron system
based on the RPA; fitting formulas for the free energies in
the RPA (i.e., the exchange and ring contributions) have
been obtained by Perrot and Dharma-wardana. '

Once the laws of interaction between ions are specifml,
we can calculate various interparticle correlation func-
tions in the screened HIM within the HNC scheme. '

The accuracy of the HNC approximation in the parame-
ter domain under the present consideration has been con-
firmed through comparison with molecular dynamics cal-
culations. The partial pair distribution functions are ex-
pressed in the HNC theory as

where h&„(r)=g&„(r) 1—refer to the pair correlation
functions. The direct correlation functions c&„(r) are re-
lated to h„(r) via the Ornstein-Zernike relations,

h„,(r)=cz„(r)+gx n f dr'c& (
~

r —r'
~

)Ii „(r'),

where n =N!V is the total number density of ions. The
HNC equations (10), coupled with Eq. (11), provide a
closed set of equations to be solved for the correlation
functions.

The thermodynamic functions for the screened BIM
can be expressed in terms of integrals over the correlation
functions, in the same way as in the screened one-
component plasma case treated in paper I; extension to
the BIM case is straightforward. We parametrize e(q, O)

as a function of the dimensionless variables: Q—:qtqF,
r„and 8, where qF (3' n,——) is the Fermi wave num-
ber of the electrons. The excess internal energy and pres-
sure are then calculated as

n&Z'&
u(q)[S(q) —1]+ g u(q) —1 S(q) — g u(q) 8 S(q),

n(Z'& 1 n(Z'&

q (+0) 2 (~o) eq0 2 ~~o) B8 e 0

n(Z'&I',„= g u(q)[S(q) —1]+ g u(q) —1 S(q)
n(Z'& 1

6V (~0) q (~o)

(12}

S(q) . (13)

Here S(q) denotes the charge-density structure factor of the screened BIM defined as

S(q) = (p(q)p( —q) &/&&Z'& (14)

In the framework of the HNC approximation, it is possible to express the Gibbs free energy in terms of the correlation
functions without invoking the thermodynamic integration; ' the scheme has been generalized to the density- and
temperature-dependent potential cases in paper I. The excess Gibbs free energy of the screened BIM is thus calculated
(in the HNC theory) as

G,„=N gx„x„
nkBT

2
r pv p ~pv 7' —cpv p —n BTcpv g =0 pl pv g =0

+ g u(q) —1
n(Z'& l

2 (~o) e(q, O)

&Z & g ( ) 8 8 1

3 (~o) 88 e(Q, O)

n(Z'&
u(q) r, S(q)

8 1

q (~o) "s i 8

n(Zi& 8 1
S(q)— g u(q)Q S(q) .

q (+0)
(15)

The excess Helmholtz free energy can then be obtained
from Eqs. (13}and (15) with the aid of the standard ther-
modynamic relation,

Fex=oex —~ex~ .

The explicit expressions for the partial derivatives of
e(q, O} appearing in Eqs. (12), (13), and (15) have been
given in paper I.

III. ELECTRON SCREENING IN THE SOLAR
INTERIOR

Before constructing the phase diagram, we examine
quantitatively the extent to which the electron screening
effects act to modify the correlation properties of solar in-
terior plasmas. For this purpose, we solved the HNC
equations for the screened BIM with Zi ——1 and Zz ——24
at the solar-interior conditions of r, =0.4, 8=4, and
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TABLE I. Excess thermodynamic functions for the ionic mixture with Zl ——1 and Zq ——24 at the
conditions of the solar interior (x2 ——2.5X 10, r, =0.4, 8=4). HIM refers to the results calculated
without electronic screening; screened BIM, those with electronic screening.

BIM
Screened

HIM

U,„
Xka T

0.009 539
0.016385

0.003 180
0.005 348

0.006455
0.011356

G,„
%kg T

0.009 635
0.016704

x2 ——2.5 X 10 . Table I lists the excess thermodynamic
functions for the screened BIM, together with the BIM re-
sults without electronic screening. We find that the rela-
tive magnitude of the screening corrections, defined as
differences between the screened BIM values and the cor-
responding BIM values, amounts close to 70'%f,' the elec-
tronic screening effect is substantial in the solar interior.
In Figs. 1 and 2, we compare the pair distribution func-
tions g„„(r)and static structure factors $„,(q) of the BIM
with and without the electronic screening. The correla-
tion functions g»(r) and S22(q), omitted in Figs. 1 and 2,
stay close to unity. The effect of the electronic screening
is evident also in the correlation functions; it thus plays an
important part in the determination of the thermodynam-
ic and transport properties in the solar-interior plasmas.

IV. MISCIBILITY OF IRON

Since the phase separation takes place under the condi-
tions of constant pressure and temperature, we deal with
the Gibbs free energy of the plasmas, instead of the
Helmholtz free energy, to investigate the phase stabihty.

We begin with defining the Gibbs free energy of mixing

IG(P, Tx2)= G(P, T,xi) x&G(P, T, x2—0)——

against phase separation into a proton-rich phase at the
concentration x;„and an iron-rich phase at the concen-
tration x,„. The critical temperature T, and the concen-
tration x„above which the mixture is always stable, are
determined by the two equations

t

8 EG
2Bx2 pz

(18)

d'b G
3Bx2 pT

(19)

The condition (18) by itself gives the instability (spinodal)
curve, which always lies within the coexistence curve
determined from the double-tangent construction. We
can thus calculate the phase diagrams for the hydrogen-
iron mixtures on the basis of the formalism developed in
Sec. II; numerical details on the calculation of the phase
diagrams are described in the appendix.

As noted earlier, the Gibbs free energy of mixing is ex-
pressed as the sum of the electronic, ideal-gas, and excess
contributions. We first investigate relative importance of
those contributions in the determination of the phase dia-

xqG(P, T, x2———1) . (17)

If a line can be drawn which is tangential to EG(x2)
curve at two separate points, x;„and x,„, then these
points mark the solubility limits at that pressure and tem-
perature; the region between xm;„and x,„ is unstable

0.5
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-01-g
/

00 2 3
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FIG. I. Partial pair distribution functions for a solar
hydrogen-iron mixture at r, =0.4, 8=4, and x2 ——2.5&10
The solid and dashed curves are the results calculated with and
without the electronic screening, respectively.

0

FIG. 2. Partial static structure factors for a solar hydrogen-
iron mixture at r, =0.4, 8=4, and x2 ——2.5&10 . The nota-
tion for the curves is the same as in Fig. 1. Note the difference
in scaling above and below the abscissa.
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grams. Qualitatively, the electronic and ideal-gas terms
favor phase mixing, whereas the excess term promotes
phase demixing. In Figs. 3 and 4, we plot the total Gibbs
free energy of mixing and the individual contributions as
functions of the iron concentration x2 at two values of the
temperature, T =1.5 X 10 K and 3.75& 10 K, at a con-
stant pressure, P =0.5)(10 Mbar. At T =1.5&10 K,
the ideal-gas term is the dominant contribution, and the
mixture rexnains stable against phase separation. As the
temperature decreases, however, the magnitudes of the
electronic and excess terms increase rapidly; on the other
hand, the ideal-gas term remains rather insensitive to the
temperature variation. At T =3.7SX 10 K, those three
contributions take on magnitudes of the same order,
where the region of negative curvature,

EG ~0, (20)
BX2 pT

appears. Thus a phase separation of the plasma mixtures
takes place as a consequence of delicate balance between
those physically distinct contributions.

Figure S shows the phase diagram for the hydrogen-
iron mixture at P =0.5&10 Mbar. The solid circles are
the calculated points of coexistence; those points are inter-
polated by the spline method with the third-order polyno-
mials. The critical point for demixing is thus determined
at T,=5.5)(10 K and x, 2.4&10 2. The solid trian-
gles are the calculated points of the spinodal; they are
similarly interpolated through the critical point deter-
mined above. The cross in Fig. 5 denotes the critical
point calculated by Alder, Pollock, and Hansen without
consideration of the electronic screening effect. Compar-
ing the present results with those of Alder, Pollock, and
Hansen, we find an increase of the critical temperature by

NkisT

10—x

0.5—
X

K
8

0 .L I I I I I I
I I I I [ 1

0
i i i i l i I I I

0.5

FIG. 4. Same as Fig. 3, but at T=3.75)(10 K.

1S% arising from the electronic screening effect. The ab-
solute value of the critical temperature is still smaller than
the solar-interior temperature, however, by a factor of less
than a half. Consequently, we may conclude that an ac-
curate treatment of the miscibility problem, as presented
here, has not revealed a new possibility of resolving the
solar-neutrino dilemma through the idea of a limited solu-

20 i r r r
~

r
0.35-

0..

-0.25—

X X
X

X
1

I 1 I [ I l T I

0.25- '

02 I

10 10 10
X2

i i I I I i i i i

0 0.5
X2 1.0

FIG. 3. Contributions to the Gibbs free energy of mixing
hG/Xk~r for the ionic mixture with Z~ ——1 and Z2 ——24 at
P =0.5&10 Mbar and T=1.5&&10 K. The points with solid
squares represent the ideal-gas contribution; solid triangles, the
ionic excess contribution; crosses, the electronic contribution;
solid circles, sum of all the three contributions. Note the differ-
ence in scaling above and below the abscissa.

FIG. 5. Phase diagrams for the H+-Fe + mixture with the
electronic screening at I' =0.5 X 10 Mbar. The temperature T
in the ordinate is normalized with To = 1.5 X 10 K, the interior
temperature of the sun. The solid and dashed curves are the
coexistence and spinodal curves, interpolated as described in the
text; the solid circles and triangles represent the calculated
points. The cross refers to the critical point obtained without
the electronic screening by Alder, Pollock, and Hansen (Ref. 9).
The chain curve is the coexistence curve calculated by retaining
only the ideal-gas term in the equation of state for the uniform
electron gas.
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APPENDIX: CALCULATION OF
THE PHASE DIAGRAMS

0.2
10

FIG. 6. Same as Fig. 5, but at P= 105 Mbar.

For the calculation of the phase diagrams, it is useful to
have an analytic expression for the Gibbs free energy of
the plasma at a given P and T as a function of the con-
centration x2. In the present calculations, we have de-
rived such an expression for the Gibbs free energy in the
following way.

To begin, we establish a one-to-one correspondence be-

tween a set of the plasma parameters (r„8) and a given
combination of the thermodynamic variables (P, T) re-

garding x2 as a variable parameter; the thermodynamic
functions for the plasma are expressible as functions of r„
8, and x2. When the temperature is fixed, the parameter
r, is related to 8 via the relation,

bility of the iron atoms in the solar-interior plasma.
To see how the adopted electronic equation of state

may infiuence the phase diagram, we have performed an
additional calculation of the coexistence curve by taking
only the ideal-gas term in A, . The result is shown in Fig.
5 by a chain curve. We find that the neglected terms in

A„ i.e., the exchange and ring contributions, affect sub-

stantially, in that the change of the critical temperature
amounts to about 10%.

We have also calculated the phase diagram for the
hydrogen-iron mixture at P=10 Mbar; the result is
shown in Fig. 6. The critical point for demixing is

T,=5.5&&106 K and x,=l.7)&10 ~. Although the criti-
cal point is located at about the same place as in Fig. 5,
the increase of pressure appears to result in prevention of
phase separation at lower temperatures (T &0.3'�}. The
suppression of phase demixing at an elevated pressure
may be accounted for as follows: In that temperature
domain where the electrons are moderately degenerate
(8 & 1.0), an increase in the pressure corresponds to an in-

crease in the charge density or a decrease in r„so that the
uniform electron system looks more like a rigid back-
ground; ionic mixtures in such a background have been
shown' to be stable against phase separation.

V. CONCLUSION

We have shown the use of the generalized HNC free-
energy formula for an accurate analysis of the phase prop-
erties in the ionic mixtures with electronic screening. The
problem of the iron miscibility in the hydrogenic solar
plasma has been treated as a concrete example, with the
hope of shedding light on the solution to the solar-
neutrino problem. The temperatures at which the solubil-
ity of the iron atoms is limited have turned out to be sig-
nificantly lower than the solar-interior temperature, so
that the idea of limited solubility does not appear capable
of resolving the solar-neutrino dilemma.

r, =762.61 (Al}

so that the correspondence is established once 8 is ex-
pressed as a function of P through the equation of state.
To do so, we have computed the pressure as a function of
8 for 17 values of x2 including the end points, and fitted
the computed values by a polynomial of ln8 as

P = gak(ln8)" .
k

(A2)

a+bxi+cxi+dxi2 3

8(x2) =
1+ex'+fxi

a'+b'xq+c'x 2+8'x 2
G,„(x2)= 1+e'xi+f'x i

(A4)

(A5)

Four of the six free parameters in (A4) are determined
from the exact limiting behaviors,

lim 8(x )=8(x =0)+ (x =0)x + -, (A6)8
x2~0

lim 8(xz) =8(x2=1)+ (x2=1)(xz —1)+ . ~ ~
88

x2~1 BX2

(A7)

At the same time, we calculate the excess Gibbs free ener-

gies and fit the resulting values in a similar polynomial
form,

G,„=g ak(ln8)" .
k

The formulas (A2) and (A3) with the first five terms can
fit the original values within the accuracy of 0.2%. Using
Eqs. (A2) and (A3), we obtain the values of 8 and 6,„ for
the 17 values of x2 at a given specification of P and T.

We then parametrize those results obtained above as
functions of x2, using a (3-2) Pade approximant,
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bGd xiZi r, (x2 ——0)

Nka T (Z } p,s(x2)

3xzZi r, (x2 —1)—
+x &ln (AS)

where we evaluate the first derivatives of 8 in xz numeri-

cally. The remaining two parameters are then deter-
mined, so as to minimize the difference between the origi-
nal and fitted values; the resulting fitting errors are con-
fined within 0.2%. The parameters in the fitting formula
(A5) for G,„are determined analogously, with errors on
the same order of magnitude.

The ideal-gas contribution to b.G is written explicitly
as"

where r, (x2) is the r, value at xz for a given specification
of P and T. One derives an analytic expression for the
electronic contribution to b,G as a function of r, and 8,
following Perrot and Dharma-wardana's formulas. ' The
equations (A4) and (A5), together with Eq. (Al), thus pro-
vide the desired analytic expression for b,G as a function
of xz at a given specification of P and T; this result facil-
itates the procedure of double-tangent construction and
the evaluation of the spinodal points. We remark in pass-
ing that major parts of the free-energy contributions can-
cel each other in the calculation of b.G via Eq. (17); the er-
rors in EG calculated from the analytic expression may
have reached several percent.
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