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A kinetic formalism based on the Vlasov-Maxwell equations is used to investigate properties of
the sideband instability for a tenuous, relativistic electron beam propagating through a constant-

amplitude helical wiggler magnetic field (wavelength Ap ——2m /kp and normalized amplitude

a =e8 /mc kp). The analysis is carried out for perturbations about an equilibrium Bernstein-
Greene-Kruskal state in which the distribution of beam electrons G, {y') and the wiggler magnetic
field coexist in quasisteady equilibrium with a finite-amplitude, circularly polarized, primary elec-

tromagnetic wave (co„k,) with normalized amplitude a, =e8, /rnc k, and constant equilibrium wave

phase. Particular emphasis is placed on calculating detailed properties of the sideband instability for
the case where a uniform distribution of trapped electrons 6, {y') is localized near the bottom of the
ponderomotive potential moving with velocity u~ =co, /(k, +kp) relative to the laboratory frame.
For harmonic numbers n &2, it is found that stable {Im~=O) sideband oscillations exist for
[co—(k +ko)ur] =n Qtt Her. e, (co, k) are the perturbation frequency and wave number in the labo-

ratory frame, Qs ——[a a, c lk~)'/() u) y~]' is the bounce frequency, ) IItmc' is the maximum en-

ergy of the trapped electrons in the ponderomotive frame, and k~ and y~ are defined by

kz ——(k, +kp)/y~ and yz ——{1—U~/c ) '/. On the other hand, for the fundamental (n =1) mode,
instability exists (Imago «0) over a wide range of system parameters Qq/ckp gg1 and I"p gg1, where

1 0 (a /4)(——torr/yrc ko)(1+A/c)[c/u~(y'it) ] and tour (4mnr—e—'/m)' is the plasma frequency
of the trapped electrons. Moreover, the maximum growth rate and bandwidth of the sideband insta-

bility for the fundamental {n =1) mode exhibit a sensitive dependence on the normalized pump
strength Qg /I pkpc.

I. INTRODUCTION AND SUMMARY

Free-electron lasers, ' as evidenced by the growing ex-

perimental ' and theoretical literature on this sub-

ject, can be effective sources for the generation of
coherent radiation by intense electron beams. Recent ex-

perimental investigations' ' have been very successful
over a wide range of beam energy and current ranging
from experiments at low energy (1SO—2SO keV) and low

current (S—4S A},' to moderate energy (3.4 MeV} and

high current (O.S kA), ' ' to high energy (20 MeV) and
low current (40 A). ' ' Theoretical studies have included
investigations of nonlinear effects and saturation
mechanisms, the influence of finite geometry on linear
stability properties, novel magnetic field geometries
for radiation generation, and fundamental studies of
stability behavior. In a recent calculation, 2 a self-
consistent kinetic formalisro has been developed to
describe the sideband instability within the framework
of the Vlasov-Maxwell equations for a relativistic electron
beam propagating through a helical wiggler magnetic
field. Unlike previous studies of the sideband instability,
the analysis is carried out for perturbations about an
equilibrium Bernstein-Greene-Kruskal (BGK) state in

which the beam electrons, the wiggler magnetic field, and
a finite-amplitude primary electromagnetic wave (to„k, )

coexist in quasisteady equilibrium. In the present
analysis, we make use of the general kinetic formalism
developed in Ref. 32 to carry out a detailed investigation
of the sideband instability for the case where the trapped
electrons are localized near the bottom of the ponderomo-
tive potential.

The theoretical model and assumptions are reviewed
briefly in Sec. II. The relativistic electron beam has uni-
form cross section and propagates in the z direction
through the constant-amplitude helical magnetic wiggler
field [Eq. (1)] with wavelength A,o

——2~/ko and normalized

amplitude a~ =e8~/mc ko. The theoretical model
neglects longitudinal perturbations (5$ 0) and transverse
spatial variations (B/Bx=O=B/By), and beam distribu-
tion functions

fb(z, p, t) =nb5(P )5(Pr )G(z,p„t)

with zero transverse canonical momenta are considered
[Eq. (4)]. Moreover, the stability analysis is carried out
for perturbations about an equilibrium BGK state in
which the distribution of beam electrons G, (y') and the
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wiggler II1RgIlctlc field [Eq. (1)] coexist IIl quasistcady
equilibrium with a constant-amplitude, circularly polar-
ized, primary electromagnetic wave (co„k,} with normal-

ized amplitude a, =eB,/mc k, and constant equilibrium
wave phase [Eqs. (2) and (3)]. Transforming the linear-
ized Vlasov-Maxwell equations to the ponderomotive
frame moving with velocity up

—co,/(k, +ko) leads to the
formal dispersion relation (8) in the diagonal approxima-
tion. Here, the trapped- and untrapped-electron suscepti-
bilities, Xo(k', co') and Xo(k', co'), are defined in Eqs. (10)

and (14} in terms of the exact electron trajectories in the
ponderomotive frame including the full influence of the
finite-amplitude primary electromagnetic wave (co„k,).

Detailed properties of the sideband instability are inves-
tigated in Sec. III for the case where the trapped electrons
are localized near the bottom of the ponderomotive poten-
tial [Eq. (18)]. Assuming wave perturbations with (nearly)
right-circular polarization, and neglecting the contribu-
tion of the untrapped electrons, the dispersion relation can
be expressed as [Eq. (25)]

dy' c)G, n coe(y')J„[kizI(y')]
co —c k cxo—cops = —a~copy

yp[co —(k+ko}up] —n coe(y')

where 6, (y') is the (normalized) distribution of trapped
electrons,

y'mc =[1+(p,') /m c2+a +a,

—2a a,cos(kpz')]'/ mc

is the electron energy in the ponderomotive frame, and
(co,k ) denotes the perturbation frequency and wave num-
ber in the laboratory frame. To summarize the other per-
tinent definitions in Eq. (25},we note that

kL =yp(k+ko up~/c2), kp-=(k, +ko)/yp

up cog/(ks+ko——), yp
——(1 up lc )—

Moreover,

coII(y') =(a~a, c2kp /y' )'~

is the bounce frequency of electrons trapped near the bot-
tom of the ~onderomotive potential, cro is a constant of
order unity, 2

co~ 4mnsez——/m 'is the plasma frequency
squared of the beam electrons, copz 4Irnze ——/m is the
plasma frequency squared of the trapped electrons, nI is
the (average} density of the trapped electrons, the orbital
turning points +zz (y') are determined from

kp zI (y')=(y' —y' )/a a, ,

and y '+ and y
' are defined by

[1+(a +a )2]1/I

In circumstances where the trapped electrons are localized
near the bottom of the ponderomotive potential, the sta-
bility properties calculated from Eq. (25) are relatively in-
sensitives to the detailed form of 6, (y'}. Therefore, in
Sec. IIIA, we consider the case where the trapped elec-
trons are uniformly distributed in y' from y'=y' to
y'=yM [Eq. (27)], where (ysc) —(y' ) «(y'+)
—(y

'
) =4a a, for electrons trappcxi near the bottom of

the ponderomotive potential. For the choice of distribu-
tion function in Eq. (27), the dispersion relation can be ex-
pressed as [Eq. (28)]

2 2n Q, C„(k,~)
co —c k —crocops ——a copr 2 2 2

1 [co—(k+ ko)up ] —n Qe

Qa =cd(y'=y sc)ly, =[a a,c'(kp)'/(y sc)'yp]'",

and the nth harmonic coupling coefficient C„(k,co) is de-
fined in Eq. (29). An examination of Eq. (29) for
(ki, ) zI (y'=y sc)/4«1 shows that the harmonic contri-
butions in Eq. (28) decrease rapidly with increasing n for
n &2. Moreover, it is found that the harmonic contribu-
tions in Eq. (28} for n & 2 lead to stable oscillations with
Inca =0.

In Secs. III B and III C, we investigate properties of the
sideband instability for the fundamental (n =1) mode.
Neglecting the harmonic contributions in Eq. (28) for
n & 2 leads to the dispersion relation (39), which can be
Rppfox1111Rtcd by [Eq. (42)]

[(5co up5k) ——QR] (5co—up5k) —cko „+es2 2 up 5k

=I oc ko .

Here, 5co =co co, and 5k =k——k„where

k, =yp2{1+up/c)(up/c)ko

and co, =ck, are the upshifted wave number and frequen-
cy. Moreover, the small parameter

es ——(aoco ps /2yp koup )(1+up /c )
' « 1

describes the (small) shift in wave number and frequency
produced by beam dielectric effects. Finally,

Qelcko [(a„a,)'~ /yacc](l+——up/c) &&1

for a, ~g1 and ~,=ck„and the small dimensionless pa-
rameter I o is defined by [Eq. (45)]
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a~ N pT ( 1 +U~ /c )~3 l8 p (~1 .

Equation (42) is a cubic equation which determines the
complex oscillation frequency (5' —U&5k) in terms of
5k/k, and the dimensionless parameters I 0, Q~/eko, and
eI, . A detailed analysis of Eq. (42) [or equivalently, Eqs.
(44) or (48)] is presented in Sec. IIIC. As a general re-
mark, for I o~~ 1, it is found that the lower sideband ex-
hibits instability (Im&o ~0) for 5' and 5k in the vicinity
of the simultaneous resonance conditions

UI 5k5' —Up5k =cko — + ei,
C

Denoting the simultaneous solutions to these equations by

(58,5k ), we obtain for the central wave number

k =k, +5k and frequency ro =oi, + 5' of the lower side-
band [Eq. (35}]

r

"s Qg1+——ko 1 —eg—
C C koUp

{QR/I oko c && 1), the characteristic maximum growth
rate is [Eq. (51)]

1/2I okoc I'Poc
Im(&o) =

(2) I/2

and the corresponding (narrow) bandwidth is given by
[Eq. (56)]

1/22I Okoc=2I o-
Up Qg

From Eqs. (50}, (51), and (56), we note that the growth
rate and bandwidth of the sideband instability are greatly
rixluced as the dimensionless pump strength is increased
to the regime where Q~/I okoc ~&1.

As a final point, the dispersion relation (25) and related
analysis in Sec. III are valid for electromagnetic wave per-
turbations with right-circular polarization, in which case
it is found that only the lower sideband exhibits instabili-
ty. A completely parallel analysis can be carried out in
circumstances where the wave perturbations have left-
circukir polarization. In this case, it is found that the
role of the lower and the upper sidebands is reversed, and
the upper sideband exhibits instability for perturbations
with left-circular polarization.

Up Upco=1' 1+ koU 1 —ci,P
C

where

ke ——yp(1+ up/c )(vp /c)ko .

Qg

kovp II. KINETIC DISPERSION RELATION

The present analysis assumes a relativistic electron
beam with uniform cross section propagating in the z
direction through the constant-amplitude helical wiggler
magnetic field 8 (x)=V)& A„(x) with vector potential

(3)l/2 32 Q
lm(5~) =ry, c

(2)'/' » I okoc'

'
]./3

1 11+ 1+
I Ok()c

' —1/2 2/3

32 &a3
1 — 1+—

27 I ok@

—1/2 2/3 '

II1 tllC Weak-pump regime (Qii/I okoC (& 1), thC Instabili-
ty is relatively broadband, and the characteristic max-
imum growth rate is [Eq. (50)]

(3)1/2
Im(5~) = I okoc .

2

Moreover, it is found that the corresponding growth late
Im(5') Rnd 111stablllty balldwldtll (ln 5k space) cxlllblt R

sensitive dependence on the normalized pump strength
QII/I okoc. For example, for k=k, +5k=k, the charac-
teristic maximum growth rate Im(5o2) calculated from
Eq. (42) is given by [Eq. (49)]

8~
A (x)= — [cos(koz)e„+sin(koz)e~] .

ko

Here, Ao Zn /ko ——co——nst is the wavelength, and
8 =const is the amplitude of the wiggler magnetic field.
It is assumed that the electron beam is sufficiently tenu-
ous that the Compton-regime approximation is valid with
negligibly small longitudinal fields (5/=0). Moreover,
the beam density and current are assumed to be sufficient-
ly small that the infiuence of equilibrium self-electric and
self-magnetic fields on the particle trajectories and stabili-
ty behavior can be neglected. That is, the present analysis
neglects the effects of the self-electric field and the self-
magnetic field associated with the equilibrium space
charge and axial current, respectively„of the electron
beam. For purposes of investigating the sideband instabil-
ity, it is also assumed that perturbations are about a circu-
larly polarized, constant-amplitude, monochromatic, elec-
tromagnetic wave (co„k,} with vector potential

8,
A, {x,t ) = [cos(k,z co, t )c„—sin(—k,z —co, t }e~],

k,

On the other hand, in the strong-pump regime and electric and magnetic fields given by
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1
E,(x,t)= ———A, (x,t),

e t

B,(x,t)=VXA, (x,t) .

Here, 8,= const is the magnetic field amplitude of the

electromagnetic wave. The electromagnetic wave
described by Eqs. (2) and (3) should be viewed as the pri-
mary free-electron-laser (FEL) signal that develops after a
period of linear growth and saturation. The present
analysis assumes that the distribution of beam electrons,
the wiggler field [Eq. (1)],and the primary electromagnet-
ic wave field [Eqs. (2) and (3)] coexist in a quasisteady
equihbrium BGK state. Moreover, we examine the class
of exact solutions to the fully nonlinear Vlasov equation
of the form474s

fb(z, p, t) =nb5(P„)5(P»)G(z,p„t),

where nb ——const is the density, and

P„=p„(e/c)A—„(z) (e/—c )A~(z, t) (e/c)5A—„(z,t )

P» =p» (e/c)A»—~(z) (e/c)A»—,(z t) (e/c)5A—»(z t)

are the transverse canonical momenta. Within the context
of the assumptions in the present analysis, we note that
P„and P„are exact single-particle constants of the
motion. Moreover, the class of distribution functions
with P„=O=P» in Eq. (4} corresponds to an "ideal" elec-
tron beam with zero transverse ernitiance. The Vlasov-
Maxwell equations are then linearized for small-
amplitude perturbations about the equilibrium BGK
state characterized by the wiggler magnetic field (nor-

malized amplitude =a~ =eB~/mc ko), the primary elec-
tromagnetic wave (ai„k, ) (normalized amphtude
=a, =e8, /mc k, ), and the corresponding self-consistent
distribution of beam electrons G, (y'). Here,

y'mc =[1+(p,') /m c +a +a,
—2a a,cos(k»z')]'~ mc

is the electron energy in the ponderomotioe frame moving
with axial velocity

cps

p

and k» is defined by k» =(k, +ko )/y», where

y» ——(1—u»/c ) '~ . In the absence of wave perturbations
(5A =0=5A») about the electromagnetic field configura-
tion described by Eqs. (1)—(3), it should be noted that the
energy y'mc in the ponderomotive frame [defined prior
to Eq. (5)] is an exact constant of the motion. Therefore,
in ponderomotive frame variables, the corresponding dis-
tribution function

fb nb 5(P——„' )5(P»')G, (y')

is an exact equilibrium solution ' to the fully nonlinear
Vlasov equation.

It should be emphasized that to maintain a primary
electromagnetic wave with constant amplitude and con-
stant phase [5,=0 in Eq. (2)j necessarily requires both
untrapped- and trapped-electron populations. ' Indeed,
the Maxwell equations for A, (x, t) can be used to derive
an integral equation which expresses the distribution of
trapped electrons G, (y') directly in terms of the distribu-
tion of untrapped electrons G, (y') [Eq. (48) of Ref. 29].

To summarize briefly, the linearized Vlasov-Maxwell
equations are transformed to the ponderomotive frame,
where it is found that the linearized equations for the per-
turbed distribution function 5G(z',p,', t') and the normal-
ized vector potential

5A +(z', t')=(e/-mc }exp(+ikoz')[5A„(z', t')

+i5A»(z', t')]

assume particularly simple forms. In the ponderomotive
frame ("primed" variables}, the linearized Vlasov-Maxwell
equations are combined to give the eigenvalue equation

2
(c0') +c —c ko+2ikoc y», +2z+ 2 —aito»b 5A (z )

dpi' 8Gg
aito b[5A +—(z')+5A (z')j+ , iso'aber& b J—,I dt" exp[ ice'(t" t')—]—3»b 2 w p

( z)2

X [5A +(z"(t"))+5A (z"(t"))] (6)

for the potential amplitude 5A +—(z') and the complex os-
cillation frequency co'. Here, an FEL oscillator is as-
sumed, with Im~'~0 corresponding to temporal growth.
Moreover, G, (y ) is the equilibrium distribution function
in the ponderomotive frame, co»b =4mnb e /m is the non-
relativistic plasma frequency-squared, and ai(k»z') and
a3(k»z') are coefficients of order unity. An important

feature of the eigenvalue equation (6) is that the electron
orbit z"(t"), which occurs in the orbit integral on the
right-hand side of Eq. (6), can be calculated in closed
analytical form in the ponderornotive frame from

rl

(y') „=c[y' —1 —a (z")j (7)
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for both the trapped and untrapped electrons. In Eq. (7),
y'me =const is the electron energy in the ponderomotive
frame, and a (z") is defined by

az(z")=a +a, 2—a a,cos(kpz") .

Equation (7) is to be solved for z"(t") subject to the boun-

dary coildltloiis z (t =t )=z aiid p (t =t )=p .
A Fourier decomposition of the z' dependence of the

eigenvalue equation (6) leads to a matrix dispersion equa-
tion relating the Fourier components of the perturbed vec-
tor potential. In the diagonal approximation, we neglect
the coupling of wave component k' to k'+st
(s = 1,2, . . .). For electromagnetic perturbations with
nearly right-circular polarization, we obtain the diagonal
dispersion relation

Dr(k', to')= —P'o(k o~ )+go(k t0 )]

Here, the coefficient a„(z',y') is defined by

~~(y )

a„(z',y')=, I dr exp Iik'[z "(r) —z']
rs(y') 0

inc—os(y')~], (12)

where ~= t"—t',

cos(y') =~res(y')/2F(n/2, ~. r )

[a a c2(k~ )2/yi2]1/2

is the bounce frequency of a trapped electron with energy
y'mc, rs(y')=2m/tos'(y') is the bounce period, F(rt, ar)
is the elliptic integral of the first kind,

where DT(k', co') is defined by

Dr(k', to') =(to') c(k' +—ko 2kok'yp—

—2k pro yp Up /c ) Qoptob— (9)

is the bounce frequency near the bottom of the pondero-
motive potential, sr is defmed by

a'r-—[(y')'-(y' )']/4a a, ,

and ao is a constant coefficient of order unity. In the
dispersion relation (8), using techniques similar to those
developed by Goldman ' for electrostatic trapped-
particle instabilities in nonrelativistic plasma, the
trapped electron -susceptibility Xo(k', co') can be expressed
in the classic form of a sum over oscillators

F„(y')
Xo(k, co )=—i a~cd~ g „, dy

(t0') —n 'res(y')

(10)

where the oscillator strength F„(y') is defined by

Tz', ,2 mc BGs
F„(y')= to'—

y' By'

'r'&' dz' a~(z', y')
X

&r~r'~ A~ [(y')——1 —a (z')]'~z

and A& ——2m/k~ is the wavelength of the ponderomotive
potential. In Eq. (11), G, (y') is the energy distribution of
the trapped electrons, and the orbital turning points
+zr(y') are determined from

(y') =(y' ) +4a~a, sin [kpzT(y')/2] . (13)

corresponding to the maximum (y '+) and minimum (y
'

)

allowable energy of an electron trapped in the ponderomo-
tive potential (Fig. 1). In a similar manner, the
untrapped electron sus-ceptibility Xo (k', to') occurring in the
dispersion relation (8) can be expressed as

In Eqs. (10) and (13), assuming a~ ~0 and a, &0 without
loss of generality, the quantities y '+ and y

' are defined
by

y'. =[1+( .+,)'1'"

Xo(k co )=—ia tomb g, dy'
+n'(y') F„'(y')

(co' (k'+
nkvd )P—'U(y')c] [co'+(k'+

nkvd
)13'U(y')c]

(14)

where F„~(y') is defined by

, mc BG. "I" dz'
F„~(y')= —ai'

y' By' I—i~~i A~ [y' —1 —a (z')]'~

and the coefficient a„(z',y') is defined by

~U(y')
a„(z',y') = d~expIik'[z"(r) z'] i(k'+n—k')—PU(y')crI .

rU(y') (16)
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l

l Unstrapped Electrons( y & y )
l

+

co'=y&[co —(k+ko)uz],

k'=y~(k+kp —unco/c ),
where u~ =co,/(k, +ko) and y~ =(1—u~/c )

(17)

Separotrix (y' = y') Troppe d E lee t ron s ( y'& y' )

FIG. I. In the ponderomotive frame, electron motion in the
phase space (z',p,') occurs on surfaces with y'=const.

In Eqs. (15) and (16), pU(y'}c is the axial velocity of an
untrapped electron, rU(y') is defined by

~U(y') =2m /k, 'P'U(y')c,

G, (y') is the distribution of forward-moving (p,
' &0) un-

trapped electrons, and G, (y') is the distribution of
backward-moving (p,

' &0}untrapped ele:trons in the pon-
deromotive frame.

The dispersion relation (8), together with the definitions
of Dr(k', co'), Xo(k', co'), and Xo(k', co') in Eqs. (9), (10),
and (14), respectively, can be used to investigate detailed
FEL stability properties over a wide range of system pa-
rameters. In this regard, the expressions for the trapped-
and untrapped-electron susceptibilities in Eqs. (10) and
(14) are valid for a broad class of BGK distribution func-
tions G, (y ) which coexist in quasisteady equilibrium
with the wiggler field [Eq. (1)j and the constant-amplitude
primary electromagnetic wave (co„k, ) [Eqs. (2) and (3)j.
Note that Eqs. (10) and (14) are rich in harmonic content,
with resonant behavior in the integrands occurring for
co' =n cori(y') for the trapped electrons, and for

co' = +(k'+ nk~ )p'U(y')c

for the untrapped electrons.
It is important to comment on a notational point. In

obtaining the eigenvalue equation (6), we have introduced
the normalized vector potential

5A+ (z, t) =exp(+i-koz)(e/mc )

X [5A, (z, t)+i 5A, (z,t)],
which includes the scahng factor exp(+ikuz) Subse-.
quently, in ponderomotive-frame variables, there is a
Fourier decomposition of the z' dependence of

5A +(z', t') =5A -+-(z')exp( i co't') . —

As a consequence of the scaling factor exp(+ikoz), the
laboratory-frame wave number should be shifted by one
additional unit of ko to give the familiar condition for
beam synchronism with the ponderomotive wave. In par-
ticular, for perturbations with right-circular polarization
described by the dispersion relation (8), the frequency and
wave number (co', k') in the ponderomotive frame are re-
lated to the frequency and wave number (co,k ) in the labo-
ratory frame by

III. SIDEBAND INSTABILITY

A. Dispersion relation for electrons trapped
near the bottom of the ponderomotive potential

The formal dispersion relation (8) is a very general re-
sult which can be used to investigate detailed FEL stabili-
ty properties over a wide range of system parameters,
choices of distribution function G, (y'), and frequency re-
gimes. For present purposes, we make use of Eq. (8) to
investigate the sideband instability, with particular em-
phasis on the case where the trapped electrons are local-
ized near the bottom of the ponderomotive potential with

( k')'z' '(y')

(19)

where the oscillator strength F„(y') is defined in Eq. (11).
After some tedious algebraic manipulation that makes

use of Eqs. (11)and (12) and the axial orbit

z"(r)= sin[co&(y')~] z+'c [os&co( )yv j
y'mcos(y')

(20)

calculated from Eq. (7) near the bottom of the pondero-
motive potential, it can be shown that

F„(y')+F „(y')= —(co')'
Itic kp BG

(y')'cori(y')

XJ„'[k'z,'(y') ], (21)

where J„(x) is the Bessel function of the first kind of or-

The corresponding orbit z"(r) calculated from Eq. (7)
then exhibits simple harmonic motion with frequency

cori(y') =[a u, c (k~)'/(y')']'~' .

While this is a very restrictive assumption, the analysis
gives useful physical insights as to the nature of the insta-
bility. For present purposes, we also assume that ~' is
well removed from the resonances

co'=+(k'+nk~ )p'p(y')c

characteristic of the untrapped electrons, and the term
Xo(k', co') is neglected in Eq. (8). The dispersion relation
(8) can then be approximated by

DT(k', co') = —Xo(k', co')

F„(y')
=Tu~~pb X - dy i(co')' n'cott (y')—
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der n. Here, the turning points +zr(y') are determined
from 6, (y') = 2(a a, )'" n„

G, (y'),
gpss g

( kp)'zr'(y') =[(y')' —(y ' )']/a~a, ,

which follows from Eq. (13) for (k~) (zr) /4~~1. There-
fore, making use of Eqs. (19) and (21), the trapped-
electron susceptibi1ity can be expressed as

., qy aG,
Xo(k, co ) = 2 a~copT r' y' 0y'

(~')'&'[k'zT(y') l
X

(cu')' —n '8 s (y')

(22)

for electrons trapped near the bottom of the ponderomo-
tive potential. In obtaining Eq. (22), we have introduced
the renormalized trapped-electron distribution function

G, (y') defined by32

(23)P t

J 'ay'y'G;(y )=1,y'

where co&T 4'——nTe /m, and nT is the (spatially aver
aged) density of trapped electrons. Making use of

„J„(x)=1, we express the summation in Eq. (22)
Rs

(cu') J„[k'zT(y')]
(co')' —n egg(y')

= 1+2 . (24}
n c3s(y')J„[k'zT(y')]

(c0')' n'—co s(y')

Making use of Eqs. (9), (22), and (24), and transforming
(cu', k') in the ponderomotive frame to (co,k) in the labora-
tory frame according to Eq. (17), the dispersion relation
(19) can be expressed in the compact form

"
J

r'+ gy' aG. n'c0s(y')J.'[kizT(y')]

n = i r — 'y c)y ye[co —(k+ku)up]' nzco s—(y')
(25)

In Eq. (25), we have absorbed the dc contribution to
Xo(k', cu') [i.e., the "1"term in Eq. (24)] into the definition
of ceo. To summarize the pertinent definitions in Eq. (25),
we note that

a =eB~/mc ko, cu~T 4trnTe ——lm,

electrons are uniformly distributed in y' from y'=y ' to
y'=y I (»g. 2},t.e.,

T

=const, y &y'&y M
G;(y')= (yM)'-(y' )'

cue(y')=[a a,c (k~) /(y') ]'~, a, =eB, /mc k, ,

k'=(k, +ku)/y, y =(1—u /c )

u, =~, /(k, +k, ),

(k~)'zr'(y')=[(y')' —(y' )']/a a, ,

y '+ ——[1+(a„+a,) ]'~

Moreover, the quantity kL(k, co) occurring in the argu-
ment of the Bessel function in Eq. (25) is defined by [see
Eq. (17)]

kL y~(k+ko —u~cu/c ——) . (26)

In circumstances where the trapped electrons are local-
ized near the bottom of the ponderomotive potential, the
stability properties predicted by Eq. (25) are relatively in-

sensitive to the detailed form of 6, (y'). Therefore, for
present purposes, we consider the case where the trapped

6 (y')
I

l

]

I

I

A t

T+

FIG. 2. Plot of trapped-electron distribution function 6 ~(y')
in Eq. (27) vs y' for electrons trapped near the bottom of the
ponderomotive potential.

Here, the normalization constant is chosen to be con-
sistent with Eq. (23}. Moreover, y I exceeds y

'
by only
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where the effective bIve q cy QII and the nth har-
ni

'
icient C„(k,al) are defined by

(29)

2J.'[k' f() )]
y'(y' —j&' )
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I

l

l

l

l

gg l I l
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0 u&

—c k —Izoal &b
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tion (28) are closely tuned to the simultaneous resonance
conditions

2 1/2
0,'()Q) pb

co = +ck 1+ 2k 2

co —(k+ ko)up = +n Q~,

where a~pb/c k &&1 is assumed. We denote the simul-

taneous solutions to Eq. (34) for (co,k) by (co,k ). Making
use of a~ pb/ck &» kiiup [Eq. (32)] to solve Eq. (34) itera-

tively for (co,k) gives
r

2 nag
k=rp 1+ k(3 1 —eb+

c c kuup

(35)

"s Up Pl Qg
oi=r 1+- kou 1 —eb- +

P c C koUp

where eb is defined by

+Wpb l

kuup rp( 1+up lc )

Here, the dimensionless parameter eb «1 describes the
shift in wave number and frequency produced by beam
dielectric effects. Because eb «1 and Q33/kuc «1 are
assumed [Eq. (32)], we note from Eq. (35) that beam
dielectric effects (eb) and the bounce motion of the
traPPed electrons (+nQii/kuup) Produce very small shifts
in wave number and frequency relative to the central

values (ro„k, ) defined by
T

C C

(37)
U

coc =rp 1+ koup
C

Moreover, adjacent sideband modes in Eq. (35) are
separated in frequency by an amount equal to
rb(1+ up/c )Qii.

Finally, for the case where the trapped electrons are lo-
calized near the bottom of the ponderomotive potential, it
is readily shown that

(kL, ) zz. (r'=r M)

=[«i, )'/«p)']I[()3')' —(r '-)']/a a, I «I
in Eq. (28). Therefore, using the small-argument expan-
sion J„(x)=(ni) '(xl2)", it follows from Eq. (29) that
the factor n Q33C„(k,co) occurring in the dispersion rela-

tion (28) can be approximated by

n'
n Q33C„(k,co)=

2(r M)3rp (ni)'

«r'. )'zr'(r'=r I )

X (38)

B. Sideband instability for the fundamental (n =1) mode

Based on the discussion at the end of Sec. III A, we now
consider the fundamental (n =1) mode and neglect all
harmonic contributions in Eq. (28) for n &2. Therefore,
making use of Eq. (38), the dispersion relation (28) is ap-
proximated by

I [co—( k +k o )Up ] —Qg I ( io —c k GUN —
pb )

2 3 2
a copTC (kL )=a copTQiiCi(k, o3)=

where kL,
——rp(k+ki3 —Upco/c ). We introduce the di-

mensionless parameter I i3 « 1 defined by

(39)

a~co pTc (k L )
2~2 2 i 2

'@.c'ko(r I)'rp

where k L, is defined by

(40)

k L =(k, +ku)/rp =rp(1+up/c)ku .

Here, without loss of generality, roc and k, exactly solve

the simultaneous resonance conditions, co, —(k, +ki3)up
=0 and co, =ck„which give the expressions in Eq. (37).
Expressing co=coc+5co and k=k, +5k, and making use
of kL

——rp(k+ki3 —upco/c ), it is straightforward to show
that the dispersion relation (39) can be expressed (exactly)
as

where kL, ( k, co) is defined in Eq. (26). Evidently, because

(kL, ) zT (r =r M}/4«1

it follows from Eq. (38) that n Q33C„(k,cg) decreases rap-
idly with increasing n for harmonic numbers n &2. This
property, peculiar to the case where the trapped electrons
are localized near the bottom of the ponderomotive poten-
tial, allows us to neglect all n & 2 harmonic contributions
in Eq. (28} when calculating the stability behavior associ-
ated with the fundamental (n =1) mode. Furthermore,
for the (stable) oscillations at the higher harmonic num-
bers n &2, the simultaneous resonance conditions in Eq.
(34) provide an excellent estimate of the oscillation fre-
quency and wave number when (kL, ) zT (r'=re)/4«1.

[(5'—up5k) —Qii] (5' up5k) —cko — —+2 2 5k Qgh) pb

2kok, Upc

(5'—up 5k ) up (5' —up5k )
c

c(5k)

2' kg

=ro'c'k,' &+ -' 5k

k

up Ic (5' —up 5k )

1+U& /c cko
(41)
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where use has been made of the definitions of k, and p3, in Eq .(37).
For I p « 1 and Qii /ckp « 1, the solutions to Eq. (41) satisfy

)
5P3 —

up 5k
) &&kpc « k, c and

~
5k

j &&k, . Therefore,
an excellent approximation to Eq. (41) is given by

[(5P3 up—5k) —Qa] (5' u—p5k) c—kP +ei,2 2 5k

k,
=I ()e ko, (42)

where

Qg

I pkpc
'

up 5k5K= +ei,I pc

(43)

The dispersion relation (42) can then be expressed in the
equivalent form

[(5Q) —0 a](50 5K)=—1 . (44}

Equation (44) is the final form of the approxjmate
dispersion relation d'escribing the sideband instability for
the fundamental (n =1}mode. To summarize briefly, in
deriving Eq. (44) it has been assumed that

Qajckp [aa——a/(y sr) ]'~ (1+upjc) &&1

[Eq. (33}]and that I p « 1 [Eq. (40)]. Making use of

k, =yp(1+vp/c)(up/c)kp, P3, =ck, ,

k r, =(k, +kp)lyp ——yp(1+up/c)kp,

and y3r=(1+a )'~, it is readily shown that I'p can be
expressed as

a P3pr (1+up/c)
4 (1+a )

j
ypc kp up/c

(45)

The inequality in Eq. (45) is easily satisfied for the practi-
cal case of a tenuous electron beam with p3 pr/
/pc ko

As an important notational point, me note that the

eb =cpco y/2kpk u c

=(crpp3ps/2ypk pup)(1+upic) '

is the small parameter (es «1) defined in Eq. (36). Here,
I'p is defined in Eq. (40), and k, is defined by

k, =yp(1+up jc)(uplc)kp .

It is convenient to introduce the dimensionless frequency
shift 50, bounce frequency Qa, and wave number shift
5K defined by

(5p) —
up 5k )50=

C. Analysis of dispersion relation

A detailed investigation of the dispersion relation (44)
over a wide range of Qa shows that the maximum growth
rate occurs for frequency and wave number in the vicinity
of

50=—Qe,
(46)

Note that Eq. (46) corresponds to the resonant frequency
and wave number (pi, k) defined in Eq. (35) for the lower
sideband (minus sign) of the fundamental (n =1) mode.
We therefore introduce the shifted dimensionless frequen-

cy and wave number 50 ' and 5K'defined by'

50= —Qe+50 ',
5K= —0@+5K ' .

(47)

Making use of Eq. (47), the dispersion relation (44) can be
expressed in the equivalent form

(50 ')(50 ' —20' )(50 ' 5K ') =1 . — (48)

Because maximum growth occurs for 5E'=0, we solve

Eq. (48) for the case 5K'=0 exactly The sol.ution to
(50') —20'(50') —1=0 then determines the charac-
teristic maximum growth rate Im(50') =Im(50)
=1m(5P3)/I'pkpc. Some straightforward algebra gives

trapped electron density in the pondermotive frame (nT)
is related to the trapped elet:tron density in the laboratory
frame (nz) by nT ——nrjyp [S.imilarly, nb —nbjy—p for
the total beam density. ] Therefore, factors such as
D prjypc kp 4m——nre /ypmc kp occurring in Eq. (45) can
be expressed in the more familiar form

Pier (4nnre jm)
ypc3kp ypc2kp

where nT is the average trapped electron density in the
laboratory frame.

In dimensionless variables, Eq. (44) is a cubic equation
which determines the complex oscillation frequency 50 in

terms of the wave number 5E. Note that the dimension-
less parameter Qa ——(Qa/ckp)/I p is the ratio of two
small parameters, Qa/ckp and I p. Therefore, Qii can
cover the range from Qa «1 (weak-pump regime) to
Qa ~~1 (strong-pump regime).

32Im(5') =I pkpc 1+
' 1/3

Qg1+ '1+
IP33 3

—1/2 2/3
Qg

1 — I+
27 I pkpc

—1/2 2/3

(49)
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(50 ')' —(5K ')(5Q ')+ =0 .
20'

(52)

for 5K '=0, which corresponds to

k =k =yq(1+ up/c)(uq/c)kp[1 —eb Q—s/kpup] .

[See Eqs. (35), (43), and (47).] In the weak-pump regime
(Qs « 1), Eq. (49) reduces to

(3 )1/2
Im(5') = I pkpc, for Qs « I pkpc . (50)

2

On the other hand, in the strong-pump regime (Qs »1),
Eq. (49) gives

' 1/2I pkpc I pkpc
Im(5') =,/, for Qs » I pkpc . (51)

(2) l/2 Q

Figure 4 shows a plot of Im(&p)/[(3)'/ I pkpc/2] versus
the normalized pump strength Qs ——Qs/I pkpc calculated
from Eq. (49). It is evident from Fig. 4 that Im(5') ex-
hibits a simple scaling with Qs/I'pkpc only in the asymp-
totic limits in Eqs. (50) and (51}.

The dispersion relation (48) assumes a particularly sim-
ple form in the strong-pump limit (Qs »1). Assuming

I
50'I «20s, Eq. (48) can be approximated by the

quadratic equation

with maximum growth [Eq. (51)] occurring for 5K '=0.
We note from Eq. (55) that the full bandwidth of the in-
stability is 2(5Kb'). From Eqs. (43), (47), and (54), the
corresponding bandwidth in k space (b,k ) is given by

21"okor"=2r. ' (56)
up Qs

where k, =yz(1+ uz/c )(up/c )kp is defined in Eq. (37).
Of course the complex oscillation frequency

50=(&u up5k—)/I pkpc

can be determined exactly from the cubic dispersion rela-
tion (44) [or equivalently, Eq. (48)] for general values of
the dimensionless pump parameter Qs ——Qs/I'pkpc and
wave number

5K=(up/I pc)(5k/k, +eh) .

Typical numerical results are illustrated in Figs. 5 and 6.
Shown in Fig. 5 are plots of Im(50) [Fig. 5(a}] and
Re(50) [Fig. 5(b)] versus 5K calculated from Eq. (44) for
Qs ——1. Note from Fig. 5(a) that the growth rate Im(5')
assumes the maximum value Im(5'�)=0.67I'pkpc for
5K=—0.80+. Moreover, Re(50) varies approximately
linearly with 5K over the unstable range —2.3 &5K &0.8.

The solution to Eq. (52) is given by
I/2

50 '= —,
' (5K ')+ (5K ')2—

Qs
(53)

The unstable branch in Eq. (53) exhibits instability
(Im5Q '

& 0}for 5K ' satisfying

I
5K '

I & 5K br
=

O 1/2

21'pkpc

Qg
(54)

The corresponding growth rate obtained from Eq. (53) is

I'pk, c rpk, c
'" '

(5K )2
''"

Im(&u) = 1—
(2 )

1 /2 Qs (5K

(55)
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FIG. 4. Plots of normalized growth rate Im(5~)/
[{3)' I okoc/2] vs dimensionless pump strength I4/I okoc for
5I{."=0 [Eq. {49)].

FIG. 5. Plots of (a) Im(5m) /I okoc and (b)

[Re{5co)—u~5k]/I'okoc vs 5K= {u~/I Oc){5k/k, +eb) calculated
from Eq. (44) for dimensionless pump strength 0&/I pkoc = 1.
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To illustrate the dependence of the instability growth rate
and bandwidth on Qs, shown in Fig. 6 are plots of
Im(5Q) versus 5E calculated from Eq. (44) for Qs ——0.2,
2, 5, 7, and 10. For a weak pump with O~ ——0.2, we note
from Fig. 6 that the maximum growth rate is
Im(5co)=0.8610koc for 5E=O, and that the instability
bandwidth in 5E space is quite broad. On the other hand,
as Q~ is increased to values exceeding unity, the max-
imum growth rate in Fig. 6 decreases [see Fig. 4 and Eq.
(49)]; the bandwidth in 5E space decreases [see Eq. (54)];
and the value of 5E at maximum growth corresponds to
5E= Q~ —[see Eq. (46)]. Indeed, for Qz)&1, the ap-
proximate dispersion relation (53) provides an excellent
description of stability properties. For example, for
Qs ——10 in Fig. 6, the maximum growth rate
Im(5co)=0.221 Okoc and bandwidth 2(5E)M ——0.95 calcu-
lated numerically from the cubic dispersion relation (44)
are in excellent agreement with the estimates in Eqs. (54)
and (55).

To summarize the key results in the strong-pump
(Q)t ))I Okoc) and weak-pump (Qs ((IOkoc) regtmes,
the following points are noteworthy. First, the charac-
teristic growth rate in the weak-pump regime [Eq. (50)] is
independent of pump strength (as measured by Qs),
whereas the growth rate in the strong-pump regime [Eq.
(51)] scales as Im(5co)ccQ)t ' oca,—'/4. Moreover, for
specified I okoc, the characteristic growth rate in the
strong-pump regime [Eq. (51)] is smaller by a factor
(21 Ocko/3Q)t )'/~ than the growth rate in the weak-pump
regime [Eq. (50)]. It is also evident from Eq. (54) and Fig.
6 that the bandwidth of the sideband instability in 5E
space is greatly reduced in the strong-pump reg1me where
Qs/I"Okoc )&1.

Finally, as an illustrative set of system parameters, we
consider the case where

~0——6.28 cm, ko ——1 cm

8~ =1.70 kG, a~ =1,
nT ——3.14&(10 cm, m&T

——10 s

yp
——40, y xr (1+a„)'/ =1.414 .
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FIG. 6. Plots of Imgco)/I'Okoc vs 5E=(U&/I'oc)(5k/k, +eb )
calculated from Eq. (44) for Qz/I'Okoc=0. 2, 2, 5, 7, and 10.
Maximum growth rate occurs for 5K = —Q~ /I Okoc [Eq. (46)].

Qg (1
I geko

accordingly as

a, +g 1.24&10

(59)

(60)

That is, for primary electromagnetic wave amplitude suf-
ficiently large that a, ) 1.24 X 10, the sideband instabili-
ty operates in the strong-pump regime with Qs /
I ocko) 1.

From Eqs. (2) and (3), it follows that the radiation
power flow per unit area associated with the primary elec-
tromagnetic wave (cu„k, ) is given by

Pg/A, =c(ri), /ck, )8 g/4m .

For co,=ck„ the quantity P, /A, can also be expressed as

' =7.7X10-"co,'a,'
S CQ1

(61)

where a, =eB,/rnc k, . For the parameters in Eq. (57), we
estimate

cu, ~2yqcko ——9.6)&10' s

and Eq. (61) becomes

1g 1017 2

~s CHl
(62)

As an example, we take the effective area of the radiation
channel to be A, =err, =0.0628 cm corresponding to
r, =1.414 mm. Then for a, =1.24X10 [Eq. (60)], Eq.
(62) gives P, =6.9 MW. That is, for A, =0.0628 cm and
the choice of parameters in Eq. (57), the strong-pump re-
gime (Qz /I ucko & 1) corresponds to P, & 6.9 MW.
Moreover, for ck, =9.6)& 10' s ', the condition

a, & 1.24)&10 corresponds to 8, &68 G. [Compare
with the strength of the wiggler field 8„=1.70 kG in Eq.
(57).]

IV. CONCLUSIONS

Making use of a kinetic formalism based on the
Vlasov-Maxwell equations, we have investigated detailed
properties of the sideband instability for the case where
the trapped electrons are localized near the bottom of the
ponderomotive potential. Following a summary of the
theoretical model and assumptions (Sec. II), we obtained
the dispersion relation (25), which neglects the effects of
the untrapped electrons and is valid for general distribu-
tion G, (y') of trapped electrons localized near the bot-

Some straightforward algebra that makes use of Eqs. (33),
(45), and (57) gives I o——12.3)& 10 and Qz/cko
=(2a, )'", which reduce to

I o
——4.97& 10

(58)
= 1.414(a, )'

cko

Therefore, for the choice of parameters in Eq. (57), it fol-
lows from Eq. (58) that
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tom of the ponderomotive potential. For the choice of
uniform dlstrlbutton function G (1' ) 1n Eq. (27), the
dispersion relation (25) reduced to Eq. (28), which exhibits
stable sideband oscillations (Imco=0) for all harmonic
numbers n &2 (Sec. IIIA). In Secs. IIIB and IIIC,
neglecting the harmonic contributions for n &2, use was
made of the dispersion relation (39) to investigate detailed
properties of the sideband instability for the fundamental
(n =1) mode. For Qz/ckp «1 and I p «1 (the regime
of practical interest}, Eq. (39) was approximated by Eq.
(44) [or equivalently, Eq. (48}$, which determines the
dimensionless frequency shtft 5Q=(5to —vp5k)/I pkpc ln
terms of the normalized pump strength Qg=Qg/1 pkpc
and the dimensionless wave-number shift

5K =(vp/I'pc)(5k/k, +eh ) .

Here, 5k =k —k, and 5to=to —co„where

k, =yp(1+vp/c)(vp/c)kp

and to, =k,c. As a general remark, it was found that in-

stability exists (Im5co&0) for (co,k) in the vicinity of
(co,k) defined by

Up Up Qg
k =yp 1+ — kp 1 —eb—

C C kp vp

Up Up Qg
to=@ 1+ -- kpv 1 eb—

C kpUp

which corresponds to the lower sideband in Eq. (35) for
the fundamental (n =1) mode. Moreover, it was found
that the corresponding growth rate Im(5co} and instability
bandwidth (in 5k space) exhibit a sensitive dependence on
the normalized pump strength Qq/I pkpc [Fig. 6 and Eq.

(49)]. For example, in the weak-pump regime
(Qg/I pkpc «1), the instability is relatively broadband,
and the characteristic maximum growth rate is [Eq. (50)]

(3)1I2
Im(5to) = I pkpc .

2

On the other hand, in the strong-pump regime
(Qg/I pkpc »1), the characteristic maximum growth
rate is [Eq. (Sl)]

' 1/2I pkpe I pkpe
Im(5to) =

(2)' ' Qa

and the corresponding bandwidth is relatively narrow [Eq.
(56)]. Note from Eqs. (SO) and (51) that the growth rate
of the sideband instability is greatly reduced as the dimen-
sionless pump strength is increased to the regime where
Qg/1 pkpc »1.

As a final point, the dispersion relation (25) and related
analysis in Sec. III are valid for electromagnetic wave per-
turbations with right circul-ar polarization, in which case
it is found that only the lower sideband exhibits instabili-
ty. A completely parallel analysis can be carried out in
circumstances where the wave perturbations have left
circular polarization. In this case, it is found that the
role of the lower and the upper sidebands is reversed, and
the upper sideband exhibits instability for perturbations
with left-circular polarization.
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