
VOI UME 34, NUMBER 4

Electron-hydrogen scattering in a chaotic laser field

OCTOBER 1986

K. Unnikrishnan*
Lou Level Counting Laboratory, Hospital Comp/ex, Bhabha Atomic Research Centre,

Bombay 400094, Maharashtra, India

M. A. Prasad
Diuision of Radiological Protection, Bhabha Atomic Research Centre, Trombay,

Bombay 40608S Maharashtra, India
(Received 19 February 1986)

Elastic scattering of electrons from hydrogen atoms in a chaotic laser field is considered. The
necessary ensemble averages are evaluated assuming a field correlation function with an associated
Lorentz spectrum. For nonzero bandwidths, the double differential cross sections exhibit peaks
around the incident energy as well as around the atomic transition energies, all sidebands having a
spacing of the mean laser energy. For zero bandwidth, the (single) differential cross sections reduce
to those due to a coherent field, averaged over a Gaussian probability distribution. Some representa-
tive numerical results are presented and discussed.

I. INTRODUCTION

The influence of field fluctuations on laser-assisted
charged-particle scattering has been the subject of some
recent studies. ' In a recent communication5 we had
summarized the key results for electron scattering from
hydrogen atoms in a chaotic laser field. While Ref. 5 was
mainly concerned with the new structures in the double
differential cross sections and their relation to the laser
line shape, this paper describes the ensemble-averaging
procedures used in calculating the exact scattering cross
sections, and also presents a general discussion of various
results.

II. PORMUI. WTION

Consider the elastic scattering of electrons by hydrogen
atoms in a plane-polarized classical electromagnetic field,

whose amplitude and phase undergo Gaussian fiuctua-
tions. In the Coulomb gauge and dipole approximation
the incident electron of average momentum k is represent-
ed by

e A(r)
Xi,(r, t)=exp ik r i —k—

CO C
2dr

where A is the vector potential. (We use atomic units
throughout, with e = —1 for electrons. } For the hydrogen
atom, first-order perturbation theory yields the ground-
state wave function

where E is the field strength, {bk is an unperturbed atomic state of energy cok, yk is the linewidth for the transition

~

k)~ ~0), and

Mkp ——(k (
er.E [ 0),

with E denoting the direction of polarization of the field. The linewidths are of no real significance in most of the fol-
lowing calculations, and hence they wiB be retained only when their presence is essential for obtaining finite results (cf.
Appendix 8). Further, in order to reduce the complexity of some of the algebraic expressions, we shall sometimes make
the reasonable approximation that the photon frequency ~ ««coko.

The average first-Born-transition probability per unit time for elastic scattering (direct), in which the initial and final
momenta of the electron are, respectively, k; and kf, is given by

T 2
( IVp) =( lim J dt(Xg $0 ~

V
~ g(gg, f )

~here

(4)
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1V=
Iri —r21

(5)

ri and r2 being the coordinates of the incident and atomic electrons, respectively. (Both ensemble averages and inner
products are denoted by angular brackets; the distinction is clear from the context. ) From Eqs. (1)—(4) we get

T t
( W/;)= lim f dt exp i EtI—t —0 f A(t')dt'

T~QQ 2T T (X]

2

X ~00+i g ~okMkoFk(t) 1 g—~koMok+k (t)
k k

Q=eq. E/c, q=k; —k/, E,/
——(k; —k/)/2,

nk—

+k(t)= f e "' E(t')dt'.

Noting that, because of the dipole selection rules, &ok =&ko= —~ok and Mok is real, the various terms in Eq. (6) can
be appropriately grouped to yield

( Wfi) =((p P OQ+I &IXI+ &DkM [F ( 2)k—(Fk ( 2) —(Pk((l )+Pk ((I )]

g g ~0kMko~onMno[Fk(t2)+n (t]) ~k(t2)+n(ti ) Fk ( 2)~n (ti )+~k (t2)Fn(t])]

where the operator P is defined as

l T TP= lim t~ t2exp iEy t~ —t2 +iQ A u u
T~ QQ 2T

(1O)

Evaluation of the various ensemble averages figuring in Eq. (9) may now be carried out, as described in Sec. III.

III. CALCULATION OF ENSEMBLE AVERAGES

Basically three types of ensemble averages appear in Eq. (9). The simplest of these is

T g2 t& t~
(p&= ((m f d(, f c(,pxp EI((, (, ) f—f—(A(u)A( )&,dud UU

where the Gaussian property of A has been used. Trading
the variable t2 for t =t, t2, Eq. (11)can b—e written as

(P) =H(O, E/;),

( E(t)E(t') ) =LE(t t')— —

4((['0

cos[to(t —t'))ex (pb. to
~

t —t'
~

)—
2

H (x,y) =2 Re f J(t)e '"+'~"dt,

Q2 t t
J(t)=exp f f (A(u)A(U))du du

To proceed further, the field correlation functions have to
be specified. As in the work of Daniele, Faisal, and Fer-
rante on potential scattering, me choose these to be

and

(15)

(, A(t}A(t')) =L~(t —t')—
2+2

0
cos[o&(t t') P)——

2(co +t]),co )

&(exp( b,o1
i
t t'i ), ——



34 ELECTRON-HYDROGEN SCAI-I'ERING IN A CHAOTIC LASER FIELD 3161

where 8'o is the variance of the field amplitude, hto is the
bandwidth, and P is given by

Next, we consider terms in the first square brackets of Eq.
(9). Using the identities

2oi Eoi
tan =

zco —Eco

The function H(O, y), with the above correlation func-
tions, has been evaluated by Daniele, Faisal, and Fer-
rante. We give below somewhat simpler expressions for
H(x,y) as well as its conjugate G (x,y), equal to twice the
imaginary part of the integral on the right-hand side
(RHS) of Eq. (13), which we shall be needing later on

H(x,y)+ iG {x,y)

PFk (tz) =P 'Fk (ti )

PFk (t i )=P 'Fk ( tz ),
we get

( P[Fk{t 2 }—Fk ( t2 ) —Fk {t i )+Fk (t i )])

=2Re[(PFk(tz)) —(PFk(t, ))] .

(19a)

(20)

=2exp( —z cosg}
e) ( g2)v+2k

o k!{v+k)!
I „k(x)+iE„(y)

[I'.k(x)]'+ [E.{y}l'
where

Ao to4

(~2+ +~2)2

(eq E)$'o
0 2

I „k(x)=(v+2k)bco+z(bco cog+to sing)+x,

E„(y)=nto y—

(17a)

(17b)

(17c)

(17d)

Using the results of Appendix A and invoking the rela-
tions (18), we finally get

2 Re[(PFk(tz) —(PFk(ti ) ) ]= —Qltoko,

Q = I (cog)[H(hoz, E;f+to)2EA

(21)

+H (hto, E,f to}—2H—(O,Eif )]

+ (sing)[G (hto, Ef to) G(b—to, E—f+to) ]I,
(22)

and K is defined by Eq. (A14).
Evaluation of terms of the type (PFk(tz )F„'(ti ) ) is out-

lined in Appendix B. Expressions for the remaining en-
semble averages in Eq. (9) may now be written down by
inspection. Combining all these, we finally get

and v=
~

n
~

. For later use, we note that H and G obey
the crossing relations (tof; )=P~(gH(0, Ef) +1 ppXQ

and

H(x,y) =H(x, —y)

G(x,y)= —G(x, —y) .

(18a)

(18b) where

+ 8'pX [S(hto, to) —U]+8,

~ok~koX=II (24)

S(x,y) =H(x,Ef+y)+H(x, Ef y)—
T(x,y) = G(x,Ef+y) G(x Ef y)— —

U= —
t 4(cos p)[S(bto, co) —H(O, Ef )]—2(sin2$)T(hto, m) —(cog)S(2+os, 2oi)

(25)

(26)

+ (sing) T (2b co,2') —2H (2hro, E~f ) I (27)

3hcoS'oc
~

P"ok
(

2

S()'k *oiko) .
OikO

(28)

In writing Eq. {28)we have made use of the fact that P ok
is pure imaginary while Mok is real, and identified 2yk
vnth the spontaneous transition probability per unit time
rk, from

~
k) to ~0), given by

3
d o' kf 1

dQdEf k; 2o
(29)

4e toko I Mko I

3fic

The double differential cross sections may now be calcu-
lated from
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IV. DISCUSSION AND NUMERICAL RESULTS

The first term on the RHS of Eq. (23) represents
scattering by the static potential 7 oo, while the remaining
terms are due to the dressing of the atom by the field. To
make contact with the single-mode results of Byron and
Joachain, we may study the limiting case of hco~O, for

(30)

which the term 8 vanishes. Further, we see from Eq. (17)
that in this limit P also vanishes, while

H(O,y)~2m g I„(ko/2)e ' 5(y n—co),

where I„ is a Bessel function of imaginary argument. Us-
ing these results, we get from Eqs. (23)—(29),

d 0'

10dE/

I P"(~l„+2AOS'0&ppX(I„' I„)+—8'()X [2(1—Ao)I„'+Ao(I„+I„")j I e
„4m k;

(32)

over a Gaussian probability distribution

P (Eo )dEo exp( ——Eo /@—o)d (Eo /@ 0) (33)

in agreement with what one would expect on the basis of
similar results obtained in Refs. 2 and 3.

where k/(n) =2(E; neo—), and the argument of all Bessel
functions is A,o/2. (The primes on the Bessel functions
denote differentiation. ) Equation (31) is also the result of
averaging the differential cross section for a coherent field

Eo, given (in the present notation) by

For hco&0 the double differential cross sections are no
longer 5 functions, but exhibit peaks at energies corre-
sponding to the exchange of an integral number of pho-
tons of energy fuu. This is illustrated in Fig. 1, which
shows some typical peaks at E;/=0, +1, and —2 in the
scattering of 100-eV electrons at an angle 8=0.25', for
8'0 ——0.02, co=0.0735, and bee=10 co. These parame-
ters, as well as the polarization, which is taken to be
parallel to the change in momentum q, are the same as in
Ref. 7. In these computations, summations over the
atomic states

~
k) were effected by assuming an average

energy of —", au. , and then applying closure, since this pro-
cedure has been shown to yield quite accurate results in
the case of a single mode field, and a chaotic field is the
resultant of an infinite number of uncorrelated modes. In
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FIG. 1. Double differential cross sections (a.u. ) for the
scattering of electrons of energy E; =0.02 a.u. from hydrogen at
an angle of 0.25' in a laser field polarized parallel to the change
in momentum. F.; —Ef is the change in the electron energy in
units of the photon energy flu=0. 0735 a.u. The bandwidth
6m=10 2~. The dashed curves refer to the undressed atom
(scale to the right).

5 1Q

Scat ter ing a ngle 8 («g I

FIG. 2. Differential cross sections {a.u. ) as a function of the
scattering angle, for various values of the change in projectile
energy Ef;. The scale to the left applies to the solid curves and
that to the right applies to the dashed curves. The latter
represent differential cross sections per unit bandwidth. The pa-
rameters are as in Fig. 1.
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Fig. 1 the dashed lines refer to the "undressed "atom, i.e.,
only the first tetany in the RHS of Eq. (23) is taken into ac-
count. Now, the results of Byron and Joachain shows
that the differential cross sections for 8 & 1' is higher for
the n =+1 process than for the n =0 process, because of
the dressing of the atom, whereas the peak at n =0 is
much higher than those at n =+1. However, the areas
under these peaks, which are well represented by Eq. (31),
exhibit the opposite behavior, as shown in Fig. 2 (solid
lines). Computations at smaller values of b,aI showed that
the peak height is inversely proportional to bclI (as one
would expect from the limiting form of H), so that the ra-
tio of the peak heights is unaltered.

As described in Ref. 5, for nonzero bandwidths, the
term 8 [Eq. (28)] gives rise to a new series of peaks in-

volving energy changes corresponding to the atomic tran-
sition energies, but with side bands at intervals of to. The
contribution to the differential cross section from these
resonance peaks can be written as

(35)

k/«) I ~pk I' -gn
ak =

5 e I„(Q/2), (36)
i llIkp

with (k/ ) =2(E;+cokp neo—). These results are obtainel
under the approximation of small lite and yq, so that Eq.
(30) may be used in Eq. (28). For hydrogen, since the
dominant contribution comes from the 2p state, the con-
tributions from the central peak (curve C) and the two
nearest side bands (curves D and E) are plotted against
the scattering angle in Fig. 2. As has already been dis-
cussed, the present calculations are for a Lorentzian laser
spectrum [implied by Eqs. (15) and (16)],and therefore, in
a mare realistic case where the spectrum has steeper
wings, Eqs. (34)—(36) would generally overestimate
dtr„/d Q.

d 0'l,

dQ

where

der, dt7,
+

dQ k dQ
(34)

APPENDIX A: EVALUATION

DF &A;(t, ) & AND &A;(t, ) &

We write &PFk(t2)) as

(PF (t )I=—l lim f dt, f dt e d"''
T eccl 2T

f2
k0 2 exp g~g g +jQ g g g

CCI Bx @=0
(Al)

On taking the ensemble average of the exponential and
perfarming the differentiation, the term within the square
brackets becomes

W (x)=f dte'"'J(
i
t

i )f e "'(t2 t')—
XL&(

i

t' ti
i
)dt', —

—QJ(it, —t, i)f, &E(t')W(u))du.

S1I1Ce

&E(t )~(u)) = ——,&~(t )~(u))
C

(A2)

Jll3(x)= f dte 'J(
i
t

i
) f, e

(A7)

1

c Bu
(A3)

XL~(
i

t' —ti
i

)dt' .

(AS)

After simple changes of variables, the above integrals
reduce to

2 If &E(t')W(u))du =—[L„(i
t' t, i ) —L.—„( i

t' t, i )] . —
C

Using (A2) and (A4) in (Al), we get

iQ
& PFk(t2) ) = [WI —W2(El@)—&3(E(/)]

C

(A4)
WI ——g( —cokp, oo )H (O,E;/),
W2(x) =y( —clltlp, co )H (o,x +cokp),

W (x)=2t lm f a~e ' J(t)y(~„,t)

(A9)

(A10)

(A11)

Wi ——f dte '~J(it i)f e
f

1(l(g, t)= f ~"eLz( )duut &0. (A12)

XL&( i
t' t, i

)dt', —

(A6)

On carrying out the integration in Eq. (A12), and neglect-
ing cu and her in comps@.son wIth cok0 in the denomina-
tors, %e get
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where

e"& a-"cos(~t —y) —cosct
,t =E (A13)

similar manner, with the result that

( PFk(tl }}— [~1 ~2( ~if } ~3( Elf }1

2+2
E=

2(Cd +h,Cd )
(A14)

(A15)

Using Eq. (A13) in Eq. (All), &3 can be expressed in
terms of H and G. This completes the evaluation of
(PFk(t2)}. (PFk(ti)} may be calculated in an exactly

APPENDIX 8: EVALUATION

OF (PFk{t2}F„{ti}}
As before, we first write

( PFk(t2)F„*(ti ) }
T iE,f(t& —t2 j 2, —icokO(t& —t')= —lim dt

&
dt2e dt'e

T~ co 2T —T OO

tt tSO(t~ t )

&( exp ix,E(t')+lx2E(t )
C)X i X2

+iQ A u u
Z) =Z2 —0

(81)

The terms in the square brackets reduce to
2E ANe

Cd~k[(td~O+Cd) + ~Cd ]
~Cd exp[(t Cdko Yk }t] n=k .

'Yk[~cd +(cdko+cd+i'Yk } ]

(86)

(87)

(82)

Substituting in Eq. (Bl), the contribution from the first
term in Eq. (82) may be calculated to be

28'o E,ft
S& —— dt J(t)[e 'f W(cd„o,cdko, cd, t)

0

—iEtf t+e ~( cdko —cd~o cd —t}]

The expression (87) is obtained taking due note of the
presence of Yk in the exact expression for go. lt is clear
that 4 can be significant only for n =k, and may be
neglected when &+k F«m Eqs. (83)—(87) we therefore
get (after the usual simplification of the denominators)

5'o H(Lcd, E,f +cd)+H(b, cd,E,f cd)—
SI ——

~kO nO

(83)
~Cd&kn

+ H(Yk Eif+cdko)
kOVk

(88)

W(cd„o„cdko, cd, t) =[&i(cd)+W](—cd)]/2,

exp[ (b cd+i cd}t]—
(cd„o+cd l Lcd)(cdk—o+ cd —l Lcd )

The contribution to Eq. (Bl) from the remaining part
of Eq. (82}may also be evaluated in a similar fashion, and
is given by

T&
—— (cos $)H (O,Ef ) 4(cosp)Re f— e ' cos(cdt $)J(t)dt+2 Ref —e ' cos (cdt p)J(t)dt-

kWno . 0 0

(89)

Since Eq. (89) is readily expressed in terms of H and 6, the evaluation of (PFk(t2)F„'(t, ) }=S,+T, is now complete.
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