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Periodicity windows in a dynamical system with a delayed feedback
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The problem of periodicity windows appearing within the chaotic domain of the hybrid bistable
device is considered. New results concerning the frequency-locked waveforms are presented in rela-
tion to their stability and their long-lived transients. %e also present numerical and experimental
results concerning new periodicity windows for a small range of values of the delay (1&~D ~7).
These waveforms appear to be the continuous-time counterparts of the discrete cycles predicted by
the one-dimensional model.

I. INTRODUCTION

Among the nonlinear dynamical systems showing tran-
sitions between periodic and aperiodic behaviors when a
single control parameter is varied, the hybrid bistable de-
vice is particularly interesting because of its experimental
simplicity and good agreement with the numerical solu-
tion of the differential difference equation (DDE) describ-
ing it. Moreover, such a system displays a very rich spec-
trum of dynamical behaviors including the usual period-
doubling sequence and other types of first- and second-
order transitions between periodic and chaotic waveforms.

The first experimental observation of bifurcations and
chaos in a hybrid bistable device was made by Gibbs,
Ho f, and collaborators, following a prediction by Ike-
da. The experiment was performed with an electro-optic
modulator and for a large value of the delay vii (in com-
parison to the response time r} so that the period-doubling
sequence was well described by a simple difference-
equation model. However, they did not observe the
periodicity windows predicted by the discrete-map model"
to appear inside the chaotic domain. Instead of these
well-known periodic cycles, Hopf er al. discovered
what they called frequency-locked oscillations. These
frequency-locked waveforms were also observed in an
acousto-optic bistable device but no observation of
periodic cycles arising from the discrete mapping inside
the chaotic region has been reported up to now, neither in
the electro-optic nor in any other hybrid bistable devices.

This paper concerns these two different types of period-
icity windows appearing within the chaotic domain for
the hybrid bistable device. New numerical results about
the frequency-locked (FL) wav cform s will first be
brought. Indeed, in a previous numerical analysis the ex-
istence of domains of several harmonic solutions in the
parameter plane (p, ,rD) was shown. However, it was not
clear from that analysis if the stable FL waveforms ob-
served experimentally were also numerically stable
(without any chaotic component). In this paper we show
that the FL waveforms are numerically stable for some
specific regions in the plane (p, ~z). We also report the
observation of the periodic cycles within the chaotic
domain which have not been observed before. These cy-

cles which are the continuous-time counterpart of the
discrete-time periodic cycles arising from the one-
dimensional mapping were found for a narrow range of
values of the time delay ~D.

Throughout this paper our description and interpreta-
tion of the various waveforms is based on the linearized
model recently applied to the hybrid bistable device by
Gao et al. The reader is therefore referred to Refs. 7
and 8 for more details about this approach. Also the ex-
perimental and numerical results are presented in parallel
in order to stress the very good agreement between them.
The paper is organized as follows. Section II will be de-
voted to a brief description of the experimental device and
of numerical analysis details. In Sec. III the problem of
the FL waveforms will be treated. Section IV concerns
the description and analysis of new cycles of multiple
periods occurring within the chaotic domain.

II. EXPERIMENT AND NUMERICAL ANALYSIS

A detailed description of our device using an acousto-
optic modulator as nonlinear element can be found in Ref.
5. In the present experiment an external delay was added
in the feedback loop using coaxial cable and/or optical
fiber of different lengths. Particular attention was paid to
the intrinsic noise level of the device in order to reduce it
to its minimum value. Indeed, noise appears to be one of
the main causes of the nonobservation of small periodicity
windows within the chaotic domain in the previous exper-
iments.

The time evolution of the output of the acousto-optic
bistable device is well described by the following DDE:

rX(t}+X(t)=sr(A —p sin [X(t rD ) —Xs] I . —

This equation can only be solved numerically and a
Runge-Kutta algorithm of second-order is particularly
suitable for that. We solved Eq. (1) keeping the parame-
ters A and Xs fixed at 0.35 and 0.567, respectively, in or-
der to fit the experimental values. The two remaining pa-
rameters p and ~D therefore define the parameter plane
over which steady-state solutions of (1) were searched for.
In order to get rid of the long-lived transients we discard-
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ed the first 25 000 computation steps of length rn where it
was necessary. The number N of calculated points or
sample for each of these computation steps of length rD
was fixed to 501. However, in most cases %=201 would
have been adequate to get a proper simulation of (1).

In order to get a clear and efficient test for distinguish-
ing between chaotic and periodic waveforms, the first
Lyapunov exponent (A,i) was calculated from successive
intervals of the trajectories, a positive exponent standing
for a chaotic waveform and a zero exponent for a periodic
one. As a matter of fact, it was slightly negative for
periodic waveforms since it converges to zero from nega-
tive values. More details about the computation of the
spectrum of Lyapunov exponents for differential-
difference equations can be found in Ref. 9.

III. FREQUENCY-LOCKED WAVEFORMS

Derstine and collaborators' gave an exhaustive descrip-
tion of the different transitions occurring between stable
and unstable FL waveforms. However, it was pointed out
by them that the stability properties of these FL
waveforms appeared to be complex. Therefore our first
concern was to get, if possible, similar experimental re-
sults from a different device and to compare these results
with the numerical salution of the DDE describing the
system. This point is of particular interest since it was
stressed by Derstine er al. that spurious nonlinearities in
the device could greatly perturbate the stability properties
of the FL waveforms and that this could explain the poor
agreement between their experimental results and a previ-
ous numerical analysis. Therefore, it is important to
know if the alternate path behavior completely arises
from the simple DDE or if one necessarily needs to modi-

fy it in order to take into account the small defects of the
physical device.

Since we have shown recently that some of the previ-

ously called FL waveforms can be simply interpreted as
bifurcated structures of higher modes of the system, we
will adopt a notatian slightly different from that intro-
duced by Derstine et a/. The letters P, C, and L will still
stand for periodic, chaotic, and locked waveforms. The
letters P and C will be preceded by a superscript denoting
the mode (except for the first mode for which it is impli-
citly meant) and followed by an integer denoting the bi-
furcated waveform associated with this mode. For exam-
ple P4 is the period-4 waveform of the second mode.
The letter L will be preceded by both a superscript and a
subscript denoting the modes between which a locking
occurs and followed by an integer denoting the fundamen-
tal period of the waveform in (rD+r) unit. For example
the symbol iL4 represents the waveforin arising from a
locking between the first two modes and having a funda-
mental period of 4(rg) +r).

A. Crescents of periodicity

Figure 1 shows three sites where the FL waveforms can
be found within the chaotic domain. This diagram was
obtained by solving Eq. (1) using the procedure described
in Sec. II. The parameter plane was systematically.
covered by increasing rD from 2 to 36 by steps of 0.2 for
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FIG. 1. Location of frequency-locked waveforms in the pa-
rameter plane within the chaotic domain.

21 values of p between 0.9 and 1.4, and p from 0.9 to 1 4
by steps of 0.005 for 18 values af rD between 2 and 36.
For each pair of values (p, ,rn) considered, Eq. (1) was
solved, starting from an initial time interval [O,rn] simu-
lating the closure af a switch in the feedback loop. In or-
der to reduce the overall computation time we restricted
our analysis to the interval (0&rD & 36) so that only the
first three crescents where the FL waveforms can be
found appear on Fig. l.

Each of these regions is associated with a mode as one
ean realize by loolung at the fast-oscillation-frequency
component of these waveforms. Figure 2(a) shows some
of the various stable waveforms found numerically within
the first crescent af periodicity (8&rD &18). Some of
these waveforms were also observed experimentally [Fig.
3(a)] and it is important to note that their common fast
oscillation component has the frequency af the second
mode of the system. The waveforms observed within this
second-mode crescent are therefore either bifurcated
waveforms of the second mode (iP4 being an example of
this case) or frequency-locked signals calling in this mode
(the iL4 waveform, for example). Remarkedly, the two
most often stxn waveforms of this first crescent, the 2P4
and the iL4 waveforms„were also shown to be very stable
in the eie:tro-optic experiment for the same range of
values of the time delay even if the transmission function
of this device is shghtly different from our own (acousto-
optic). That region of periodic oscillations therefore ap-
pears to be typical of a particular range for the delay
values. This means that for different values of A or Xz
in Eq. (1) or even for a somewhat different transmission
function, the FL region would practically just be shifted
along the p axis.

The mechanism underlying the transition between a
frequency-locked trajectory and a chaotic one appears to
be very sensitive to the external perturbation including
those introduced by the numerical analysis. Nevertheless
the numerical analysis shows very clearly that these tran-
sitions are characterized by hysteresis zone within which a
truly periodic and a chaotic attractor coexist. This
behavior was also observed experimentally by obtaining
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forward (increasing p) and backward (decreasing p) bifur-
cation diagrams for rn ——15 (Fig. 4). It is clear from these
results that significant differences occur when one de-
creases instead of increasing p. (It should be stressed that
the frequency of the sweeping signal was low enough so
that the output of the system was following p adiabatical-
ly.) The transition from a chaotic to a periodic orbit is
characterized by a hysteresis (0.94&@&1.05) such that,
by comparison to a usual bistable system, the chaotic orbit
corresponds to the lower branch. Indeed, if one reaches
the hysteresis zone by decreasing p and then interrupts
temporarily the feedback loop (cutting the laser ray), the
frequency-locked waveform is destroyed and a chaotic one
sets in and reappears after any further interruption.

When p is increased beyond 1.05 the periodic
waveforms then become the only steady-state orbits sub-
stained by the system. This window of periodicity comes
to an end near p = 1.10 where the chaos reappears. But on
the contrary to the transition from chaos to periodicity
this transition from periodicity to chaos is not accom-
panied by a hysteresis and it occurs in an abrupt manner
resembling an interior crisis. " This sequence of phenom-
ena is summarized in the diagram of Fig. 5. Let us first
mention about this diagram that it depicts a scenario ob-
served experimentally but which is in very good agree-
ment with the numerical results. It should also be
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FIG. 5. Diagram of the transitions occurring between
waveforms found inside the first crescent, This scheme is based
on experimental results obtained for ~&-15.

stressed that this diagram corresponds to a typical but not
exclusive type of behavior for a system described by an
equation such as Eq. (1). However, the main features of
this scenario are very interesting because they describe a
particular mechanism by which a dynamical system can
become more chaotic as the nonlinearity is increased.
Moreover, the whole sequence can be regarded as a com-
petition mechanism between the first and the second mode
le~wng the system to undergo a transition from a 'C2 to a
C2 chaotic oscillation.

There appears on Fig. 1 a second group of periodic
waveforms within the crescent located inside the interval
16&rn & 24. All the waveforms of this group have a fast
oscillation corresponding to the third mode of the system.
Some of them are shown in Fig. 2(b). Moreover, the hys-
teresis occurring at the lower boundary of the second-
mode region also occurs at the boundary of the third-
mode region. Finally, a third crescent of periodicity can
be observed on Fig. 1 for 24&en &34 and the periodic
waveforms inside this region correspond as expected to
the fourth mode of the system [Fig. 2(c)].

0.60-
CQ

0.20 -,
l. 2

FIG. 4. Experimental forward (increasing p) and backward
(decreasing p) bifurcation diagrams for ~&-15. The full range
sweeping time was 100 sec.

B. The frequency-locked time transients

An interesting phenomenon is observed when one con-
siders the number of time intervals [r rn, t] that one —has
to compute before getting a steady-state FL waveform.
As a matter of fact within the first crescent the time tran-
sient necessary for the system to reach a given periodic
waveform was almost always smaller than 2000rD. For
the second crescent one has sonMtimes to compute more
than 15 000 time intervals in order to reach a periodic or-
bit and the situation was even worse for the third crescent
associated with the fourth mode. Furthermore, we
checked that once the system has reached one of the
periodic attractors it remains locked to its afterwards.
This phenomenon is particularly interesting if we consider
that the rate of exponential divergence of the trajectories
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is such that all the information about the initial condi-
tions is completely lost after less than 200~D. So it was
even more surprising to note that this unusual time tran-
sient was, however, dependent on the initial conditions. A
convenient way to understand this pecuIiar transient is to
follow the temporal evolution of a trajectory starting from
a given initial condition. To do this we calculated the
first Lyapunov exponent A,

&
over successive intervals

(100m long) of the trajectory. Figure 6 shows the results
of this analysis for rD ——21.73 and p = 1.138. One can see
that the trajectory rapidly reaches a "chaotic state"
characterized by a positive A, i approximately equal to
0.009 (in v

' unit). The A,
&

oscillates around this value for
about 6000rD until an abrupt jump occurs and a periodic
trajectory sets in. Therefore a first interesting point to
note is that this transition from chaoticity to periodicity is
not a smooth one spread over the first 6000m but a very
abrupt one. Moreover, we can estimate by looking direct-
ly at the temporal signal in the transition region that the
real transient was about 159ra long. A second very in-
teresting point is that if we compute the trajectory keep-
ing exactly the same values for p and rn but starting from
a different initial condition for X(t) over the first time in-
terval [O,rn j, the abrupt jump occurs at a completely dif-
ferent and unpredictable time. In other words this jump
can occur after 500rD as well as after 10000wD depending
on our choice of the initial condition.

To illustrate this behavior we performed a simple ex-
periment resembling that introduced by Shaw for a 1-D
map. ' We first computed the trajectories corresponding
to 600 different initial conditions keeping p and ~n con-
stant. We then calculated the number of trajectories (the
survivors) which were still chaotic after a given time. The
logarithm of the number of these "survivors" is plotted as
a function of time on Fig. 7. We clearly note an exponen-
tial decrease of the number of survivors as a function of
time and this behavior may be interpreted as a probability
for the system to become periodic when it lies on a kind
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FIG. 6. Graph of the first Lyapunov exponent as a function
of time. Each point of this plot corresponds to the value of A, I

computed over time intervals {10&ra long) of the trajectory for
x~ ——21.73 and @=1.138.
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FIG. 7. Logarithm of the number of remaining chaotic tra-
jectories {survivors) as a function of time for ~D ——21.73 and

p =1.138.

of "metastable" chaotic orbit. As a matter of fact it is not
so surprising that the time necessary for the system to
reach a periodic state depends on the initial conditions
even if these initial conditions are lost after less than a
few hundred vD. Indeed two different initial conditions
rapidly become indistinguishable after a certain time and
the two subsequent trajectories obviously remain different.
Now these trajectories will both visit every point of the
same chaotic attractor but at different moments. There-
fore if the basin of attraction of the periodic attractor is
viewed as a "target" which can be reached with a given
probability by the chaotic trajectory it is easy to under-
stand that the event "hitting the target" can occur at very
different times depending specifically on the trajectory
which is considered. In other words one can say that the
neighboring basin of attraction of these FL waveforms is
very localized in the phase space but this basin is
somehow connected to a surrounding chaotic set.

Since the first submission of this paper we came upon a
publication by Kantz and Grassberger' discussing
thoroughly the problem of long-lived transients in various
systems. It appears that the particularly long transients
we observed in the computation of frequency-locked
waveforms illustrate very well this phenomenon.

IV. PERIODIC CYCLES

A. Disappearing P3 cycle

The DDE modeling systems with delayed feedback like
the acousto-optic device displays various dynamical
behavior depending on the ratio between the time delay
and the response time of the system. In the case where
~D »~, one may expect that the difference equation (DE)
obtained by neglecting the differential term of (1) would
provide a good discrete-time approximation of the
continuous-time DDE. However, this approximation ap-
pears to be correct only for describing the period-doubling
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sequence foBowing the first threshold of instability and in
the limit of large delay. As a matter of fact the DDE and
its associated DE display completely different behaviors
vrithin the chaotic region. Heuristically speaking, one can
say that these systems with delayed feedback behave as if
they mere driven by two opposite tendencies, one coming
from the time retardation which induces a discontinuous
discrete mapping behavior and the other coming from the
time response of the physical device which fix some con-
straints on the fast temporal changes.

This dual behavior clearly appears when one looks at
the transient state of the system immediately after it has
been switched on. This was done experimentally by intro-
ducing an electronic switch in the feedback loop. The
switch was triggered on and off by an external function
generator while the parameter p was slowly varied until
an unstable periodicity window was reached. For a suffi-
ciently large value of the delay (typically vn & 20) one can
see a progressive deterioration of the corresponding
waveform. Figure 8(a) shows such a deterioration for the
waveform corresponding to the P3 cycle. One clearly dis-
tinguishes at first a periodic oscillation of period

(a)

3(rn+r) .However, the "plateaux" of this waveform are
gradually shortened from one iteration to the next by a
growing fast oscillation which finally destroys the discrete
behavior. Such a phenomenon was aiso obtained numeri-
cally [Fig. 8(b)] and we could derive that in the limit of
large delay the destruction time was directly given by
rn/2 (r being the time unit). In other words each "pla-
teau" of length iD is shortened by an amount of 2 (fast os-
cillation cycle) at each iteration of the map. This very in-
teresting phenomenon provides an experimental demon-
stration of the fact that the differential term cannot be
simply eliminated from (1) in the limit of large delay.
Indeed the longer the delay is, the longer will be the tran-
sient necessary to eliminate the discrete mapping structure
but this structure will always be destroyed eventually. A
simple interpretation of these results is provided by the
linear model which predicts that more higher modes be-
come unstable for larger values of the time delay so that a
given periodic cycle associated with the first mode—
which would be sustained by the system if this mode was
alone —is rapidly destroyed by the fast oscillations arising
from the unstable higher modes. Obviously this picture is
heuristic since the linear model can only predict the
thresholds of instability of the modes and not the bound-
edness of the trajectories which arises from the nonlineari-
ty. However, according to this 1inearized approach it
would be possible to observe these periodic cycles corre-
sponding to the discrete mapping in the intermediate zone
where rn is still larger than r but small enough so that the
first mode is the only unstable one.

B. Even periodic cycles

In order to verify this we performed a large scale
analysis of the small area of the parameter plane defined
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FIG. 8. Progressive destruction of the unstable P3 cycle for
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FIG. 10. (a) Numerical P6 waveform for ~g ——6.25 and p =1.085. (b) Discrete P6 cycle of the difference equation corresponding to
Eq. {1},for @=0.9667.

by 3 & rn & 7 and 1.0 &p & 1.4. Figure 9 shows the results
of this numerical analysis. Remarkedly, a rich variety of
periodic waveforms were found within this region. Most
of the even periodic cycles up to P24 are present and we
note that their corresponding windows are systematically
parallel to the accumulation line separating the periodic
and chaotic domains. Figure 10(a) shows a typical com-
puted waveform (the P6 waveform). Aside from the fact
that the period of this oscillation is 6(rn+r) it is easy to
convince oneself that this is indeed a continuous-time ver-
sion of the P6 discrete cycle by considering the closed
loop in the discrete map corresponding to this cycle [Fig.
10(b)]. By numbering the six levels from the lower to the
upper one we get the sequence (1-4-3-5-2-6-1}which cor-
responds to the sequence of the continuous waveform.
We will use thereafter this characteristic sequence to iden-

tify the various periodic cycles. This will be especially
useful for distinguishing the different isomeric forms hav-

ing the same period. Moreover, this sequence is more
convenient for identifying a temporal signal than the usu-
al "right" (R) and "left" (L) characteristic sequence. '

Nevertheless we will indicate by an asterisk the level cor-

responding to the "center" (C) of the equivalent map so
that the correspondence between the two characteristic se-
quences will be easy to establish. For instance in the se-
quence (1-4-3-5-2'-6-1) the level two corresponds to C of
the map. Therefore an upper level is said to be right and
a lower one to be left so that we get the sequence ( RI.R ').

Figure 11 shows the even periodic computed waveforms
(up to P14) and their characteristic sequences. The partic-
ular shape of these waveforms can be regarded as result-
ing from a phase-locking between a long periodic struc-
ture prescribed by the discrete mapping and a fast oscilla-
tion component which correspond to the second mode.
This can be understood by remembering first that all over
the region where these cycles were found the first linear
eigenmode is the only unstable one (its eigenvalue real
part a& being positive}. Remembering also that the real
part of the second-mode eigenvalue is nearly zero (aq & 0)
and finally that the other mode real parts are negligible,
the system can therefore be described as a two-mode prob-
lem where the second mode is slaved by the first one. Ob-
viously this is a very peculiar situation since it occurs only
for a small range of values of the time delay.

TABLE I. Characteristic sequences of the periodic cycles for the discrete model.

Superstable
orbit

0.9066
0.9292
0.9416
0.9484
0.9551
0.9667
0.9697
0.9827
0.9894
0.9951
1.0039

Cycle

P8(4)
P12
P14
P10
P14
P6
P12(6)
P10
P12
P8
P10

Characteristic
Sequence

(1-5-4-7-2-6-3*-8-1)
(1-7-6-10-3-9-4-11-2-8-5 -12-1)
(1-8-7-11-4-12-3-10-5-13-2-9-6 -14-1)
(1-6-5-8-3-9-2-7-4 -10-1)
(1-8-7-11-4-13-2-9-6-12-3-10-5 -14-1)
(1-4-3-5-2 -6-1)
(1-7-6-9-4-11-2-8-5-10-3 -12-1)
(1-6-5-7-4-9-2-8-3 -10-1)
(1-7-6-8-5-10-3-11-2-9-4*-12-1)
(1-5-4-6-3-7-2 -8-1)
(1-6-5-7-4-8-3-9-2'-10-1)
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We observed experimentally many of these periodic cy-
cles and found their shapes to be identical to the comput-
ed ones. Figure 12 shows some of these experimental
waveforms as well as their characteristic sequences. In
the case of the P10, P12, and P14 waveforms it is impor-
tant to note that the intrinsic noise level of the device was

just slightly under the threshold value for which the
detection is possible. On the other hand, Fig. 9 shows
waveforms of longer periods (up ta P24) obtained from
the numerical analysis. Moreover, we verified that it was

possible to get wavefarms with longer periods by increas-

ing the computation resolution. Therefore there seems to
be no theoretical limitation to the observation af all the
even periodic cycles predicted by the discrete model. The

real limitation is "noise, "understood in a large sense.
I.et us add a few words about the order of appearance

of these waveforms as p is increased. To do so we draw a
parallel between the order of occurrence in both the con-
tinuous and the discrete cases. The order of occurrence
for the even discrete cycles (up to P14) is shown in Table I
and corresponds as expected to the U sequence. ' A simi-
lar sequence is obtained for the even continuous
waveforms if one considers, instead of p only, the geome-
trical distance in the parameter plane separating a given
window from the accumulation line. Indeed, if one orders
the waveforms, according to their separation from the ac-
cumulation line, one can see that the U sequence appears
to be valid for the continuous periodic wavefarms too
(Fig. 9).
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Now it is easy to understand that this frequency locking
cannot occur for an odd periodic waveform in a region
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FIG. 11. Numerical even periodic waveforms. The P12(6)
waveform arises from a period doubling of the preceding P6
waveform.
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FIG. 12. Experimental even periodic waveforms. The P6
waveform was obtained for ~D-4.2 and p = 1.17. The P12, P10,
and P14 waveforms were obtained for ~D-3.5 and p=l.26,
1.29, and 1.31, respectively.
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where the frequency corresponding to the second mode is
t ree times that of the first mode (which is the condition
or the even cycles to be sustained). For instance P6

cle c
ance, a cy-

c e corresponds exactly to nine oscillation cycles of the
second mode, but a P5 cycle would have to correspond to
7.5 c 1cyces of this mode. Fortunately a circumstance
greatly enhances the possibihty of getting a ratio between
the periods of oscillation of the first two modes different
from three. Indeed, according to the hnear model this ra-
tio is significantly larger than three for small value of rn.
Also Fig. 9 shows that the whole sequence of phenomena
appe"irs to be stretched and shifted along the p axis as the
delay is decreased.

Consequently many odd periodic waveforms were ob-
served, but for small values of vD and for significantly
larger values of p. Figure 13 shows the odd periodic
waveforms that we could observe experimentall d F'
14 some of the computed ones with their characteristic se-

quences. Incidentally the shape of these waveforms is
such that it is not so obvious that they are continuous-
time counterparts of discrete periodic cycles. However, if

F1. 1

one examines, for instance, the P5 waveforms shs 0%'Q OQ

ig. 3 one can see that their characteristic sequences as

P5
well as their fundamental periods correspond t th f0 ose 0

discrete cycles. The main difference between an odd
and an even periodic waveform is that the odd one cannot

V. CONCLUSION

In addition to the previously found frequency-locked

the h
wave orms which arise from a continuous-tim- 'me process,
t e ybrid bistable device can also display continuous-
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simply oscillate "up" and "down'* over its entire cycle.
There must be an up-up-down sequence for a part of its
cycle and this sequence seems to amplify the fast oscilla-
tion component of the waveform. Nevertheless the inter-

d4 ~

pretation of the various periodic waveforms in term f
iscrete-mapping process becomes very troublesome for

values of rD around two and practically illusive for
rn & 2. As a matter of fact we have found other periodic
cycles within the interval 1 &rn &2 which can hardly be
associated with any discrete cycle but this is not reall
surprising since the response time is now almost equal to
the retardation time. On the contrary, what is more
surprising is that a discrete-mapping process had kept on
prevailing for such small values of the delay.
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FIG. 13. Experimental odd periodic waveforms obtained: (a)
for ~D-1.8 and p=1.80; (b) for ~D-4.2 and @=1.47; (c) for
~D-1.8 and p =2.11.
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FIG. 14. Numerical odd periodic waveforms.
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time counterparts of the periodic cycles of the DE associ-
ated to the DDE describing the system. These two types
of periodic waveforms are found within separated regions
of the parameter plane and can be interpreted in terms of
modes of the system. Concerning the frequency-locked
waveforms, we have shown that, within the region
covered by our analysis (~n ~ 36), they always arise from a
locking between only two modes and that the first mode is
always one of these two modes. Also the stable numerical
FL waveforms are localized within crescentlike regions of
the parameter plane characterized by a certain range of
values of the delay. Moreover, a particularly long tran-
sient state encountered before reaching a FL orbit was
shown to be typical of these periodic waveforms. This
transient can be simply interpreted as a metastable chaotic
orbit and this interpretation is convenient for describing
the transition between a chaotic and a FL orbit. We have
also obtained both numerically and experimentally the
continuous-time versions of the periodic cycles of the DE
associated with Eq. (1). These waveforms are sustained by
the system for small values of the delay and a two-mode
interaction can be considered to describe them, where the
second mode is slaved by the first one. We observed both
odd and even periodic cycles but they appeared within dis-
tinct regions of the parameter plane.

We have shown how the periodic waveforms encoun-

tered in this analysis can be interpreted in term of modes
of the system. Particularly the number of modes partici-
pating in the dynamics of the system increases with the
delay and this is reflected in the parameter plane by the
appearance of different periodicity regions associated with
different modes. In this manner the linear model is con-
venient for describing the various periodic waveforms.
However, one must remember that this model can only
predict solutions (linear modes) which go to infinity as
their thresholds of stability are crossed. In other words
the linear model does not explain the boundedness of the
trajectories which arises from the nonlinearity. However,
the experimental results clearly show that the dynamical
evolution of the system is governed by the interaction be-

tween real underlying modes. Therefore it appears that a
better description of the hybrid bistable device on a
theoretical basis would have to include the nonlinear in-

teractions between the modes, from which the main
features of the system arise.
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