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We present the theory of a truly microscopic maser consisting of a single-mode high-Q resonator
in which a monoenergetic beam of excited two-level atoms is injected at such a low flux that at most
one atom at a time is present inside the cavity. Both a microscopic theory and a heuristic Fokker-
Planck approach are presented. %e show that the micromaser exhibits a number of novel features

that are averaged out in usual masers and lasers. First, the field is in general sub-Poissonian, which

reflects the quantization of both the field and its sources. Second, the onset of maser oscillations

may be followed by a succession of abrupt transitions in the state of the field. Finally, as the atomic
flux through the resonator is increased, the maser threshold acquires characteristics of a continuous

phase transition, whereas the subsequent changes in the field distribution become analogous to first-

order phase transitions.

I. INTRODUCTION

Resonator quantum electrodynamics has gained consid-
erable importance in the last few years. Roughly speak-
ing, it can be described as the study of the interaction be-
tween one or few atoms or electrons and the electromag-
netic fields that can be realized in particular in high-Q
microwave cavities or in traps. Investigations along these
lines have and will allow the observation of order-of-
magnitude effects of the quantized nature of the elec-
tromagnetic field, such as, e.g., a modification of the
spontaneous lifetime of a transition in a tailored elec-
tromagnetic field environment, ' Lamb-shift correc-
tions, 4 etc.'

For many years„ theorists have analyzed various aspects
of the Jaynes-Cummings model6 of a single atom in in-

teraction with a single mode of the electromagnetic field.
A number of predictions, including the existence of the
so-called "Cummings collapse" and "revivals"' have
been made, whose existence is a signature of the truly
quantum-mo:hanical nature of the field. But it is only re-

cently that the experimental possibilities have reached the
point where such systems can actually be realized. ' "
This breakthrough is based on the combined advantages
of Rydberg-state spectroscopy and of superconducting mi-
crowave cavities of extremely high-Q factors (Q =10
and higher). It is now possible to build microscopic sys-
tems that exhibit the genuine quantum-mechanical
dynamics generally masked by unavoidable fluctuations in
their macroscopic counterparts. These new devdopments
have led, in the last few months, to the first observation of
the Cummings collapse and revivals. '

Thus, what was once thought to be just a rather unreal-
istic theoretical testing ground for basic ideas on the foun-

dations of quantum optics is now within the reach of ex-

perimental tests. There are strong indications' that sys-
tetns closely related to those of Refs. 1 and 12 will provide
nonclassical sources of radiation. ' ' On the more fun-

damental side, they will help shed light on the transition
from truly microscopic to macroscopic dynamics in
radiation-rnatter interaction.

In this paper, we present the theory of a truly micro-
scopic maser"' consisting of a single-mode high-Q reso-
nator in which a monoenergetic beam of excited two-level

atoms is injected at such a low flux that, at most, one
atom at a time is present inside the cavity. %e show that
it exhibits a number of novel features that are averaged
out in usual masers and lasers. ' First, the field is, in gen-

eral, sub-poissonian, which reflects the quantization of
both the field and its sources. Second, the onset of maser
oscillations may be followed by a succession of abrupt
transitions in the state of the field. Finally, as the atomic
flux through the resonator is increased, the maser thresh-
old acquires characteristics of a continuous phase transi-
tion, whereas the subsequent changes in the field distribu-
tion become analogous to first-order phase transitions.

The rest of this paper is organized as follows. In Sec.
II, we present a quantum theory of the micromaser, deriv-

ing its steady-state photon statistics and show that it is, in
general, sub-Poissonian. The "strong-signal" characteris-
tics are analyzed. %e demonstrate how the saturation
behavior of conventional lasers is recovered by introduc-
ing a sufficient amount of stochasticity in the system. In
Sec. III an alternative theory of the micromaser based on
a heuristic Fokker-Planck equation is derived. This ap-
proach presents a number of advantages over the micro-
scopic theory of Sec. II. In particular, it allows to under-
stand the further transitions past threshold in terms of a
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multiple-well potential, in a fashion analogous to the Lan-
dau theory of first-order phase transitions. This section
concludes with an analysis of the role of atomic fluctua-
tions. Section IV presents the dynamics of the inicro-
maser, based on this Fokker-Planck theory. The intrawell
redistribution time and interwell tunneling time are
evaluated, and it is shown that the typically large value of
this last time can lead to hysteretic phenomena in the mi-
cromaser. Finally, Sec. V is a summary and discussion.

pf(t;+i) =exp(Lt„)F(t «)pf(t;), (2.4)

where t~=t;+& —t; —t;„,=t;+&—t; is the time interval be-
tween atom i leaving the resonator and atom i +1 enter-
ing it.

Suppose that the field density matrix is initially diago-
nal in the number state representation, and that atoms
without initial coherence are injected inside the resonator
The reduced density operator of the field then remains di-
agonal during the interaction, (n

~ pf ~

n') p„5„„. In
component form, Eq. (2.2) reduces to

11. qUANTUM THFORY OF THE MICROMASER

A. Derivation of the photon statistics

We consider a single-mode resonator into which excited
two-level atoms are injected at a rate low enough that at
most one atom at a time is inside the resonator. In addi-
tion, we assume that the atom-field interaction time t;„, is
much shorter than the cavity damping time y ', so that
the relaxation of the resonator field mode can be ignored
while an atom is inside the cavity. 's The strategy to
describe the maser is then straightforward: While an
atom flies through the cavity, the coupled field-atom sys-
tem is described by the Jaynes-Cummings Hamiltonian,
and during the intervals between successive atoms the evo-

lution of the field is governed by the master equation of a
harmonic oscillator interacting with a thermal bath.

The Jaynes-Cummings Hamiltonian is

H =(@coo/2)Si+ficoata+(kc/2)(S+a+S at), (2.1)

where coo is the frequency difference between the two
atomic levels, it the electric dipole couphng constant, a
and a the annihilation and creation operators, t0 the fre-

quency of the cavity field mode, and Si,S+ are the stan-
dard Pauli spin operators. The Jaynes-Cummings Hamil-
tonian is exactly solvable, and the corresponding time evo-
lution operator U(t) =exp( iHt/R) is—well known. 6

At time t;, the ith atom enters the cavity containing the
field described by the density operatol' pf(t;). At this
time, the density operator p of the combined atom-field
system is simply the tensor product of pf(t;) and of the
initial atomic density operator. After the interaction time

t,« the atom exits the resonator, and leaves the field in the
state described by the reduced density operator

pf(t;+t;„,)=Tr [U(t;„,)p(t;)U (t)]

where the factors

Pl IC

hi+ nzi
(2.6)

reflect the coherent nature of the atom-field interaction.
Here 5=co—eo is the usual atom-field detuning. More-
over, the diagonality of the field is preserved during its
decay, so that the master equation (2.3} can be restricted
to its diagonal elements:

p„= y(ni, + 1)[(n + 1)p„+i np„]-
+ynb[np —1

—(n + 1}p.] . (2.7)

Under these conditions, successive iterations of Eq.
(2.4) eventually yield a diagonal steady-state field density
matrix p, „, which is the solution of this equation with

pf ( t' ~ i ) pf ( t; ). Note that this is not a "true" steady
state, but rather a steady state of the return map (2.4).
Physically, it corresponds to a situation where the same
field repeats at the precise instants when successive atoms
exit the cavity.

In the remainder of this paper, we always consider ex-
act resonance b, =0. For the time being, we also assume
that the atoms enter the cavity according to a Poisson
process with mean spacing 1/R between events, where R
is the atomic flux. We discuss in detail the implications
of this model in Sec. III. The Appendix shows that the
stochastic average of the field over the random spacings
of the i+1 atoms, Pf+', is still related to the average
after i atoms by a return map of the type (2.4), except that
the dampin~ operator L(t~) is replaced by its average
(1 L /R) ove—r the exponential distribution
P(t~)=R exp( Rt~) of the—intervals between atoms.
Equation (2.4) then becomes

(2.2) pf(ttii)=(1 L/R) 'F(t;«)pf(t;) . — Q.8)

With the injection of a succession of atoms inside the cav-

ity, the stochastic average of the field density matrix
evolves towards a steady state pf „satisfying the relation

(2.9)

With the aid of (2.5) and (2.7), Q.9) yields a three-term
recursion relation for the occupation numbers
p„=—(n

~ Pf „~n ), which may be expressed in the form

where Tr, stands for trace over the atomic variables.
In the interval between t;+t;„, and the time t;+i at

which the next atom is injected, the field evolves at rate y
towards a thermal steady state with a temperature-
dependent mean photon number nb, as described by the
standard master equation

pf =Lpf —(y/2)(n~ + 1 )(2apfa —a apf pfa a)—
+(y/2)nl, (2a pfa —aa pI pfaa ) (2.3)—

of a damped harmonic oscillator.
Hence, at time t;+ i the field density matrix is given by with

S„=S„+), (2.10a}
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S„=N,J3„p„,+nbnp„ i
—(ni, +1)nP„.

Here,

(2.10b)

(2.11)

is the average number of atoms that traverse the cavity
during the lifetime of the field. The physical condition
that the field density matrix be normalizable implies that
p„~O faster than 1/n for n~ao. Hence, S„~O for
n ~ ao, and from Eq. (2.10a) one has readily S„=Ofor all
n Eq. uation (2.10b) then gives the ratio of successive oc-
cupation numbers,

1+ p„ i, n =1,2, . . . , (2.12)
NexP.

0
0

I

ere 10K

from which the analytic expression of the steady-state oc-
cupation numbers follows up to a normalization con-
stant:"

FIG. 1. Normalized steady-state photon number 1 as a func-
tion of the pump parameter 8 for %,„=20, 200, 2000, and a
blackbody photon number nb ——0.1.

bn

(+nb
N- l3»

1+ (2.13)

This is the central result of this paper. In the remainder
of Sec. II, we show that it implies that the micromaser ex-
hibits a number of features absent from conventional
lasers and masers. Section III then presents an alterna-
tive, approximate theory that sheds new light on a number
of the unusual aspects of this system.

(n)= g kP»,
k=1

(2.14)

as a function of the dimensionless parameter 8 defined as

8=(N,„}'"«,„,/2 . (2.15)

Later on we show that 8 plays the role of a pump parame-
ter for the rnicromaser.

The three curves correspond to %,„=20,200, and 2000,
and the number of thermal photons is nb ——O. l. A com-
mon feature to all cases is that l is nearly zero for small 8,
but a finite l (and (n)} emerges at the threshold value
8= 1. For 8 increasing past this point, l first grows rapid-
ly, but then decreases to reach a jninimum at about 8 2m,
where the field abruptly jumps to a higher intensity. This
general behavior recurs roughly at integer multiples of 2n,
but becomes less pronounced for increasing 8. Finally, a

8. Features of the photon statistics

Since the intracavity field always remains diagonal, the
photon statistics (2.13) contains all information about the
statistical properties of the steady-state field reached by
the micromaser. The approach to steady state, which is
given by Eq. (2.8), is not itself amenable to an analytical
solution and requires from the onset a numerical analysis.
This section discusses both the physical implications of
the steady-state result (2.13) and the approach to equilibri-
Um.

Figure 1 shows the normalized average number of pho-
tons l —= (n ) /N, „,where

( n ) =yN, „sin (a&(n +1)t;„,/2) —y(n ) . (2.16)

The first term in Eq. (2.16) is the gain due to the change
in atomic inversion as deduced from the Rabi oscillations
formula, where we have used (2.11) and the "+1" ac-
counts for spontaneous emission into the resonator mode,
while the second term describes cavity losses (here nb ——0).
The possible mean photon numbers (n ) are approximate-
ly given by the stable stationary solutions of Eq. (2.16).
For 8 ~~ 1 the only solution for the field is (n )=8 && l.
The maser threshold occurs when the linearized (stimulat-
ed) gain for (n )=0 compensates the cavity losses:

yN,„sin (xV'(n )t;„,/2} ( &„}
d

d n

=yN, „(xt;„,)2/4= y, (2.17)

which reduces precisely to the threshold value 0=1 ob-
tained from the exact photon statistics (2.13). This justi-
fies interpreting 8 as the pump parameter of the micro-
IDaser.

Figure 2 shows the normalized standard deviation

stationary regime with l nearly independent of 8 is
reached. Outside the time scale of Fig. 1 there is still ad-

ditional structure reminiscent of the Jaynes-Cummings re-
vivals 10, 12, 16

The number and, in particular, the sharpness of the
features in the photon number depend on N,„. At the on-

set of the field around 8=1 the function l(8) essentially
does not depend on N,„ if N,„»1,but the subsequent
transitions becomes sharper for increasing N,„. In the
hmit N,„~oo, this hints at an interpretation of the first
transition in terms of a continuous phase transition, while

the others are similar to first-order phase transitions.
It is possible to give a simple interpretation of the first

transition (threshold) of the micromaser in terms of a
gain-loss argument reminiscent of conventional laser-
maser theory. '7 In the spirit of a "rate-equation" analysis,
one would expect the average number of photons in the
cavity mode to be governed by an equation of the form
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some situations, albeit nongeneric, where an idealized mi-
cromaser can reach a steady state even in the absence of
losses. In such cases, the steady-state field is either a
truncated inverted thermal distribution (negative tempera-
ture), or a pure number state, i.e., a field of even "less"
classical nature than the micromaser described here.

A classical field, and specifically Poissonian photon
statistics far above threshold, are reached only if a sufi
cient amount of stochasticity is added to the model. To
prove this point, we introduce a distribution of atomic ve-
locities, i.e., a distribution of the interaction times r;„, A.s
argued in the Appendix, a correct way to do this in the
case when the interaction times of successive atoms are
statistically independent is to average the operator F(t;„,)
on the right-hand side (rhs} of (2.4) over r;„„which boils
down to averaging the factors Pk(t;„, ) in (2.13). For sim-
plicity we assume that the distribution of the interaction
times is a Gaussian with mean t;„, and rms spread 5t.
The factors Pk in (2.13) are then to be replaced by

P
&

~1
k(~s—t) l2 co(s& kt )] (2.19}

Figure 5 shows the mean number of photons for
X,„=200 and ni, =0.1 as a function of the pump parame-
ter 8 corresponding to the average interaction time t;„„
for three values of the relative spread of the interaction
times $t/t;„t =0, 0.1, and 1. The first few transitions sur-
vive a 10% spread of the interaction times, but all
features except the maser threshold are washed out when
the relative spread mimics a thermal atomic beam,
ot/t;„, =1. In fact, at 8=2m corresponding to the first
transition the argument inside the exponential of (2.19) is
then already of the order of —10, and the term propor-
tional to the exponential is negligible. The photon num-
ber distribution thus reduces to

'n
nI,

+ tip k ) Ply
(2.20)

and far above threshold, X,„~&1, this gives the Poisson
distribution

N,„
2(1+ni, )

n

(2.21)

Thus, a (classical) incoherent average is needed to ob-
tain Poissonian photon statistics. The reason is that the
granulated character of the quantum-mechanical phases
involved in the coherent atom-field dynamics is averaged
over. Hence the field no longer supplies to the atom a re-
action which depends strongly on its state, so that the
electrons in the atoms act much like a classical current.
A sufficient amount of inhomogeneous broadening, with a
concomitant averaging over the detuning b, in Eq. (2.13),
would produce the same result.

The same general argument also holds true in the con-
ventional single-mode, homogeneously broadened laser,
except that in this case it is an incoherent average over the
radiative lifetime of the laser levels that leads to the
smoothing of the quantum-mechanical phases. '7 The fun-
damental difference between these two situations is that
the irreversible spontaneous emission, unavoidable in opti-
cal resonators, looses its meaning in the microscopic
maser. In this case, the atoms interact truly with a single
mode of the electromagnetic field. There is no continuum
of field modes for the system to decay into, and no ir-
reversible spontaneous emission. From this point of view,
the (usually) sub-Poissonian output of the microscopic
maser can be seen as a consequence of inhibited spontane-
ous emission. * Conventional lasers and masers are essen-
tially classical systems; the micromaser is not.

1.0

0.5—

0.1

III. FOKKER-PLANCK APPROACH

So far we have carried out an exact quantum theory of
the microscopic maser. Further insight into the physical
origin and nature of the unconventional photon statistics
and phase transitions in this system can be gained by a
semiheuristic approach in terms of a Fokker-Planck equa-
tion. We shall find that for large N,„and nb not too
small, this approximate analysis reproduces and explains
to a large extent the results of the exact microscopic
theory, and can also be employed to make new predictions
about the dynamics of the micromaser.

0
0 10m

FIG. 5. Effect of an interaction time (or atomic velocity)0
distribution on the normalized average photon number /(0).
The interaction times are taken to have a Gaussian distribution
of mean t;„, and normalized standard deviation 5t/t;„t =0, 0.1,
and 1, these values labeling the curves. The other parameters
are N,„=200and nq ——0.1.

A. Derivation of an approximate Fokker-Planck equation

Let us temporarily assume that initially exactly no ~~1
photons are present in the cavity field Inode, and consider
the evolution of the photon number in the cavity over a
time T long compared to the interaction time t;„„yet so
short that the occupation numbers of the field do not
change considerably. Clearly, the assumption no~~1 is
not valid near threshold. During the time T, a random
number X of initially excited atoms with a Poissonian dis-
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tribution of mean N =RT traverse the cavity.
Our heuristic model of the micromaser rests on the in-

terpretation that every atom that traverses the cavity has
the probability

rms spread can simply be added:

& k &
= &k &, +(k &,=—TQ(n, ), (3.9a)

P =sin [(no)' at;„,/2] (3.1)
(hk) =(k &~

—(k&r+(k &d —(k&g=TG(no) . (3.91)

PN Pk( 1 P)N —k (3.2)

For precisely N atoms, the average change in photon
number &k(N) &g and the a~erage &k (N) &g « the square
of this change are

(k(N) &, =PN (3.3a)

( k'(N} &, =(P —P'}N +N'P', (3.31)

respectively, as is readily seen by introducing the generat-
ing function

F(g):—g k (gP)"(1—P) "=(1 P+(P)—
k

(3.4)

and noting that

(k(n) &, =
dI'

g=l
(3.5)

2F
(k'(N}&,= + (3.6)

In order to directly compare this approach with the exact
quantum mechanical theory of Sec. II, we further average
the results (3.3) over Poissonian fluctuations in the arrival
times of the atoms. This gives

of adding one photon to the field and the probability 1 —P
of leaving it unchanged. Except for a small error intro-
duced by replacing (no+1)'~ with (no)'~', P is just the
probabihty that an atom which enters the cavity in the ex-
cited state leaves it in the ground state. The probability
that N atoms add k photons to the field is then given by
the familiar binomial formula

To lowest order in T, the functions Q and G are defined
as

Q(n)=R sin (vnat;„, /2) —y(n nb—),

G (n) =R sin2(v n at;„,/2)+y(n +nb+ 2nnb ) .

(3.10a)

(3.101}

We proceed next (somewhat ambiguously) by replacing
the photon number distribution p„by a continuous func-
tion p(n), n E-[O, oo), and extrapolating the short-time
evolution given by (3.9) and (3.10}to arbitrary times with
the aid of the Fokker-Planck equation

«Int (( l (3.12)

a = a 1 a'
Bt Bn
—p(n, t)= — [Q(n)p(n, t)]+— [G(n)p(n, t)] .

8if

(3.11)

The "justification" of this choice of Fokker-Planck equa-
tion is that for an initial photon distribution of the form
p(n)=5(n —nz), corresponding physically to p„=5„„,
the short-time evolution of the average photon number
and of its rms deviation obtained from (3.11) coincide
with (3.9). But there is no a priori guarantee that the
Fokker-Planck description will give satisfactory results
for long times, and only a direct comparison with the re-
sults of Sec. II will be able to test its reliability.

A few comments of a general nature can however al-
ready be made at this point. The derivation of the mo-
ments (3.9) shows that the Fokker-Planck equation (3.11)
can be expected to be valid only if the relative changes of
the functions F(n) and G (n) are smaH when n is changed
by unity. First, it cannot be trusted for small n Second, .
the condition that the argument of the sine in the Rabi
flopping factor P in (3.1) should change by much less
than unity when n changes by unity can be written as

or equivalently

8 «(nN, „)' (3.13)

Since the quantum theory of Sec. II shows that
(n & &N,„, these requirements imply that the Fokker-
Planck theory can be applied only when X,„~&l.

En view of this discussion, we scale time to the cavity
damping time 1/y and photon numbers to N,„, a pro-
cedure that becomes exact in the limit X,„~ao, or more
precisely nb /N, „~O:

( k &d yT(nb no), ———

( k g&= y (T1l 0 +lb r+1l2&io)b.

(3.8a)
(3.14a}

(3.14b)(3.8b)

( k'&, =PN+P'N', (3.71)

where N=RT, and we have used (N &=N N, valid-
for a Poisson process.

From the master equation (2.7), it is also easy to find
the average changes of photon number and of its square
due to cavity damping over the time T:

%'e assume that gain and decay act independently, so that
the corresponding changes in average photon number and The Fokker-Planck equation then reads as
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p(v, r) = — [q(v)p(v, ~}]
1.0

with

2

+ [g(v)p(v, r)],
2N,„Q

(3.15)

and

q(v)=sin (v v8) —v

g(v)=sin (Vv8)+v+2vnb .

(3.16a)

(3.16b)

8. Stationary solutioa

The stationary solution to the Fokker-Planck equation
(3.11) is

p (v) =C exp 2N,„dv (3.17)

where C is a normalization constant. Unfortunately, this
result is not normalizable in the internal (0, oo ), which re-
flects the breakdown of the Fokker-Planck approach at
n =0 We . therefore utilize it only in the interval
(1/N, „,oo ) corresponding to the range (1, oo } of the un-
scaled photon number n.

Figure 6 shows the average l (8)= ( v(8) ) and Fig. 7 the
normalized spread cr(8} of the intracavity photon number,
as deduced from the Fokker-Planck theory (3.17) (dashed
lines) and from the microscopic equation (2.13) (solid
lines). Here N,„=200 and ni, =1. The agreement be-
tween both analyses is very good except for 8-0 and
above 8=10ir, as expected on the basis of the discussion
surrounding Eqs. (3.12) and (3.13). It becomes perfect for

()

(I

(I
I

II
II

I

I )

1
I

I

0
0

FIG. 6. Comparison of the normalized photon number l(8)
as obtained from the exact microscopic theory (solid line) and
the Fokker-Planck analysis (dashed line). X,„=200, nq ——1.

In these expressions, we have neglected terms nb/N, „, a
procedure valid at finite temperature in the limit
N,„~ao, which is the regime in which the Fokker-Planck
approach is expected to become exact. This allows us to
scale N,„out of the problem.

0 10m

FIG. 7. Normalized standard deviation o of the field mode
photon statistics under the conditions of Fig. 6. Solid line: mi-
croscopic theory; dashed line: Fokker-Planck analysis.

vo ——sin'[( vo) '~28], (3.19)

and which one does correspond to the global minimum of
the potential must in general be determined numerically.
For the 8 & 1 the (only) minimum is at v=O, and the mi-
cromaser is below threshold. However, at 8=1 the
minimum v=O turns into a local maximum. To lowest
order in 8—1 the global minimum adjacent to v=0 is

vs ——3(8—1) . (3.20)

VVhen 61 grows above unity, the photon number in the cav-
ity mode first increases continuously from zero as illus-
trated in Fig. 1. As already discussed, this is because at
the threshold 8=1 the gain overtakes the losses, and
maser oscillations follow. As in conventional lasers, this
process is analogous to a continuous phase transition.

As 8 is further increased, the effective potential V(v)
has an increasing number of minima. This is shown in
Fig. 8, where V(v} is drawn for the three pump parame-
ters 8=4, 1.058&(2m, and 8. The intermediate value of 6
is precisely such that the global minimum at v=0. 167 is
replaced by a global minimum at v=0.647. It is clear
from (3.17) that around this pump parameter the steady-
state photon number distribution has to change drastical-
ly, which explains the transition at about 8=2+ in Fig. 1.

N,„~oo, but for finite N,„deteriorates as nb is de-
creased. Still, the qualitative features of the micromaser
remain well reproduced by the Fokker-Planck approach as
nb —+0.

Equation (3.17) indicates that for N,„»1 the photon-
number distribution tends to accumulate in the global
minimum of the effective potential

q(v)
&

sin (v v8) —v
~

~

g(v) sin'(v v8)+v+2vn,
'

(3.18}

i.e., near one of the zeros vo of the function q(v). Theses
zeros are the solutions of



P. FII.IPO%ICZ, J. JAVANAINEN, AND P. MEYSTRE

well-defined conditions they give practically the same re-
sults. On the basis of this comparison, it seems safe to ex-
tend the Fokker-Planck approach to cases where the exact
treatment does not allow for closed form results. In par-
ticular, this section generalizes the Fokker-Planck ap-
proach to investigate the influence of various sources of
noise on the photon statistics of the micromaser. For
simplirity, we restrict ourselves to the case nI, ——0, keeping
in mind that for finite E,„,our analysis will then be qual-
itative only.

0.2 0.4 0.6 0.8

FIG. 8. Potential V{v) in the case nb ——0 for the three pump
parameters (1) 8=4; (2) 8=2.116m-, (3) 8=8.

The mechanism of the successive transitions is clearly al-

ways the same, with a minimum of V(v) losing its global
character and being replaced in this role by the next one.
Note that our reasoning is just a variation of the Landau
theory of first-order phase transitions, with v v (the field
strength, or more precisely the square root of the intracav-
ity intensity) being the order parameter. This analogy
supports the notion that in the limit N,„~00, these novel
features of the micromaser can be interpreted as phase
transitions.

Let us finally suppose that the value of the potential
V(v) at one of the minima vs is clearly below its values at
other minima, and that N,„~~1. Then the photon num-
bers distribution is concentrated close to the global
In111111111111vs, aIld 111 t11e stationary distribution (3.12) the
potential V(v) can be expanded around vs. This gives

p(v)= exp[ N,„(v v—) V"(v —)]
g(vs)

z q'(VS)
exp N«(v vs)—

2vg 2vg
(3.21)

where we have taken for simplicity nb —0 and used
q(vs)=0 and g(vs)=2vs, see Eq. (3.19). The normalized
standard deviation (2.18) of the photon numbers becomes

1/2—1

q'(Vg )
(3.22)

independently of the absolute photon numbers. Note that
there is no particular reason why (3.22) should in general
give o = 1 pertaining to a Poissonian distribution.

C. The role of fluctuations

In Secs. IIIA and III8, we have compared a heuristic
Fokker-Planck approach with the exact quantum-
mechanical description of the micromaser, and introduced
a Poisson distribution of atomic arrival times in the
derivation of the Fokker-Planck equations (3.11) and
(3.15), so as to perform a direct comparison with the
closed-form result (2.13). We demonstrated that under

1. Random arrival times

Assume first that the atoms are injected at regular in-
tervals, that is, no Poissonian average is carried out. In
this case, the change in photon number due to pumping is
governed by (3.3) instead of (3.7). The functions g(n)
and q(v) remain unchanged, but 6(n) and g(v) must be
modified to give in particular ( nb ——0)

g (v)~gi(v) =slil (I/v8) —si11 (V v8)+v . (3.23)

Except for this change, all subsequent calculations go
through as before. The positions of the minima of the re-
sulting potential Vi(v)= —I dvq(v)/g, (v) are clearly

the same as the minima of V(v), and some simple algebra
based on Eq. (3.19) shows that if vs is the global
minimum of both V(v) and Vi(v), the relative spread of
the photon distributions without (o'I) and with (cr) the
Poissonian average are related by

oi ——0(1—vs/2)'i (3.24)

The photon number distribution is narrower without the
Poissonian average. Because vg ~ 1, the narrowing cannot
be more than by a factor 1/v 2 and is thus of little
significance in practice. Still, this result illustrates once
more the conclusion of Sec. II: the system becomes more
"classical, " the more randomness is present in the system.
This is further illustrated by considering the effect of an
atomic velocity distribution.

qI(v) = —,—v,I

gq(v) = —, +v .

(3.25a)

(3.25b)

The corresponding potential V2(v) = —I dvq2(v)/gq(v)
has a single minimum at vg ———,, yielding the average pho-
ton number (n2) =X,„/2 and the normalized width
o.

2
——j.. For large average photon numbers, the Gaussian

photon number distribution predicted by the Fokker-
Planck approach is indistinguishable from a Poissonian
distribution extracted from the ordinary laser theory, e.g.,

2. Atomic velocity distribution

%hen the interaction time is a random variable, the
probability (3.1) that one atom adds a photon to the cavity
mode can formally be regarded as a conditional probabili-
ty for the given interaction time I;„, The dist. ribution of
interaction times is then accounted for by averaging
P(t;„,) over I;„„which for a broad velocity distribution
gives —,. In this limit, the functions q(v) and g(v) be-

come
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(2.21). Note that if the Poissonian process for the arrival
times had not been assumed, the constants —,

' in (3.25)

would have been replaced by —,', giving oz ——v 3/2. Both
the assumption abut the Poissonian arrivals and the broad
velocity distribution are needed to recover the results of
standard laser theory, although the latter has a much
more dramatic effect on the photon statistics.

IV. DYNAMICS IN THE FOKKER-PI.ANCK
DESCRIPTION

In the preceding section, we saw that the effective po-
tential V(v) typically exhibits a number of local minima.
This indicates that the approach to equilibrium of the mi-
cromaser will in general be governed by two different time
scales. The first one, tI, rules the redistribution of the
photon statistics inside a local minimum, and the second
one, ts, gives the tunneling time of the system towards the
global minimum of V(v). In this section, we evaluate
these two tiines and further show that the multiple-well
character of the potential can lead to hysteresis in the
state of the field if the pump parameter 8 is scanned slow-

ly back and forth.

A. Intravrell redistribution time

p(v, ~)=-
ax

[(v—v )q'(v )p(v, ~)]

1
[g(v )p(v, r)],

ex
(4.1)

where we have used the result (3.19) that q (v ) =0. For a
given initial distribution Po(v) the solution of this equa-
tion is

p (v, t) = J 1vDP ( v, t; v0, 0)po(vo},

where the propagator I' is given by

(4.2)

Assume first that the initial photon number distribution

po(v) is narrowly peaked about some photon number close
to the value v corresponding to one of the minima of the
potential V(v). For large N,„, the minima of X,„V(v)
are deep and well separated, so that for short enough
times, p(v) will remain peaked about v~, and approach
an equilibrium distribution within this well. This in-
trawell redistribution can be analyzed to a good approxi-
mation by neglecting the existence of other minima of
V(v) altogether, a procedure valid as long as interwell
tunneling can be neglected, i.e., that ~I ~~~~. In this limit,
the dynamics of the micromaser is described by the linear-
ized version of the Fokker-Planck equation (3.15):

and the time constant ~I is

1

q'(v )
(4.6)

Irrespective of the initial distribution Po(v), p(v, r)
evolves over a time scale given by ~~ towards a Gaussian
centered at v and with rms spread u(oo). The precise
value of rI depends on the interaction time 8 and on the
minimum under consideration, but in our dimensionless
units vI-1. Converting back to dimensional units, we
find that the time it takes to reach an equilibrium photon
statistics around a given minimum is of the order of
tI-y, the damping time of the field in the cavity.

1

dv v'g (v)
(4.7)

It follows easily from (3.15) that in terms of the variables

y, r, and for the new distribution function p =V gp, the
Fokker-Planck equation becomes

a
p(y, r) =—

81 Bg

q(y) 1 g'(y)
4X,„g(y)

1+»2X,„&yi (4.8)

As compared with (3.15), this new form of the Fokker-
Planck equation presents the distinct advantage of having
a constant diffusion coefficient. The new effective poten-
tial becomes

„() j'd qJ' 1 g 3'

v'g (y) 4X,„g(y)

= V(v) — lng (v),1

4E,„

and the tunneling rate from the minimum U(y ) of this
potential over a subsequent maximum U (yM ) is

[IU"0' }U"0M}f]'"
2m

B. Global equilibrium

The local minima of V(v) are only metastable. For
long enough times, P (v, t) will leak away from the neigh-
borhood of any v, which is not the global minimum.
We estimate the time scale of this tunneling process by
applying the familiar Kramers analysis.

To this end we first introduce a new photon number
variable y =y (v} through the equation

1 V—V T
P(v, t;v0, 0)= exp

21TH (7.) 2' ( r)
(4.3) «xpI —»,.[U(yM }—U 0»] I . (4.10)

Here To zeroth order in X,„, the extrema of the potential U (y)
coincide with the extrema of V(v), and at the extrema

g(v )
u (r)=, [1—exp( 2rlrI)], —

2%,„q'(v )
(4.4) U "(y)= —q'(v) . (4.11)

v(r)=vm+(&o —vm)exp( —~f ri),
Consequently, the tunneling rate (4.10) is approximately
given by
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«xpI —2N-t V(&hf) —V(&m)) l . (4.12)

provided in Fig. 9, which shows the average photon num-
ber in the cavity as obtained from the numerical solution
of the Fokker-Planck equation (3.15) when the pump pa-
rarneter is cycled linearly between two values 8=m and
8=4.4m in a dimensionless time 80y, for N,„=100and

nI, ——0.1.

Both the prefactor and the potential difference inside
the exponential depend on the interaction time, the
minimum v under consideration and the maximum next
to v~ which happens to give the smallest potential differ-
ence V(vM) —V(v ). These interrelations could easily be
analyzed numerically, but the message of Eq. (4.12) is ob-
vious by inspection: both the potential difference and the
prefactor are of order unity in our dimensionless units,
thus in the dimensional units the tunneling time behaves
qualitatively like

tg -y ' exp(uN, „), (4.13)

with a being of order unity. For large atomic fluxes,
N,„~&1, the tunneling time may be extremely long, in
which case the metastable states of the microscopic maser
are very long lived. But for small N,„, it becomes com-
parable to the intrawell redistribution time tI

C. Hysteretic behavior

If in an experiment the pump parameter 8 is scanned
slowly, e.g., by slowly varying the interaction time t;«
such that

(4.14)

the photon number distribution will remain in adiabatic
equilibrium at the potential minimum where it happens to
reside. The values of 8 at which the first-order transition
in the state of the field take place inay then differ signifi-
cantly from those predicted by the steady-state theory.
Moreover, if 8 is scanned back and forth, the state of the
field can exhibit hysteresis (bistability). An example is

FIG. 9. Hysteresis in the normalized photon number I when

scanning the pump parameter 8 linearly between the values m

and 4.4m in a time of 80y and back.

&. DISCUSSION

In this paper, we have presented a detailed theory of a
truly microscopic maser, and shown that its operation
typically differs greatly from that of conventional lasers.
In particular, the micromaser is characterized by the ap-
pearance of a series of first-order phase transitions follow-
ing the usual maser threshold, rather than by conventional
saturation. It usually emits nonclassical radiation, and
above threshold its radiation is not coherent in general.
We demonstrated in Sec. II that this fundamental differ-
ence between the micromaser and conventional lasers and
masers can be traced back to the fact that they do not ex-
perience enough stochasticity to erase the quantum-
mechanical phases characteristic of coherent, quantum-
mechanical light-matter interaction. We showed that if a
sufficient amount of noise is added to the system, e.g., in
the form of an atomic velocity distribution of of inhomo-
geneous broadening, then a behavior of the conventional
type is recovered. In normal lasers, irreversible spontane-
ous emission into the continuum of modes of the elec-
tromagnetic field always guarantees a smoothing of the
quantum-mechanical phases, even in the absence of other
sources of noise. In contrast, micromasers are truly
single-mode systems, with no irreversible spontaneous
emission. The absence of conventional saturation, which
is at the origin of the Poissonian photon statistics in nor-
mal lasers far above threshold, as well as the sequence of
first-order phase transitions already mentioned, are a
direct consequence of this fact. In this, the output
characteristics of the micromaser can be seen as a signa-
ture of inhibited spontaneous emission.

The Fokker-Planck approach of Secs. III and IV pro-
vides an alternate, intuitively clear picture of the physics
of the micromaser. It indicates that the photon number
of the cavity mode evolves to a good approximation ac-
cording to the equation

ri =8 sin (v n at;„,/2) —yn,
reflecting the competition of pumping and field damping.
This equation may have several stable solutions, i.e.,
several possible metastable states of the micromaser.
Again, this is due to the truly coherent nature of atom-
single-field mode interaction, which is usually masked
when irreversible spontaneous emission and/or other
sources of stochasticity are introduced into the system.

Random fluctuations of the photon number due to the
quantum discreteness ("granularity" )' of the atom-field
interaction (and the Poissonian arrivals of the atoms, as
well as possible velocity distribution of the atoms) prevent
the system from converging exactly to the stable station-
ary solutions of (4.1). Instead, a stochastic photon num-
ber distribution around these points is established in a
time on the order of the cavity damping time y '. The
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APPENDIX: STOCHASTIC AVERAGES

In the microscopic theory of Sec. II, the field density
matrix of the micromaser is governed by an equation of
the type

x„+i ——L(g„)x„, (Al)

fiuctuations also throw the micromaser between the basins
of attraction of the fixed points of (4.1), and these tunnel-
ing transitions conspire in such a way that after a long
time the maser most likely operates in the particular sta-
tionary state that corresponds to the global minimum of
the potential V(v).

The Inicroscopic maser is a nontrivial system where the
microscopic mechanism of both continuous and first-
order phase transitions are effective. Furthermore, by
varying the flux of the atoms, a transition from a few-
particle system (N,„—1) to the thermodynamic limit
(N,„~ac) can in principle be followed experimentally.
The micromaser no doubt exhibits some quite interesting
statistical mechanics, which remains to be studied. Fur-
ther, it opens the way to a number of extensions, includ-
ing the possibility of generating squeezed states of the
electromagnetic field if a well defined phase can be im-
posed on the system, e.g., by injecting atoms in a coherent
superposition of upper and lower states. '

where I, is a linear operator depending on the random
variable g„(either the interval between successive atoms
or the interaction time, or both). Our aim is to calculate
the average of x„(g,, . . . , g„ i), assuming that the g; are
statistically independent.

Since x„,which now also is a random variable, only de-
pends on gi, . . . , g„ i, it is statistical y independent of
I.(g„), and the average of (Al) can be taken simply by
factorizing the rhs:

& x„,(g, , . . . , („)) =
& L (g„)) & x„(g, . . . , g„)) .

(A2)

This prescription immediately leads to Eqs. (2.8) and
(2.19) of the main text.
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