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We compare the results of theoretical and experimental studies of a unidirectional, single-mode,
inhomogeneously broadened ring laser. We find reasonable qualitative agreement between the calcu-
lated and observed output pulsations under resonant and detuned operating conditions, and over a
fairly wide range of the pump parameter. With the help of homodyne and heterodyne power spec-
tra, we find that the periodic output field oscillations are usually asymmetric in the phase plane.
Over restricted regions of the control parameter space, on the other hand, both symmetric and
asymmetric pulsations are found, sometimes coexisting for the same parameter values. The power
spectra and temporal oscillations often resemble results from the Lorenz model for a single-mode

homogeneously broadened laser.

I. INTRODUCTION

Inhomogeneously broadened lasers are not often con-
sidered simple systems. Spectral holeburning and Doppler
effects are often considered sources of extraordinary com-
plexity. We find that, nevertheless, the inhomogeneously
broadened laser offers a dynamical system which can be
studied successfully theoretically by analytical and numer-
ical techniques.

Theoretical studies of the conceptually simpler system,
the homogeneously broadened ring lasers, have found
both instabilities and regular and chaotic pulsations.
These results were first found in studies by Oraevskii,
Uspenskii and co-workers,! extended by Haken,? Risken
and Nummedal,® and Graham and Haken,® and elaborat-
ed upon by several others in more recent times.* Howev-
er, attempts to observe these instabilities in laboratory sys-
tems have been limited, in part because of the stringent re-
quirements imposed on the laser parameters and perhaps
also because of the role of the transverse field variations®
whose dynamical significance is still very poorly under-
stood.

Experimental progress is being made, however. Klische
and Weiss® have recently reported the observation of un-
stable and chaotic behavior in a far-infrared NH; laser
with a narrow homogeneously broadened atomic profile
and high unsaturated gain; almost at the same time, Nar-
ducci and collaborators’ discovered the existence of stable
periodic solutions in a single-mode model of a homoge-
neously broadened laser. Their results offer additional
support to the claim® that the NHj-laser experiments
represent a close realization of the physical requirements
for the observation of single-mode instabilities in this type
of laser system.

In spite of the success of Weiss’s work, many other
homogeneously broadened single-mode lasers offer a puz-
zling array of pulsations. CO, and semiconductor lasers,
for example, display time-dependent forms of behavior
that cannot easily be explained by the available theoretical
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models. In addition, there are also unexplained pulsations
of some of the earliest homogeneously broadened laser
systems, e.g., the solid-state ruby and YAG lasers (where
YAG denotes yttrium aluminum garnet).

In contrast with results for homogeneously broadened
lasers, many effects in the inhomogeneously broadened
lasers seem more understandable. In 1973, Idiatulin and
Uspenskii® proposed a simplified theoretical model for in-
homogeneously broadened laser systems (using two groups
of atoms with different resonant frequencies) which
showed that even this approximate representation of inho-
mogeneous broadening dramatically altered the behavior
of laser instabilities. In particular, they showed that in
their model there was a marked reduction of the threshold
for the onset of pulsations, a feature also found in later,
more systematic investigations of inhomogeneous
broadening. Casperson’s discovery® of coherent pulsations
in a cw-excited, low-pressure xenon laser and his subse-
quent theoretical investigations’~!! stimulated a resur-
gence of interest in this area, opening the way to new and
significant experimental developments'>!? and putting the
existing models'* in the position to provide some guide-
lines for a systematic organization of the data.

The work on inhomogeneously broadened lasers
presented in this paper has both theoretical and experi-
mental components. It is carried out in the same spirit as
Casperson’s analysis in Ref. 10 and both corroborates and
complements many of his findings. Our theoretical stud-
ies are based on the plane-wave Maxwell-Bloch (MB)
equations for an inhomogeneously broadened, single-mode
ring laser. This is the same model that was studied by
Lugiato and collaborators!> in their analyses of the steady
state and their stability properties and by Bandy and colla-
borators!® in connection with the time-dependent
behavior. The experiments reported in this paper involve
a single-mode ring laser where the gas pressure can be
changed to adjust the degree of inhomogeneous broaden-
ing.

The aim of this work is to test the reliability of the
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plane-wave MB model by direct comparison of its numer-
ical predictions with observations of the output of a Xe-
He unidirectional ring laser. Previous studies of the
theoretical model have focused on the determination of
instability threshold conditions and on the observation of
time-dependent intensity pulsations and their correspond-
ing homodyne spectra. We now consider numerical re-
sults for parameter values that are consistent with the ex-
perimental conditions, and calculate the spectrum of the
electric field of the unstable laser by a heterodyne tech-
nique. Heterodyne spectroscopy has long been used exper-
imentally. Here we show that in addition to providing a
basis for systematic comparison of theory and experiment,
heterodyne spectra can remove ambiguities in the inter-
pretation of the Fourier transform of the intensity. The
intensity spectra (or homodyne spectra) cannot distinguish
between symmetry-breaking transitions and period-
doubling bifurcations. We also use phase-space portraits
for further clarification of these types of transitions.

In Sec. II we review the semiclassical MB equations for
the ring laser and summarize a few relevant facts on their
steady states and stability properties. In Sec. III we re-
view the Xe-He laser system and related instrumentation,
and provide a list of the relevant experimental parameters
and their theoretical counterparts. We present our experi-
mental data and the results of numerical simulations in
Sec. IV, and our conclusions and a discussion of the re-
sults in Sec. V.

II. A REVIEW OF THE MODEL

The laser is modeled as a collection of active two-level
systems in an unidirectional ring cavity that operates in a
single-mode configuration. The gain profile of the active
medium is inhomogeneously broadened with a Gaussian
distribution

g(®)=0275%) " 2exp(—52%/263) 2.1

around the center of the atomic transition, @ . The half
width at half maximum is V'21n26p; both the running
frequency variable 8 and & are scaled to y,, the half-
width of each homogeneously broadened atomic com-
ponent.

With reference to the carrier frequency w; of the laser,
the basic equations of motion for the slowly varying field
and atomic variables are'’

(d/dn)X (r)=—R{[1—i($/K)]X(T)
+2¢ [deg®P(3,n}, (22a)
(d/d7)P(8,7)=X(1)D(8,7)+[1+i(A+8)]P(8,7),
(2.2b)
(d/d7)D(8,7)= —F{ ($)[X*P(8,7)+XP*(5,7)]
+D(3,7)+1}, (2.2¢)

where @ is the offset between the laser carrier and the
empty cavity mode in units of y,; A is the displacement
of the center of the atomic line, (w4 —w;)/y,; and
7=v,/v. denotes the ratio of the population and polari-
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zation relaxation rates. The variables P(5,7) and D(8,7)
label the polarization and population difference, respec-
tively, of the atomic packet located at a frequency & from
the center of the gain line; X (7) denotes the slowly vary-
ing amplitude of the cavity field scaled to the square root
of the saturation intensity and 7 is equal to y,¢. Variables
and decay rates capped by a tilde are measured in units of
4%

For selected values of the cavity and atomic decay
rates, the excitation parameter C and the inhomogeneous
width G p, the state equation of the single-mode laser can
be single or multivalued and the stability of each steady
state can be analyzed as shown in Ref. 18. Usually, a
multivalued state equation develops only for relatively
large values of the detuning and high excitation. In our
present studies we will work in the single-valued domain.

The temporal evolution of the system could be calculat-
ed using as initial conditions either a slightly perturbed
stationary state or the long-term values of the variables
from a simulation corresponding to a slightly different
control parameter. Using the latter procedure and small
changes in one parameter we obtain a reasonable simula-
tion of the slow parameter scans that are used in many ex-
periments. In order to keep to a minimum the trivial time
evolution due to shifts in the optical carrier frequency,
each time the equations were restarted for new parameter
values, the carrier wave frequency was reset to the fre-
quency of the steady-state solution for those parameter
values. Nevertheless, the time-dependent solutions for the
slowly varying amplitudes often revealed additional fre-
quency shifts induced by the dynamical pulsations.

As a prelude to the analysis of time-dependent solu-
tions, we now review some relevant steady-state and linear
stability results. Figure 1 shows the modulus of the
steady state solution of the field, | X |, as a function of
the gain parameter C for resonant operations. The state
equation is independent of ¥ and is single valued for the
parameters used in these simulations. The eigenvalues of
the linear stability analysis depend on ¥. However, in the
experiments reported here, this parameter is held virtually
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FIG. 1. Steady-state modulus of the field amplitude | Xy |
for a Gaussian-broadened laser in resonance as a function of the
gain parameter C for 6p=3.72, K=4.67, and 7 =0.183.
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FIG. 2. Real part (solid line) and the imaginary part (dashed
line) of the two most unstable eigenvalues of the secular equa-
tion as functions of C for parameters used in Fig. 1.

constant by using the same pressure mixtures of gases.
Hence, in Fig. 2 we show only a typical result for the two
most unstable eigenvalues.

The first laser threshold, as shown in Fig. 1, occurs for
a value of the gain parameter C =1.82. The onset of un-
stable behavior occurs at C =2.36 as shown in Fig. 2.
This instability is a Hopf bifurcation as evidenced by the
finite imaginary parts of the eigenvalues whose real parts
vanish at the bifurcation threshold. The imaginary part
of these eigenvalues is a good estimator of the pulsation
frequency in the early stages of the evolution of the sys-
tem from the unstable steady state. This relation is more
exact if just above the instability threshold there are only
small amplitude limit cycles about the unstable steady
state. Often in practice it is also a good approximation
even well into the regime of large pulses.

III. EXPERIMENTAL CONFIGURATION

The He-Xe laser used in this experiment is shown
schematically in Fig. 3; it consists of two gas discharge
tubes of lengths 11 cm and 19 cm, respectively, filled with
known and controllable amounts of *6Xe (99% isotopic
purity) and He gases, and four reflectors, three of which
have 99% reflectivity, while the last has a reflectivity of
90%. The laser operates as an unidirectional device with
the help of two 45° Faraday rotators (FR) and two wire-
grid linear polarizers (P). The 2-mm-diameter discharge
tubes and their Brewster’s angle quartz windows along
with the range of currents and pressures selected suppress
all laser lines of the xenon gas except for the 3.51-um line.
The total cavity length of 0.753 m sets the spacing be-
tween successive empty-cavity longitudinal modes large
enough that only one mode at a time falls within the 100-
MHz Doppler-broadened gain profile of the active medi-
um for the range of excitations used. All of the various
losses in the cavity can be simulated by an effective reflec-
tivity parameter R =~0.372 corresponding to K~5.

The output signal from the laser is divided into two
parts. One part is chopped at a frequency of 500 Hz and
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FIG. 3. Setup of the optics and electrons for a unidirectional
ring laser: P, wire-grid polarizer; FR, Faraday rotator; A4, aper-
ture; F-InAs, high-speed photodiode; InAs, low-speed photo-

diode; C, chopper; L, quartz lens; IR, 3.5-um dielectric filter;
PZT, piezoelectric mirror translator.

MICROCOMPUTER

detected by a 1-mm-diameter InAs photodiode. The out-
put of the photodiode is fed into a lock-in amplifier for
the measurement of the average power output. The other
part of the output signal is mixed with a reference beam
from a single-frequency Fabry-Perot laser which is stabi-
lized through a separate feedback loop. (The stabilization
circuit involves a second modulated Fabry-Perot laser
which is stabilized to the peak of the gain of a reference
amplifier.) The resulting beat signal is focused by a
lens onto a 0.01-mm? reverse-biased InAs photodiode
whose high-speed response, within a range 1 kHz—100
MHz, allows the detection of both the intensity fluctua-
tions of the ring laser and the interlaser beat signals. The
output from the photodiode is amplified and sent to a fast
storage oscilloscope, for a display of the intensity pulsa-
tions, and to a radio-frequency spectrum analyzer that
shows simultaneously the homodyne spectrum of the out-
put intensity of the ring laser (at the low end of the fre-
quency scale) and the heterodyne spectrum of the inter-
laser beat frequencies (at the high-frequency end of the
100-MHz display). We have recorded the shapes of the
homodyne and heterodyne spectra and the position of the
relevant peaks as functions of the excitation current for a
fixed value of the cavity detuning. Similarly, we followed
the behavior of the spectral features for fixed values of the
current as the detuning was varied continuously.

IV. REVIEW OF DATA
AND THEORETICAL SIMULATIONS

We now examine the numerical results of the model us-
ing the values of the parameters appropriate to our experi-
ments which are listed in Table I. These results are ob-
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TABLE I. Values of the parameters to be used for theoretical
comparisons for the two experimental conditions studied.

Y1
Pressure (10% s—1) &p 4 7
1 Torr of He
172 mTorr of Xe 78.8+3.5 3.72+1.0 4.67 0.183
667 mTorr of He
175 mTorr of Xe 59.4+2.8 4.93+1.5 6.19 0.243

tained by numerical integration of Egs. (2.2) using a
fourth-order Runge-Kutta scheme and an extended
trapezoidal rule for the evaluation of the frequency in-
tegral. (For further information, see Ref. 15) A fast-
Fourier-transform routine decomposes the output intensi-
ty into its frequency components and calculates the asso-
ciated power spectrum. This technique, referred to as
homodyne spectral analysis, is a widely used diagnostic
tool for the observation of subharmonic bifurcations and
the appearance of incommensurate frequencies. A com-
mon difficulty of this method is its inability to distinguish
between symmetry-breaking transitions and period-
doubling bifurcations. In order to correct this problem we
simulate the heterodyne beating of the output field with a
reference source by superimposing the calculated field of
interest with a reference optical wave having a fixed am-
plitude and carrier frequency. The total calculated inten-
sity is Fourier analyzed using a fast-Fourier-transform
routine. The heterodyne spectra of the time-dependent
solutions show a clearer picture of the bifurcations. For a
complete description of this procedure, see Appendix B of
Ref. 19.

Figure 4 provides a summary of the dynamical
behavior of the system under resonant conditions by over-
laying the appropriate steady-state curve for the modulus
of the output field with a set of symbols and ranges denot-
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FIG. 4. Expanded region of the steady-state curve in Fig. 1.
A, asymmetric attractor; C’, chaotic attractor; S, symmetric
attractor; A&S, region of coexistence of both asymmetric and
symmetric attractors.
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FIG. 5. Projection of the phase-space trajectory in the

(ReX,ReX) plane, using C =2.3677... ( | Xs | =0.79) and the

governing parameters of Fig. 1. A strongly asymmetric attrac-
tor is revealed.

ing the different types of output oscillations. For values
of the gain just above the instability threshold, the laser
intensity shows weak oscillations about its mean value.
The heterodyne spectrum shows that there are weak side-
bands equally spaced about a strong spectral component
corresponding to a nonzero mean value at the steady-state
laser frequency. A solution of this type, characterized by
a strong average component, is called asymmetric because
of the asymmetry in its plot in the phase space ReX
versus ReX and is labeled by A in the figure. In this par-
ticular case, the small amplitude limit cycle indicates that
the initial instability develops as a supercritical (or for-
ward) Hopf bifurcation.

With increasing gain, the asymmetric pulsations be-
come stronger, corresponding to a larger limit cycle re-
vealed by a single large loop in the phase space, as shown
in Fig. 5. As the gain is further increased, the calculated
output field develops broadband spectral features with
some distinguishable peaks and eventually evolves into a
more fully chaotic solution (labeled C’ in Fig. 4). Within
the region labeled C’, we observe windows of symmetric,
period-1 solutions, first evidence that both symmetric and
asymmetric attractors are present in this system.

Upon increasing the gain further, the chaotic region is
followed by a region of weak asymmetric periodic solu-
tions of the type shown in Fig. 6. The nature of this
phase portrait is quite different from that of the charac-
teristic limit cycle near threshold and suggests that the
asymmetric features of the attractor are becoming weaker.
Evidence of this behavior is also offered by the initially
strong central component observed in the heterodyne
spectra that weakens upon emerging from the chaotic re-
gion and eventually disappears in a smooth transition to

0.8
ReX
-0.8 0
-20 Re X 2
FIG. 6. Projection of the phase-space trajectory in the
(ReX,ReX) plane, using C=2.56622... ( | X5 | =0.875) and

the governing parameters of Fig. 1. A weakly asymmetric at-
tractor is revealed.
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FIG. 7. Numerically obtained heterodyne power spectra with cavity tuned to resonance for parameters corresponding to pressure
conditions in Fig. 1. Spectra are shown as the excitation increases from (a) to (f). A unit on the horizontal axis corresponds to 37.6
MHZz and a unit on the vertical axis corresponds to 6.5 dB.
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FIG. 8. (a) Numerically generated time dependence of the electric field amplitude for C =2.57414. .. (| X, | =0.88) and parame-
ters used in Fig. 1. Example of an asymmetric solution in the region of coexisting attractors. (b) Heterodyne spectrum of the asym-
metric solution of (a). (c) Numerically generated time dependence of the electric field amplitude for C =2.57414. .. (| X | =0.88)
and parameters used in Fig. 1. Example of a symmetric solution in the region of coexisting attractors. (d) Heterodyne spectrum of
the symmetric solution of (c).
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the symmetric solution (labeled S in Fig. 4).

An important aspect of this gain scan (i.e., increasing
the gain from the second threshold to higher-gain values)
is that it was carried out adiabatically. During the return
adiabatic scan a reverse symmetry-breaking (transition
from symmetric to asymmetric) attractor is observed and
a small region of overlap between symmetric and asym-
metric solutions is identified. Figures 7(a)—7(b) show a
sequence of heterodyne spectra characteristic of each re-
gion of Fig. 4. Figures 8(a) and 8(b) and 8(c) and 8(d)
show typical time-dependent solutions and their respective
heterodyne spectra for the asymmetric and symmetric at-
tractors in the coexistence region. Note also in Fig. 8(b)
that the central frequency is very weak in support of the
notion that the asymmetric nature of the attractor “weak-
ens” during the smooth transition into the symmetric re-
gime.

The corresponding experimental results shown in Figs.
9(a)—9(f) for the conditions defining the numerical pa-
rameters in the previous discussion agree qualitatively
with the numerical data. A quantitative one-to-one
correspondence is difficult to assemble, but the sequence
involving the strong asymmetric solution, the chaotic re-
gime, and a regime where two-side frequencies are dom-
inant, a signature of the symmetric attractor, are strong
points of similarity between the numerical and experimen-
tal results. Thus, with due allowance for the complexities

of the numerical and experimental systems, we find
reasons to claim a fair agreement between the predictions
of the model and the experimental results. The kind of
details that are available from the model, of course, are
partially obscured in the experiments because of unavoid-
able noise and other limitations on the gain levels that
could be reached during our scans.

Off-resonance, both the numerical and experimental re-
sults show a greater tendency toward asymmetric patterns
and a broadening of the domain of the asymmetric attrac-
tor. We must adopt a more qualitative definition of sym-
metric and asymmetric attractors in this case. Away
from resonance, the symmetry with respect to @, is bro-
ken and it is unlikely that any solution will be truly sym-
metric in its spectrum or phase-space trajectory. Howev-
er, we can still identify the frequency of the steady-state
solution which is shifted now both by changes in gain
(part of the mode pulling effects in inhomogeneously
broadened lasers) and by the instabilities themselves.
With respect to this “central” frequency component, the
spectrum will be termed “asymmetric” if there is a notice-
able power at that frequency and will be termed “sym-
metric” if there is no noticeable power at that frequency
and instead there are two roughly symmetrically located
peaks in the spectrum, one on either side of the central
frequency.

Figure 10 shows the steady-state input intensity as a

FIG. 9. Experimentally obtained homodyne and heterodyne power spectra with the laser cavity tuned to the atomic resonance for
172 mTorr of xenon-136 and 1 Torr of helium. Spectra are shown as the excitation current increases from (a) to (f). Range of the
horizontal axis is from — 10 to 90 MHz. Unit on the vertical axis is 10 dB. The ratios of the values of the excitation current to the
value at threshold are 1.02, 1.52, 1.77, 1.89, 1.99, and 2.02, respectively. Since the Yaser turns off at current just above the threshold,
the threshold current is extrapolated from linear low-current region of the experimental plot of the average power vs the excitation

current.



3154 TARROJA, ABRAHAM, BANDY, AND NARDUCCI 34

function of the gain parameter C when the cavity fre-
quency is detuned by an amount (—;-)5 p. Here the asym-
metric solutions are more common in contrast with the re-
sults in the resonant scan. Other scans not shown here
have also shown a similar behavior. It should be noted
that the range of gain parameters in which chaos is a
predominant feature diminishes with increasing detuning,
suggesting a tendency for more orderly patterns. (This
propensity toward order was noted in earlier theoretical
studies of a detuned homogeneously broadened system, by
Zeghlache and Mandel.?’)

Figures 11(a)—11(d) show the changes observed experi-
mentally in a gain scan for a detuned case. In this figure
we see that the chaotic region is absent altogether and that
strong asymmetric pulsations dominate over a wide range
of the gain.

Figure 12 shows the dependence of the peak frequencies
of the heterodyne spectra found in numerical simulations
during an adiabatic scan in the direction of increasing
gain. The relative power associated with each frequency
component is indicated by the size of the point, larger
powers corresponding to larger points. The corresponding
variation of the steady-state operating frequency of the
laser is shown by a solid line. Near the instability thresh-
old the pulsations are of small amplitude, indicated by the
fact that the central peak in the pattern is the strongest.
The gain-dependent mode-pulling effect is enhanced by

(c)
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FIG. 10. Steady-state output intensity for an inhomogeneous-
ly broadened laser as a function of the gain parameter C for
6 .4c =2.465 and for the same parameters as in Fig. 1.

the instability for low gains (the main laser frequency is
closer to w, than for the corresponding steady state).
This can be understood because the mode pulling in an in-
homogeneously broadened laser is intensity dependent (as
shown by the steady-state curve). As the pulsing solutions
have large peak-intensity values and also have average in-

(d)

FIG. 11. Experimentally obtained homodyne and heterodyne power spectra with laser frequency detuned off-resonance by 5 MHz
for 172 mTorr of xenon-136 and 1 Torr of helium. Spectra are shown as the excitation current increases from (a) to (d) for the same
values of the parameters as in Fig. 1. Range of the horizontal axis is from — 10 to 90 MHz. Ratios of the values of the excitation
current to the value at threshold are 1.55, 1.90, 2.02, and 2.7, respectively.
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FIG. 12. Plot of the frequencies of the peaks in the numeri-
cally generated heterodyne spectra as a function of the gain pa-
rameter C for 8 =2.465 and the same values of other parame-
ters as in Figs. 10 and 1. For a fixed value of the gain, the
larger dots indicate stronger frequencies. Solid line indicates the
single frequency of the stable steady-state solutions and the
dashed line indicates the frequency of the unstable steady-state
solutions. Region in which broadband chaotic spectra were gen-
erally found is indicated. Several periodic windows found
within the chaotic region are noted by the details of their spec-
tra.

tensities which are larger than the intensity of the steady-
state solution, it is reasonable that the mode pulling
should be increased in the unstable region. However, in
the periodic window above C =4 it appears that the
center of symmetry of the spectrum is shifted further
away from 4. In general, the heterodyne spectra in the
detuned case are never symmetric about the largest peak
of the approximate center of the spectrum. Thus we are
unable to classify the attractors in any precise way as be-
ing symmetric or asymmetric in the phase-space plots be-
cause we cannot easily decide on a proper value of the car-
rier frequency before determining the slowly varying am-
plitudes to use in the plots. There are strong qualitative
similarities to the resonant case as we see that the instabil-
ities near threshold are similar to asymmetric attractors
while in the periodic windows the attractors are nearly
symmetric. Comparison of these features with the experi-
mental data shows again qualitative agreement over the
range of parameters explored in this study.

The good qualitative agreement of the numerical pre-
dictions and experimental results for the nonresonant
cases is best summarized with the help of Figs. 13(a) and
13(b). These figures show the dependence of the peaks in
the heterodyne spectra on the detuning under low-gain
conditions for the experimental and numerical work,
respectively. Both figures show that for large detunings
the laser is stable giving a single optical-frequency peak.
When the instability develops at large detunings the dom-
inant laser frequency persists and is joined by weak side-
bands. However, the initial dominant frequency weakens
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as the laser cavity is tuned into resonance and it becomes
comparable in strength to one of its original sidebands
which has been growing in strength. Further changes in
the detuning past resonance show increasing dominance of
the strengthened sideband over the original frequency.

The disagreement between our experimental and numer-
ical results is in both the pulsing frequency and in the de-
gree of mode pulling (the slope of the lines in the two
plots). As mode pulling is affected by both changes in the
gain and in the cavity losses we searched for combinations
which would give better agreement. The gain could be
raised slightly to achieve the same tuning range for the
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FIG. 13. (a) Plot of the experimental values of the peak fre-
quencies in the heterodyne spectrum as a function of detuning
for 175 mTorr of xenon and 667 mTorr of helium. Ratio of the
value of the excitation to the value at threshold is 2.10. (b) Plot
of the frequency peaks in the numerically generated heterodyne
spectrum as a function of the detuning from resonance for pa-
rameters corresponding to the pressure conditions in (a). Ratio
of the value of the excitation to the value at threshold at reso-
nance is 1.26. Solid line indicates the single frequency of the
stable steady-state solutions and the dashed line indicates the
frequency of the unstable steady-state solutions.
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laser. If the cavity loss rate K was raised, there would be
larger mode pulling. Such an increase could be justified if
there were additional losses in the laser which we had not
specifically included in our calculations of K. However,
we were not able to find combinations of C and K which
gave reasonably better results, suggesting that a more sub-
tle effect may be needed for a full explanation. The
differences may possibly be caused by the neglect of the
velocity-induced cross-relaxation effects or by the effects
of the transverse spatial dependence of the field amplitude
and the gain in the experimental system. These are
known to affect at least the steady states when they are in-
cluded in model calculations.'"?! Despite the quantitative
differences, the qualitative features of the optical spectra
are the same for both numerical and experimental detun-
ing scans.

V. DISCUSSION AND CONCLUSIONS

We have compared experimental results from an inho-
mogeneously broadened single-mode Xe-He ring laser to
calculations based on a MB model. We find reasonable
qualitative agreement in (1) the predicted transitions from
one unstable behavior to another, (2) the type of attractors
that govern the dynamics of the system, and (3) the rela-
tive strength of these attractors by using spectral hetero-
dyne techniques and phase-space portraits.

In the gain scans for the resonantly tuned case and for
small values of 7, we observe experimentally a strong
asymmetric attractor that becomes chaotic and eventually
becomes two strong sidebands with a greatly weakened
central frequency. This transition sequence is verified by
the model calculations. Some details of the model, how-
ever, are not observed experimentally. For example, the
existence of coexisting attractors, the smooth transition
from one attractor to another, and the periodic windows
of symmetric solutions within the chaotic regime have not
been observed. On the other hand, we have been able to
make contact with some of Casperson’s results'® which
show that the transition regions are characterized by dif-
ferent types of waveforms, that an initially stable period-1
oscillation near threshold is followed by regions of chaos,
and that narrow regions of periodic solutions exist within
the chaotic regions. Scans for increasing gain under de-
tuned conditions reveal that strong asymmetric solutions
are more likely to persist and that there is a reduction of
the role played by the dynamical chaos. Zeghlache and
Mandel®® reported a similar trend in their studies of a
homogeneously broadened single-mode ring-laser model.

Also, upon changing the detuning for a fixed low value
of the gain, theoretical and experimental results are found
to be in good qualitative agreement. The laser operation
for sufficiently large detuning is characterized by a strong
central-frequency component and weak sidebands; for
smaller values of the detuning, we have observed a weak-
ening of the strong central frequency and the emergence
of two symmetrically displaced peaks of approximately
equal strength. Also in this range we noted the emergence
of a weak central-frequency component between the two
dominant symmetric peaks. Decreasing the detuning past
resonance shows one of the two symmetric peaks fading

in strength and the other, a formerly weak sideband, now
growing in strength to dominate all other sidebands.

The detuning scan provides a more global qualitative
understanding of the behavior of this inhomogeneously
broadened single-mode ring laser. The domains of attrac-
tion of the symmetric and asymmetric solutions appear to
be sensitive to the value of the detuning in the vicinity of
resonance. The regions of chaos seem to be the result of
nonlinear interactions that culminate in the competition
between frequencies not clearly accessible to the system
until detuning is large enough. This is rather speculative,
but the idea that chaos is a result of the nonlinear interac-
tion between the tendency to pulse with a frequency and
waveform extrapolated from above the chaos region, and
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FIG. 14. (a) Phase-space portrait of ReX vs ImX for a de-
tuned laser with C=4.07507... (| Xy | =1.25), EAC=2.465,
K=6.19, and ¥=0.243. The gross pattern appears to rotate in
the plane. (b) Plot of the phase as a function of 7=yt of the
solution shown in the phase-space portrait in (a). General linear
trend indicates a frequency shift from the assumed reference
and the kinks indicate that the phase is an active dynamical
variable in the pulsations.



34 PERIODIC AND CHAOTIC OUTPUT PULSATIONS IN A . .. 3157

the tendency to pulse with an incommensurate frequency
and waveform extrapolated from below the chaos region,
was also conjectured by Casperson.'® Our results provide
further evidence in support of this idea.

Furthermore, the model considered here also shows that
instabilities for the detuned inhomogeneously broadened
laser involve dynamics of the phase of the field and polar-
ization as well as the amplitudes of the variables. This
can be seen by considering the behavior of the complex
field amplitude. The slowly varying complex amplitudes
of Egs. (2.2) have time-independent (constant) amplitudes
in the selected frequency reference frame (determined by
the frequency selected for the optical carrier wave) only
under resonantly tuned conditions. In the presence of de-
tuning, the laser actually operates away from the assumed
frequency of the carrier wave (the frequency of the
steady-state solution) giving all of the “slowly varying
amplitudes” a trivial oscillatory behavior at the frequency
difference. If there were only this trivial frequency shift,
we would conclude that the phase was not an important
dynamical variable. However, the time dependence of the
solution proves to be even more complicated.

A plot of a particular solution in the detuned case
shows this effect as the trajectory in the projected phase
space of ReX versus ImX seems to be a pattern that ro-
tates in time as shown in Fig. 14(a). The phase of the
field itself has a general linear trend in time, as shown in
Fig. 14(b), the slope of which represents the frequency
shift and the frequency of the rotation of the pattern in
Fig. 14(a). However, there are kinks in the plot of the
phase which are correlated with the intensity pulsations,
indicating that the instability in the detuned case involves
the phase in a dynamical way. In contrast, in the resonant
case we find that the phase is quiescent after an initial
evolution to an arbitrary value induced by the transient.
The phase fluctuations correspond to fluctuations in the
instantaneous frequency of the field. We can understand
this qualitatively in the inhomogeneously broadened case
because the degree of mode pulling of a steady-state solu-

tion (dispersion-induced frequency shifts) strongly de-
pends on the degree of saturation of the medium. In the
pulsed state there are pulsations in all of the coupled vari-
ables so that one cannot speak of an equilibrium disper-
sion, but it seems plausible that the fluctuations include
dispersion fluctuations that cause the pulsations in the
frequency of the laser operation.

Finally, we note some strong similarities between the
results of our study and similar analyses carried out on
the homogeneously broadened single-mode laser for small
values of 7.” These similarities are also found in the cor-
responding experiments.”? Most notable in all existing
studies on resonance is the tendency to evolve with strong
pumping toward strong symmetric attractors with charac-
teristic “bichromatic” spectra. Also, all cases show that
detuning tends to reduce the chaotic behavior. It is
surprising that homogeneously and inhomogeneously
broadened systems should display so many similarities
even though the instability thresholds are very different
and even though it has been suggested that there are dis-
tinctly different dynamical origins for the instabilities in
the two cases. Nevertheless, the preliminary evidence in-
dicates there are several common features associated with
unstable laser operation that are independent of the nature
of the type of broadening of the atomic resonance.
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