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%e perform an exact linear stability analysis of the Maxwell-Bloch equations for a unidirectional
ring laser. The model analyzed in this paper is based on the plane-wave assumption for the cavity
field, but it allows arbitrary values of all the other parameters for the cavity and for the active medi-
um. This problem had been solved previously only under exact resonance conditions, or in the
uniform™field (mean-field) limit, or after adiabatic elimination of the atomic polarization.

I. INTRODUCTION

The appearance of sustained spontaneous oscillations in
the solutions of the Maxwell-Bloch equations for a homo-
geneously broadened two-level system in a unidirectional
ring cavity is a well-established mathematical property of
this model. A large number of instabilities have been un-
covered in the case of active systems, such as the free-
running laser and the laser with an injected signal, and
passive systems such as optical bistability. '

A standard procedure in the search for unstable solu-
tions of a nonlinear set of dynamical equations is based on
the linear stability analysis of the stationary state. This
leads to a characteristic equation for the eigenvalues of
the linearized problem; if at least one eigenvalue has a
positive real part, the stationary state is unstable.

In the case of the Maxwell-Bloch equations, the linear-
ized problem is very complicated because of the infinite
number of degrees of freedom that are coupled by these
partial differential equations. So far, solutions have been
found only in a number of limiting cases. The first is the
uniform-field limit (also known, in current literature, as
the mean-field limit), corresponding to a situation in
which ctL «1, (1 R) «1, and t—he ratio aL/(1 Ill) is-
arbitrary; a is the unsaturated gain or absorption coeffi-
cient per unit length, L is the length of the atomic sample,
and 8 is the refiectivity coefficient of the mirrors. In this
limit, the cavity modes decouple from one another and the
characteristic equation can be solved by elementary nu-
merical methods. The second case corresponds to the
limit in which the atomic polarization can be eliminated
adiabatically and tllc systctll dcvclops lllstabllltlcs of thc
Ikeda type. The last requires exact resonance between
the cavity and the atomic medium or, for driven systems
between the cavity, the atoms and the injected external
field. '"

Unfortunately, as remarked, for example, in Ref. 4, the
method developed in the resonant case does not lend itself
to an obvious generalization in the presence of detuning
where most instabilities arise. Yet, deriving an analytic

solution of the linearized Maxwell-Bloch equations is an
obviously desirable aim for the purpose of arriving at a
unification of the unstable behaviors of the free-running
laser, optical bistability, and the laser with an injected sig-
nal.

In this paper we report the results of a study of the
linearized Maxwell-Bloch equations and show how one
can derive an exact characteristic equation that holds for
arbitrary values of ctL, R, and the detuning parameter,
and without adiabatic elimination of the polarization. On
the basis of this result, we can address the important issue
of the comparison between theory and experiments in
more precise terms than previously possible. Of course,
numerous attempts have already been made to rnatch the
predictions of the Maxwell-Bloch theory with some of the
observed instability phenomena. In the case of optical bi-
stability, this search has met with success, as evidenced,
especially, by the experiments of Ref. 11. In the case of
the laser, satisfactory results have been obtained with an
inhomogeneously broadened medium, ' and more recently
with homogeneously broadened active media, as well. '

There are examples of lasers, on the other hand, that
develop unstable behavior in the neighborhood of thresh-
old even under near-resonance conditions; this is especial-
ly evident in dye lasers, ' COl lasers, and most solid-state
lasers (ruby, semiconductor lasers, etc.), in contrast with
the theoretical predictions which place the threshold for
self-pulsing at a much higher level than is necessary for
ordinary laser action. ' ' This sharp discrepancy between
theory and experiments may be traced to a number of pos-
sible causes.

(i) The Maxwell-Bloch model imposes stringent require-
ments that are usually difficult to meet in laboratory prac-
tice; an especially obvious constraint is the assumption
that the cavity field can be described with sufficient accu-
racy by a plane wave, and that the population inversion
produced by the pump is uniform both longitudinally and
radially.

(ii) The available mathematical procedures that probe
the stability of the Maxwell-Bloch equations are usually
accompanied by additional constraints, such as, for exam-
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pie, the uniform-field approximation, in an attempt to
simplify the analytic and numerical labor.

In this paper we remove the uniform-field approxima-
tion when dealing with the linearized plane-wave model,
and allow for possible longitudinal variations of the pump
parameter, as one finds, for example, in the experiments
discussed in Ref. 13. On the other hand, our contribution
will not address the important issue of transverse effects.
In Sec. II we formulate the linearized analysis of the
Maxwell-Bloch equations for the free running laser, and
in Sec. III we show that this analysis leads to a standard
hypergeometric equation. After imposing the appropriate
boundary conditions, in So:. IV we arrive at the required
characteristic equation. In Sec. V we extend our analysis
to the cases of optical bistability and the laser with an in-
jected signal. The concluding remarks in Sec. VI general-
ize our earlier description of optical instabilities in terms
of gain and dispersion functions.

II. LINEARIZED ANALYSIS
OF THE MAXWELL-BLOCH EQUATIONS

d .LoW„=i P „—a(z) H„,
dZ C

O=P „&„—(1+i6)H„,
0= —,

' (W,*,a„+W„W,',)+u„+1 .

The detuning parameter 5 is defined as

4 =5gc —&0/yi .

The steady-state atomic variables are given by

(2.4a)

(2.4b)

(2.4c)

(2.5)

9'„(z)=—

&„(z)=—

P „(z)(1—ih)

I+I, + ~P„(z) (

1+5
1+6, '+ ~W„(z) ~'

(2.6a)

(2.6b)

while P „(z) is the solution of Eq. (2.4a) with 9'„(z) given
by Eq. {2.6a) and subject to the boundary condition

where 5' is the frequency offset between the operating
laser frequency and the reference cavity mode, and W„(z),
H„(z), and &„(z)are solutions of the equations

A. Description of the model P „{0)=RE „(L)exp[i5ai(W —L)/c] . (2.7)

BM 1 BP = —a(z)H,
Bz c Bt

(2.1a)

The evolution of a traveling-wave field interacting with

a homogeneously broadened laser medium in a unidirec-

tional ring cavity is described by the well-known
Maxwell-Bloch equations in the plane-wave approxima-
tion pi~(L)—:

~

P „(L)
~

= [aL +(I+6,j )lnR],
1 —8 (2.8)

As shown, for example, in Ref. 17 the jth stationary
solution for the output intensity is given by
{j=0, +1,+2, . . . )

=y„[~N —(1+i5gc)H], (2.1b) 4c—j&i
1+@

(2.9a)

= —y(([ —,
' (P 'H+P 9")+&+I], (2.1c)

for the complex field envelope a (z, t), the atomic polari-
zation envelope 9'(z, t), and the population difference
S'(z, &); 5gc =(cog —ct)c )/yi is thc scaled dctlliililg be-

tween the atomic transition frequency and one of the cavi-

ty modes selected as a reference, and yi and y ~~
are the re-

laxation rates of the polarization and the population
difference, respectively. The quantity a(z) represents the

small-signal gain per unit length, which is allowed to vary

along the longitudinal direction. Equations (2.1) must be

supplemented by the boundary condition

"4c+Jcii'yi
COJ =

Pj +K
(2.9b)

The parameter a is defined as the space average of a(z)

Q= ZAZ
0

(2.9c)

ai is the intermode spacing in units of yi and
x=c

~
lnR

~
/Wyi is the scaled cavity damping rate.

The frequency offset of the operating laser line is given by

~(0, i)= RW(,Lt b,t), — (22) C. Linearized equations

where ht =(W L)/c, W is t—he length of the ring reso-

nator, and L is the length of the active medium.
In this section we begin our analysis of the linearized

laser equations. First, we define the fluctuation variables
KF'(z, t),59'(z, t),5&(z, t) according to the equations

B. Stationary state

The Maxwell-Bloch equations (2.1) are consistent, in
general, with a multiplicity of steady states of the form'

W(z, r) =[a„(z)+5M(z,r)]e

H {z, r) =[H„(z)+5%(z,r) ]e

&(z,r) =&„(z)+5&( , )z. r

(2.10a)

(2.10b)

(2.10c)
P (z, r) =w „(z)e

H(z, t) =H„(z)e

&(z, r) =&„(z),
(2.3b)

(2.3c)
1 8 . 5co5P + 5W =i 5W———a(z)5%,

Bz c Bt c

(2.3a)
The resulting fluctuation equations are

(2.11a)
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—5&=ye[A «5&+&«KF' —(1+ib )5%], (2.111)

Bt
-5&= —y~([ —,

' (9;*,5%+H«SP *+c.c.)+5&] .

(2.11c)

Two additional equations for 5W' and 59" follow from
Eqs. (2.11a) and (2.111) after complex conjugation. The
procedure adopted in this work for the study of the linear-
ized equations follows the usual procedure of linear stabil-
ity analysis. We seek solutions of the form

f
5~4'

(2.12)

5+4l

5& d

where f,f', etc. , are solutions of the equations

Bf/Bz+1/c(A, i—5to)f = —a(z)p,

af'/az+ I/c(a+i )f = —a(z)p',

(X+1+iX}p—a „d =&,J',
(A, +1 id, )p—' —~ «d =&,J',
(A, +y)d = ——,

' y(P,'y+ O',J'+c.c.),

(2.13a)

(2.13b)

(2.13c)

(2.13d)

(2.13e)

p =Ti(A, , b, )f+T2(A, ,A)f',

p =Tz(A, ,E)f+Ti (A, ,b)f',
(2.14a)

(2.14b)

and where y=y~~/yi and X=A/yi. The atomic equa-
tions (2.13c)—(2.13e) form a system of algebraic equations
that can be solved at once with the result

Ti(iL, b, )=—
(1+3,'+

~
W„~ ') (2.15a)

f(z) = exp[i 8„(z)][5p(z)+i58(z)) . (2.20)
2

1 p ~si
T2(A, ,E)=—

2 X+@ (1+3'+ (P;, ~')

X
(A, +2)(1—ib, )

(X+1)'+E'+
~
W„~ '(X+1)

A, +y

It is now a simple, but lengthy matter to derive the space-
dependent equations for 5p(z) and 58(z} from Eqs. (2.20)
and (2.16). The result is

5p+ —5p=g (I,+1) 1+62— y p2, 5pdz c g+y

(2.151)
Next, we substitute p and p', given by Eqs. (2.14), on the
right-hand side of Eqs. (2.13a) and (2.131), and obtain the
field fluctuation equations

df /dz+1/c (I, i5co)f= —a(—z)(Tif+Tzf'), (2.16a)

df /dz+I/c(A, +i5co)f = —a(z)(T2f+Ti f ) .

(2.16b)

Probably the easiest way to proceed at this point is to
introduce the polar representation

—EA, (A, +2)58

=Q 5(A, +2) A, + p„5pi+7 ".
+ (1+6,2)(X+I)+ y pzt 58,

A, +y

where

(2.21a)

(2.211)

P (z, t) =W„(z)+5%(z, t)

= [p„(z)+5p(z, t)] exp[i8«(z)+58(z, t)] .

To first order in the fluctuation variables, we have

5P (z, t) = exp[i8„(z)][5p(z,t)+ip„(z)58(z, t)]

= exp[i8«(z)][5p(z}+i58(z)]e ',
where we have set

(2.17)

(2.18)

a(z) 1

1+6,z+P" (&+I)'+~'+ y
p,',(2+1)~+7'" +

III. SOLUTION OF THE LINEARIZED
EQUATIONS

(2.21c)

5p(z, t) =5P(z)e ',
p„(z)58(z, t) =p„(z)58(z)e '=58(z)e"' .

(2.19a)

(2.19b}

Thus the required polar representation of the field «c-
tuation variables is

Equations (2.21) are linear equations. They are compli-
cated to solve because of the implicit dependence of the
steady-state intensity p„on the longitudinal coordinate.
This problem can be overcome with an extension of the
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5p(z) =r (z) exp( —11z/c),

58(z) =s (z) exp( —Az/c), (3.1b)

technique used in Refs. 9 and 10. First we introduce the
new dependent variables r(z) and s(z) according to the
equations

di ——ai, d2 ——y/(X+y) . (3.9e)

A remarkable feature of Eqs. (3.7) is that it leads to a
decoupled second-order differential equation for r (x) that
can be solved analytically in closed form. After deriving
the appropriate solution for r(x), the second function
s (x}can be obtained as follows:

with the result s (x)=1/bi [2XPdr/dx —(a, +azx)r (x)] . (3.10)
T

r(z)=Q (X+1) I+6 — p„r(z)
A+X ".

—hA, (A, +2)s (z) (3.2a)

After some elementary calculations, the second-order dif-
ferential equation for r (x) takes the form

hix+h2 dr l, x +12x +13
2+ + r(x) =0,

dx x (pi +p2X) dx [x (pi +p2X)]

(3.11)

s(z)=Q b,(k+2) I,+ p„r(z)
X+y

"

+ ( I+6 )(1L + I )+ p„s (z)
11 +y

(3.2b)

Next we change the independent variable from z to

x =p„(z) . (3.3)

This transformation can be accomplished trivially using
the chain rule of differentiation F.or this purpose we
need to construct the quantity dx/dz which can be ob-
tained using Eqs. (2.4a) and (2.6a) after transforming the
steady-state-field amplitude into polar form

where

SA, +4
1 Yy-

A+y

h, =X(A, +1—b, 2),

11—— (11,+ 1)(2A,+ 1),
X+y

12 ——— [(A, + 1)(2A, +3k, +2)
4 X+y

+Z '(X'+3X'+5X+2)],

13 ———,
'
[(1+8 ')'(X+1)2+5 2X 2(X+2)2] .

(3.12a}

(3.12b}

(3.12c)

(3.12d)

(3.12e)

P „(z}=p„(z)exp[i8„(z)] . (3.4)

In fact, the steady-state-field equation for the modulus of
W„(z}is C=P2X/(P2X +P i ) (3.13)

Equation (3.11) can be recognized as the Riemann equa-
tion. With the further change of independent variable

so that

~(z)p„(z)
p„(z)=

1+& '+p,'1(z)

the regular singular points of Eq. (3.11)

X=0, X=—pi/p2, x=oo

can be mapped into the canonical singular points

(3.14a)

d 2 x (z)x = p„=2a(z)
dz dz 1++2+x(z)

The transformed version of Eqs. (3.2) is

r 1
[(a1+a2x)r (x)+his (x)],

dx 2xP

d$1
dx 2xP

[(ci+c2x)r(x)+(d1+dix)s (x)],

(3 6)

(3.7a)

/=0, g= oo, g= I,
respectively. Thus, Eqs. (3.11}takes the form

t 1 g+ t2 dr t3$ +t4(+ ts

N I-k) dk [g(I-g)]'

(3.14b)

(3.15)

P(x) =P 1+P2x

pi ——(A, +1) +6, p2 ——y(A, + I)/(A, +y),
a1 ——(1+6 )(11,+1), a2 ———p2,
b, = —aX(X+2),

c1 —— b„c2——Ay(X+—2)/(&+ y),

(3.8)

(3.9a)

(3.9b)

(3.9c)

(3.9d)

(h ipi h 2P2 2p ip2 )/p ip2

t2=~2~S i

t3 (llP1 12P1P2+ 3P2}/(P1P2)

t4 (12P1p2 213p2 )/(p 1p2 )

t3=13/pi .2

(3.16a)

(3.16b)

(3.16c)

(3.16d)

(3.16e)

Equation (3.15) can be reduced to a standard hyper-
geometric equation whose linearly independent solutions
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(3.17a)

(3.17b}

r, (g) =P(I g—)t'F{u,b;c;g),

r, (g) =p(I g—)t'g' '+-(~ —c+ l,b —c+1;2—c;0»

= exp(A. t)f(z) so that the space-dependent part of the
fluctuation variable must satisfy the relation

f(0)=Rf (L)exp[ —A(W L—)/c]exp[i5co(W L—)/c] .

{4.2)
where ct is either one of the two roots

ct+ =[(g+ I )(I+b, 2)+ hA (A +2)]/[(&+ I ) +~ ] ~

and P is either

P+ ——,
' (2%+1)/(2+1)

2

(3.18a)

On the other hand, according to Eq. (2.20), the function

f(z) and the fiuctuation variables 5P(z) and 58(z) are re-
lated by

f (z) = exp[i8„(z)][5p(z)+i58(z)] . (4.3)

It follows that the polar representation of the boundary
condition takes the form

5p(0)+i58(0)

=8 exp[ A(W L—)/c][5p—(L)+i58(L)], (4.4)

With the selections a =a+ and p= p the parameters of
the hypergeometric function take the form

a = —,
' (%+2)(X+1+3'+iXE)/[{X+I)'+b '],

or, in terms of r(z) and s(z)

r(0)+is (0)=8 exp( A&—/c)[r (L)+ is (L)] . (4.5)

The boundary condition for f'(z) leads to
3.19a

b =
2 (A, +2)[ Ab, /(A+ I—)+ill]/[(A+1) +lb ], r(0) is (0—) =R exp( AW/c)[—r(L) is (L)],— (4.6)

c =1+iiX(X+2)/[(X+1) +E ] .

Thus the required solutions of Eqs. (3.2) are

r (x)=E&4&(x,l, )+E2@z(x,A, ),
s(x) =K~V~(x, A, )+Kz+z(x, A},

(3.19b)

(3.19c}

(3.20a)

(3.20b)

so that, after proper addition and subtraction of Eqs. (4.5)
and (4.6), we arrive at the required constraints for the
functions r(z) and s(z)

r(0)=R exp( A, W/c)r(L—), (4.7a)

s (0)=8 exp( —AW/c)s (L), (4.7b)

With the help of Eqs. (3.20a) and (3.20b) these boundary
conditions can also be put into the form

where 4;(x,X) and 0'&(x, A, ) (i =1,2) are combinations of
hypergeometric functions whose exphcit form is given in

the Appendix.

IV. BOUNDARY CONDITIONS
AND THE CHARACTERISTIC EQUATION

The boundary condition (2.2) for the cavity field im-

plies the following constraint for the field fluctuation
variable 5P:

E)4)(p„(0),A, )+Ez@2(p„{0},X)

=R exp( —AW/c)[E, 4&(p2t(L), X)

+K2@2(p,'t(L ),A, )],
E)%')(pst(0), A, )+E24'z(p„(0),A, )

=8 exp( —AW/c)[E, +,(p„(L),k)

+K2+2(p„(L),A, )] .

(4.8a)

(4.8b)

5P (O, t) =R5P (O, t —(W —L)/c)exp[i&0(W —L)/c] .

(4.1)

According to Eq. (2.12), we have set 5P (z, t)
I

[Q&0—g exp( —A,W/c)4U. ][0'zo—8 exp( —A, W/c)%'2L, ]

Equations (4.8) form a system of two homogeneous linear
equations for the weighting factors E& and E2 which al-
lows nontrivial solutions if and only if the determinant of
the coefficients vanishes identically. This solvability con-
dition which takes the form

—[ezo—8 exp( —AW/c)ezL ][4]0—8 exp( —AW/c)e]L, ]=0, (4 9)

provides the required characteristic equation for the
eigenvalues of the hnearized problem. The symbols 4&o,

etc., are shorthand notations for 4~(p„{0),A, ),
@&(p„(L),X), etc., where the input and output steady-state
intensity are given by [see Eqs. (2.8) and (2.9)]

pj(0) =R pi~{L), (4.10a)

p,'(L) =2/(1 —8')[aL +(1+6,')lm], (4.10b)

b,j- =(5„c—ja~)/(1+inc, j=0, +1,+2„.. . (4.10c)

V. GENERALIZATION TO EXTERNALLY
DRIVEN SYSTEMS

In the preceding sections ~e have discussed the case of
the free-running laser. This analysis can be generalized
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aw 1 aw
az c at

(5.1a)

=yi [P&—(1+id )9'],

= —
y(~[ —,'(P 'H+WH')+&+1],

(5.1b)

(5.1c}

without difficulty to include the laser with an injected sig-

nal and optical bistability. In both cases, a coherent exter-

nal field with a carrier frequency coo is injected into the

cavity. While for a free-running laser we have chosen the

frequency of a selected cavity mode as the carrier frequen-

cy of the cavity field, in the case of driven systems it is
more convenient to select coo as the reference carrier fre-

quency. Thus, the Maxme11-Bloch equations take the
orm

where F is the normalized amplitude of the input field, 50
is the cavity detuning parameter

toe —coo
50 ——

c/W (5 4)

and cue is the cavity frequency that lies nearest to coo. The
steady-state solutions are given by Eqs. (2.3) with 5' =0.
A detailed description of the stationary solutions of Eqs.
(5.1) for optical bistability and the laser with injected sig-
nal can be found in Refs. 3 and 18, respectively.

The linear stability analysis can be carried out in an en-
tirely similar way as done for the free-running laser, and
leads again to the same equations (3.7). Here, of course,
we must use the definition of b, given by Eq. (5.2). The
boundary conditions for r(z) and s(z) instead are more
complicated. They take the form

where b, is the atomic detuning parameter

~ =(~~ ~0)/ri (5.2)

r (0)=Re " ~'[ cos(g)r (L}—sin(g)s (L)],
s (0)=Re '[sin(g)r (L)—cos(g)s (L)],

(s.sa)

(5.5b)

and, in the case of optical bistability, a(z) is (usually) con-

stant and negative, i.e., —a represents the unsaturated

field absorption coefficient per unit length. The boundary

condition is (=8„(L)—8„(0)—50 .

P (0, r) =(1—R) Y+Re 'P (L, t br), — (5.3) Hence, the characteristic equation takes the form

t @io Re —" '[cos(g)@iL, —sin(g)%'iL, ]] I qlzo Re — '[sin(g)4&L —cos(g)'@2L, ] j

—I@20—Re '[cos(g)4zL —sin(g)+zL ]I I+io—Re " '[sin(g)@iL, —cos(g)+iL]j =0 . (57)

Note that Eq. (4.9) is a special case of Eq. (5.7) obtained
by setting (=0 and interpreting the detuning parameter 3
according to Eq (2.9a)..

VI. DISCUSSION AND CONCLUSIONS

A+ „—— i a„——~—(c/Wy, )in'}+(X+ „)
n =0, +1,+2, . . . , (6.4)

where ~ is the cavity linewidth in units of yi

With the parameters of the hypergeometric functions
derived in Sec. III, Eq. (4.9) or (5.7) can be solved numeri-
cally for the unknown eigenvalues A, . A possible strategy
is as follows. Let

ri =R exp( —A,W /c),

~1 @1L+2L @2L+1L

~2 —@20+1L+@2L+10 +10+2L

~3=C'10+20—C'20+10

(6.1a)

(6.1b)

(6.1c)

(6.1d}

and write Eq. (4.9) or (5.7) in the form of the quadratic
equation

8'1q +g2q+g3 —0

whose solutions are

(6.2)

—8'2+( Wz —48'i 8'i )'
=Re +-. (6.3)

1

An alternative implicit form of the eigenvalue equation
follows directly from Eq. (6.3):

cflnR [

~ri (6.5)

The index n labels the different cavity resonances, with

n =0 corresponding to the resonant mode (usually the
cavity mode that lies nearest the center of the atomic line),
and

a„=2m.cn /Wyi . (6.6)

In our numerical investigations ave have adopted a
graphical technique for calculating the roots of Eq. (6.4)
which is, of course, equivalent to two real equations of the
form Re[F(}t.)]=0 and Im[F(A, )]=0. The technique is
based on the selection of an initial guess for the unknown

variable Re(A, + „), followed by the graphical display of
the two curves Re[F(X)] and Im[F(X)] as functions of
Im(}(,+ „) over an appropriate range. The objective is to
force Re[F(A, )] and Im[F(A, )] to cross the horizontal
Im(X+ „) axis in the same place in order to insure that
both Re[F(A, )] and Im[F(X)] will vanish simultaneously.
This is easily accomplished in a few manual iterations by
varying the initial guess Re(A, + „), practically to any re-
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quired level of accuracy. As a test of the correctness of
the numerical construction, we have reconstructed the ex-
act eigenvalues of the resonant Maxwell-Bloch equations
which had been calculated in an entirely different
way. ' ' A survey of the stability properties of the exact
Maxwell-Bloch problem shows that even away from the
uniform-field limit, laser instabilities develop only at
much higher pumping levels than are needed to produce
laser action, so that no major differences, except for quan-
titative details, have become apparent relative to the re-
sults discussed previously in Refs. 10 and 17. Thus, as
anticipated in the Introduction, the results of the recent
investigations of the plane-wave Maxwell-Bloch equations
can be interpreted as a strong indication that realistically
low thresholds for unstable behaviors may well require ad-
ditional physical inputs, or the removal of some of the
traditional assumptions (e.g., the plane-wave approxima-
tion).

An interesting aspect of our analysis is that as a conse-
quence of Eq. (3.3), the gain parameter a(z) disappears
from the linearized equations [see Eqs. (3.7)]. Thus, on
the basis of Eq. (2.8), we see that the gain parameter u(z)
influences the stationary solutions and their stability only
by way of its space average a defined by Eq. (2.9c). This
implies that a longitudinal space variation in the gain does
not change the qualitative structure of the results obtained
in the case of a uniform gain, with respect to the station-
ary behavior and the emergence of instabilities.

As a final point, we generalize the description of optical
instabilities in terms of gain and dispersion functions„ for-
mulated in Ref. 7 under uniform-field conditions. For
this purpose, we focus on the boundary of the instabihty
domain in the space of the parameters. This is defined by
the condition ReX=0, i.e.,

~+,n=iv+, n ~

with v+ „real. If we substitute the ansatz (6.7) into Eq.
(6A) and equate the real and imaginary parts separately,
we obtain two equations of the type

(6.8a)

(6.8b)

and the dispersion functions M~ ~ are given by

&~(v) = Im[lni1 ~(i v)]/1nR . (6.9b)
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APPENDIX

The plus or minus signs must be selected concurrently in
Eqs. (6.8a) and (6.8b). The stability boundary in the space
of the system parameters can be constructed from Eqs.
(6.7) with the following procedure. For the sake of con-
creteness, we fix the values of all the parameters except
for one, which we denote by the symbol 5, and search for
the value of 5 that lies on the stability boundary. Also,
for definiteness, we consider the positive sign option in
Eqs. (6.8a) and (6.8b). For a chosen value of 5, we can
solve Eq. (6.8b) graphically with respect to v by seeking
the intersects of the curve &+ with the set of parallel
equispaced straight lines (v+a„)/x. . Let v(5) denote a
solution; if the value of 9+(v(5)) is exactly equal to uni-

ty, the selected value of 5 lies on the stability boundary.
If this is not the case, one gradually varies 5 until the con-
dition 9'~(v) =1 is satisfied. This can be done in a few
iterations within any prescribed accuracy.

The functions 9+ are even with respect to v, while the
functions &+ are odd. Thus, if v is a solution of Eq.
(6.8b) for n =n, also —v is a solution of the same equa-
tion for n = n No—te .that if we consider the resonant
mode u„=O, the corresponding solutions of Eq. (6.8b) for
vy 0 requires that &+(v) be positive. If we consider also
the nonresonant modes a„&0, solutions of Eq. (6.8b) for
v & 0 exist also when &~(v) is negative.

where the gain functions 9'+ are defined by

9~(v) =Re[lnrl ~(& v)]/InR, (6.9a)

In this Appendix we list the explicit expressions of the
functions 4;(x,A, ) and 4;(x,A, ) with i =1,2 to complete
the discussion of Sec. IV. These functions are given by

4i(x, A, ) =

p2X

p2X +p&

p2X +p&

p2X +pi
' a+].—g

p2X +p)

p2X
a, b;c;

p2X +p]
P

a —c+1,b —c+1;2—c; p2X

p2X +p]

(A 1)

(A2)

, CX 13
'

P2 Pl
p2X +p) p2X +p]

p2Xah;c;
p2X +p]

2p& a p
p2X

b] p2x p]

Q] +a2x
b]

2P rP2x ab+
b, (P2x +P & ) c

p2X
a +1,b+1;c+1;

p2X +p]
(A3)
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a —c+1

s~~+s i

PpX
X I' a —c+1,b —c+1;2—c;

pgx +p)

Q ) +apX

b(

&P iP&x (a —c + 1)(b —c +1) PpX+ I' a —c +2,b —c +2;3—e;
b&(P&x +P& ) 2 —g Ppx +P )

The relevant symbols are defined in Sec. III and F(a,b;c;z) denotes the usual hypergeometric function.
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