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%e extend the semiclassical two-photon two-level model to include upper-level ionization and

upper-level decay via an intermediate level. %'e examine the effects of these relaxation mechanisms

on multiwave interactions, finding the generalized one- and two-wave two-photon absorption coeffi-
cients and the three-wave coupling coefficient. These mechanisms cause asymmetries to appear in

the absorption spectra in addition to those caused by Stark shifts. The Stark-shift term becomes

more comphcated and fails to vanish even when it does in the simpler model. For recombination

rates and ionization decay rates comparable to the coherence decay rate, coherent dips fill in.

I. INTRODUCTION

Two-photon two-level interactions receive much atten-
tion from both theorists and experimentalists. A fre-
quently used model' assumes two-level atoms where
transitions between the two levels are not dipole allowed
but can occur via nonresonant intermediate states. The
recent work of Sargent et al. presents a semiclassical
theory of two-photon multiwave mixing for this model
for an arbitrarily strong pump field and weak signal and
conjugate fields. A corresponding theory with quantized
probe and conjugate fields has been given by Holm and
Sargent.

Most experiments with two-level media have made use
of a near-resonant intermediate level (see, for example, Al-
len et al. ) to aid transitions between the two main levels.
For example, the 5p level in the 5s to 5d transition of Rb
and the 3p level of the 3s to 3d transition in Na both
enhance the corresponding two-photon transition proba-
bilities. In the present paper, we extend the theory of Ref.
4 to allow for nonzero population in such an intermediate
level. Specifically the upper level a decays into the inter-
mediate level l, which, in turn, decays to the lower level b
Level l is sufficiently nonresonant that its population is
not directly affected by the two-photon field connecting
levels a and b. We show that the existence of such a level
can alter the absorption spectrum due to population of
this level. A more general cascade decay scheme for the
one-photon case has been examined by Sargent and found
to cause changes in the population-difference decay time
as well as in the population pulsation factor. We find that
for two-photon transitions, similar changes occur and in
addition the intermediate level causes the Stark shift to
become more complicated and inherently nonzero. Sar-
gent et al. showed how Stark shifts cause the absorption
spectra to become asymmetric. Thus it is not surprising
that we find addition of the third populated level causes
asymmetries in the spectra.

Multiphotoo. ionization is currently receiving a lot of
attention in laser spectroscopy. ' In this paper we also
allow for upper-level ionization as an additional decay
path in order to study the effect of this decay process on
the complex absorption and coupling coefficients. Other

authors have treated the energy spectrum of the continu-
um electrons' and coherent effects in multiple-level sys-
tems. In this work we use a very simple model ignoring
the structure of the continuum and assuming recombina-
tion to the lower level. This approximates a cascade of
decays through the intermediate levels by one straight to
the lower level. Since we expect the number of recom-
binations to be very small, we let the recombination rate
in general be much lower than any of the other rates.
Simple first-order perturbation theory describing the pho-
toionization as is commonly used in astrophysics" as-
sumes the ionization rate is intensity dependent. We show
that this effect can lead to significant changes in the com-
plex absorption spectrum.

In Sec. II of this paper we derive the polarization of the
two-level medium including the two new upper-level de-
cay paths. We assume a simple ionization decay rate pro-
portional to the intensity. In Sec. III we derive the corre-
sponding single-mode steady-state complex absorption. In
Sec. IV we allow for two sidemodes and a pump wave
with different frequencies and solve for the sidernode po-
larization. In Sec. V we calculate the single sidemode
complex probe-absorption spectrum and in Sec. VI we dis-
cuss three-wave mixing. Section VII illustrates the effects
of the new decay processes on the complex absorption and
coupling factor spectra in different limits. Due to the
new degrees of freedom allowed by these new processes
the effects can be quite complicated. For this reason we
examine them independently by allowing either ionization
decay or the third level to become populated. We examine
both the short-coherence-lifetime limit and that for com-
parable coherence and population difference lifetimes.
We also look in both the low- and high-intensity limits.

II. POLARIZATION OF THE MEDIUM

In general the polarization of the medium with the level

scheme in Fig. 1 is given by

P(r, t)=tr(@p)

= X ' (pe&i'+ (pbi&jb '+"
J
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TWO-PHOTON TNG-LEVEL DIAGRAM

continuum ~
9'( r, t) =2 g ( P ajp a + P b p b +C.C. )e'"' (4)

l
where we keep only terms varying httle in an optical fre-
quency period (1/v).

The electric-dipole eoherences pl, are induced by the in-
teraction energies

P ja [8'(r, t)e '"'+c.c.],
2A

(5)

with a similar formula for pjb U. sing the general
Schrodinger equation of motion

FIG. 1. Two-photon two-level model including continuum.

where p,j is the electric-dipole matrix element between
the a and j states, d' is the atomic electric dipole operator,
and paj is the population matrix element between a and j.
Since a~b is a two-photon transition, p, b vanishes. We
consider cases in which the polarization (1) is induced by
the electric field

E(r, t)= N(r, t—)e '"+c.c
2

where gt'(r, t) varies little in a time 1/v, but has rapid spa-
tial variations like exp(iK r) T.his field induces the po-
larization

P(r, t) = ,' H(r, t)e "—'+c.c. ,

where the complex polarization 9'(r, t) also varies little in
the time 1/v. Combining Eqs. (1) and (3), we find

Ptj (1 IJ +i~tJ )Plj i [~op]iJ
me have

l
P 'a (Xja +ittija )Pja + [ ja(Paa Pjj 5lj )+ j bPba]2~

X(« '"'+&'e'"')

pjb = (3 jb+ittijb)pjb+ [ 1 jb(pbb pjj ij )+ pjapab]
2A

X(« '"'+&'e'"'), (8)
where ficotj =Pi(co; —coj) is the energy difference between
levels i and j, y;j is the corresponding decay constant, and
I identifies the intermediate state that may acquire popu-
lation. We see that wherever we had p„ in Ref. 4 we now

have p p,j5ij and—similarly pbb pbb pjj5ij. —
We integrate Eqs. (7) and (8) to first order in

without making a rotating-wave approximation (RWA),
since v differs substantially from all +coj, and +ei,b Us-.
ing the rt3;j to drop the lower limit of integration, and set-

ting pb,
——Rb, e '"', where Rb, varies little in an optical

frequency period, we have

Pja= 2~ J dr (@e " +@ e'"')eXP[ —(Xj +i~,, )(r —~')][P,,(P„—P5 )ij+P,bRb, e2'"t']

r

pe ivt g « iv—t

+
2A atja —v ittja +v

L

Since we assume ittab —=~

pjbRba .« tvt g«3tvt'
Ja Paa Pjj5lJ + +

roja +v ceja +3v
(9)

a)j~+v co) b
—v,

which allows us to replace coj, +3v in Eq. (9) by cojb+ v. Similarly integrating Eq. (8), we find

g ivt g —« ivt
1 g 3ivt g—« ivt-

Pjb =
~

+ pjb(Pbb Pjj 5lj)+ + pjaRab ~

2 tit'b v co b+ v '2A cg —v Qp b
—vl l Ja l

Substituting Eqs. (9) and (11) into the polarization (4) we have

g —tVt g« iVt

X I Pa,-I' + (p~ p,,5ij)+—PajPjb
l N ja —V Mjb —V

g ei vt g «e 3ivt

+ Rb,
N jg +V COlg +3V

+~".l

—ivt

+ '
6)lb —V

—&vt

+
QPjb —V

ap + —svt ~ —3&vt
pY e cYe ivt(p„p,;5i, )+ p„p—jb + Rb, e
6)j~ +V 69jg + 3V

g« tVt g —3tvt g« —lvt

(Pbb Pj/5ij)+ pbj p J'— +
QPjb+V Q)jg —V Q)j~ +V

g « ivt ge ivt — g «3ivt
+ I Pjb I' + (pbb pjj5ij)+ PbjP;a-

, QPlb
—V QPjb+V CO. —V

L

geivt
+

67 .
b
—Vl

Rb, e' (12)
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Now keeping only terms that vary little in the time 1/v, we have

+ (P„P,—;&~r )+
1 g P,'J. P rb

8"R,b

f2 63J —V QPJb
—V ~i~+

+
I

~&i I' + (Pbb pjj ~ir' ) +
CO.b

—V CO b+V COJb
—V

g 2QPJg 2rojb 2 P,'j )Pr'b 8"R,b
~j I 2 p (Pa~ Pjj ~ji)+ I ~bj I 2 ~ (Pbb Pjjslj ) +

J QPJQ Q) ob—J "J m) b
—V

(13)

Performing the summation in Eq. (13) we obtain the slow-
ly varying polarization of the medium

tion rate is A, which is generally small. For the steady-
state solution (i.e., single mode) we can set

H = 'rf'(k„p„+ kbbpbb kr'rpg )—+2rr'"k,'bp, be '"',
P11

——X =0,'+
(24)

where the two-photon coefficients k,b, k„, and kbb are
given by the usual values

which then gives us pa=y, p„/yi and X+=yrIP„/k, .
These together with

k,b
——fi 'g )P„ IPrb/(a), b

—v)

g )Pgj P jb/(COp +V),
J

k„=28 ' g ~
P j, ~

cur, /(a)r, —v ),
J

kbb 2iri g ~ P,b ~
erjb/(rub —v ),

P +Pbb+Pa+&+=& (25)

(15)

(16)

(17) and

8+X
2+y. /yi+yrI/~ ' (26)

give us P„and pbb in terms of the population difference
D =Paa Pbb~

and kll 1s given by
D(1+—y. /y, +yrI/~)
2+y. /yi+yrI/~

(27)

kiI=2& '
I &or I', ' +

I
&br I',

roib—

Note that the sum over j implicitly includes an integral
over all j levels in the continuum. %e see the p11 term
adds an extra nonlinearity to the index similar to the
k p„ term. Using Eqs. (9) and (11), we now derive the
equations of motion for the level populations P~, Pbb, pir,
the continuum population X+, and the coherence p,b us-
ing the two-photon rotating-wave approximation, i.e., we
neglect terms like 1/[y +i (co+2v) ] compared to
1/[y+i (co 2v)] A—ccordi.ng to Eq. (6), we have

It is not true in general that the populations in level I and
in the continuum will come to equilibrium before the oth-
er populations. However we make that assumption here
merely for the purpose of deriving an approximate popu-
lation difference decay time Ti. Thus, we find the popu-
lation difference equation of motion

D = (y. +yrI)p- —yipa—
g [r ( ~ oj pj a + ~bj pj b ) +c c ]

= —2(y, +yrI)P~ +[i (P,rPr, —+P brPrb)+c. c.] .
J

pab = (y+ ~)pab & g (~aj pjb paj ~jb ) ~

J

paa (1 a+yrI)paa g (i ~ajpja +c'c')
J

Pll 3 aPaa V1P11 ~

Pbb yIPll+~+ i g ( ~bjpjb Pbj ~jb)
J

X+=y,Ip„—km+ .

(19)

(20)

(21)

Substituting in the coherence equations (9) and (11) we
then obtain

D= —2(yg+yrI)pgg+ (i rf' k,bpb e ' '+c.c.), (29)
2A

which in terms of D becomes

—2(yg +y rI)(D +X)
2+y /yl+yII/A,

is the population of tlie continuum and yrI
represents the decay rate to the continuum which is pro-
portional to the intensity I (in units of the saturation in-
tensity) and has the decay constant yr. The recombina-

1 . 2+ (i8' k,be '"'pb, +c.c. ) .

We can write this in terms of a "population difference de-
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cay time" Tq analogous to the traditional NMR name T&,

2+)'. /7'i+a rI/~
2(r. +rrI}

D= — + (l 8 kzb8 p~+c c. ) .8+X 1

2

(31)

(32)

We note that Tr differs from the normal value for T& in
that it is intensity dependent. For zero intensity we recov-
er the cascade population difference do:ay time

(33)

found by Sargent. Note that this expression for D agrees
with that of Sargent er al. provided T& is replaced by
Tr. Substituting the coherence equations (9) and (11) into
(19), we have

0. C

FIG. 2. Saturation factor S=(1+I2&2T~/T&) ' vs I2 for
y, =yi ——2y, A, =y, /100, and yi /y, increases from 0 to 0.01.

p,b
— (y+—ice+ice, I)p,b i (k,b 8—' /4')e

where the two-photon dimensionless intensity

I = ik,b8' i(TiT2)' /2A=—
i
8'/8',

i

(34)

(35)

the two-photon coherence decay time T2=1/y, and the
Stark-shift parameter

s (kbb kaa)/2
I kgb I

(Ti T2)'" .

This expression for p,b also agrees with Eq. (20) of Ref. 4.
Here I is written in units of decay processes independent
of intensity.

For single-frequency operation, we can solve these
equations in the rate-equation approximation. Specifical-
ly, we assume 8' and D vary little in the two-photon
coherence decay time T&, allowing Eq. (34) to be formally
integrated with the value

p,b —— i (k,b 8—' /4R}&(co+ro,I 2v)De —'"', (37)

where the complex denominator

&(b, ) =(y+id )

Substituting this into Eq. (32), we have

D = (D +N)/Tr 2RD—, —

where the rate constant

~ =
I kab a'

I
'~(~+~.I »)/gr—e'

,' I W(co+co,I 2v—}/T~, —
and the Lorentzian

~(&)= 1[/1+(& y/)'].

Solving for D in steady state (D=O), we have

D = —N/[1+I W(co+co,I 2v)Tr/T~] . —

Substituting this into Eq. (37) we have

N(k, b& 8'}
Pab =&

1+I WTr/T)

(38)

(39)

(41)

(43)

Equations (42) and (43) are identical with those in Ref. 4
except for the different saturation factor 5 = ( 1

+I WTr/T, ) '. This term is identical with the normal
saturation factor (1+I W) ' in both the low- and

ig ~k.b ~I+D
(T T )I/2 (4&)

where k~1 =y, kily/. IUsing Eq. (42) for D we can write
this as

~( ) N@
aa+ bb /Ik +k —k

2Tr(r'. +7'rI)

I k.b I(T2/Ti)'"
+ 2 [Q(0)T)+iIy&]1+I WTr/T)

where we now introduce the generalized Stark-shift pa-
rameter

Q(0) = ™kII+kbb[l 2Tr(l—'.+7'rI}l-
2Tr(Po+1'rI—) Ik b I

(TiT2)
(47)

high-intensity limits. However, in between these limits it
is enhanced (i.e., less saturation) or decreased (more sa-
turation) depending on the relative values of Tr and T~.
Thus when

2i.
1 —A, /yi

the medium is easier to saturate and when the inequality
in (44) does not hold it is harder to saturate. In particular,
we see that in the limit y~~A, , it is always harder to satu-
rate, which is expected because of the extra decay path.
In Fig. (2) we have shown this new saturation factor
(yr/y, =0.01) along with the standard one (yr/y, =0) as
a function of intensity for y, =yl=l and A, =y, /100
where all decay constants are in units of 2/T2. This new
saturation factor follows through to all our results.

Substituting Eq. (43) along with Eqs. (26) and (27) into
the polarization (14), we have

(k„+kbb kg )(D +N)—
9'(r) = N' —kbba

2Tr(y, +yrI)
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Although considerably more complicated this expression
reduces to co, of the two-level, nonionization model of
Ref. 4 when TI =—yI

' and yz both go to zero. In this lim-
it ks also goes to zero and we recover Eq. (22) of Ref. 4.
Stark shifts are known to cause asymmetries in spectra.
The fact that this new term is a function of intensity is
significant because, while it may equal zero for a given
combination of the k coefficients and for a specific inten-
sity, it does not equal zero in general. This parameter also
appears in the multimode case where it is complicated by
being a function of b„, the detuning between the modes.
For our single-mode case 5=0.

III. SINGLE RUNNING-O'AVE SATURATION

(b)

DET
V

P(z, t) = —,
' Hz(z)e ' ' +c.c. , (49)

where Hz(z) too varies little in a wavelength. We substi-
tute Eqs. (48) and (49) without complex conjugates into
the wave equation

a'E 1 a'Z
(50)

Bz c Bt

1 BP
eoc Bt

neglect small terms like BzA z/Bz, etc. , equate coefficients
i (K2s —v2t)of e ' ', and find the propagation equation

& simple special case of the electric field (2) is that for
the single-frequency running wave [Fig. 3(a)]

E(z, t) = —,
'

Az(z)e ' ' +c.c. , (48)

where Az(z) varies little in an optical wavelength and
Ez ——vz/c. We use mode 2, since in multiwave mixing
mode 2 is the large-intensity mode. This field induces the
polarization

FIG. 3. One-, two-, and three-wave two-photon interactions
treated in this paper.

The imaginary part of az adds to the wave vector Ez and
hence changes the index of refraction. It has the value

+2+ kaa+kbb k11
Im(az) =-

4eo Tl(ya +yII2)
(co+co,Iz —2v)Iz&z/y+ Q(0)Ti

(57)1+Iz &zTt /Ti

IV. TWO- AND THREE-%AVE POLARIZATIONS

We now suppose the electric field has the form

E( r, t) = —,
' [8'&(r)e' '+ 5'z(r)

dAz(z) Kz=i Pz(z) .
Qz 26p

Writing this in the complex Beer's-law form, we have

dAz(z) = —azAz(z},
8Z

E2
az — i Hz(z)/—A z(z) .

260

(51)

(53)

+8'z(r)e ' ']e '+c.c. , (58)

i.e., the slowly varying complex field amplitude 8'(r, t) in
Sec. II is given by

8'(r, t) = 8', (r)e' '+ 8'z(r)+ 8'&(r)

(60)

8'z is the pump-wave amplitude, while 8', and 8'& are
typically the signal and conjugate waves, respectively, and
h=v2 —v& is the pump-signal detuning. Similarly, we
write the corresponding induced polarization in Eq. (3) as

9'(r, t) = %i(r)e' '+ Hz(r)+ Hz(r)e
For the two-photon polarization (46), this gives

&z& k„+kbt, kit Iz—y&z i A(0}T—,
0,'2 = —l +EXO4' Tt(y. +y.Iz) 1+I',~,T, /T,

(54)

where for typographical simplicity it is assumed that
I~Iz in the expression for Tt. The real part of az deter-
mines the absorption in the medium. This is given by

y2I
Re(az) =ao

y (1+IzTI/T) )+(co+co,Iz —2vz)

where the two-photon absorption parameter

a,=SCzX
~
k.b ~

(T,/T, )'"/2e, .

Here we assume both 8'i and 8'z are sufficiently small
that other Fourier components of the polarization are
negligible. As discussed in the single-photon theory, this
occurs if H(r) is a linear function of 8'i and 8'3. To
determine H, we need to solve the polarization (14) and
equations of motion (30) and (34) to first order in 8'~ and
8 3 while keeping all orders in the pump amplitude 8'z.
As in the one-photon, two-level problem (see Ref. 7), it is
clear that the field (59) induces a set of Fourier com-
ponents in the two-photon coherence p,b and in ihe popu-
lations p+z, pbb, pII, and X+, as well as in the probability
difference D. Here we expand these as

(61)
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p = gn~e'ka', a=a, b, l
k

N+ g ~ eikht

k

(62) and

18' I'=
I
8'21'+[(8'l8'2+8'28'3)e' '+c c ]

+~eiLLt+~4e —iht (68)

y d iklt, t

k

«4) where

where obviously dk =tlttk 5sk—
~

We note however that the population difference equa-
tion of motion (30) no longer holds because the popula-
tions are no longer in steady state but rather are respond-
ing to the beat frequency between the fields with popula-
tion pulsations. In fact the populations act like forced
damped harmonic oscillators of resonant frequency zero.
For example, in Eq. (21) the term —yipa acts as the
damping term while y,p acts as the forcing term. Driv-
ing an oscillator off resonance gives rise to phase shifts
and we show later how these phase shifts between the
population Fourier components affect the probe absorp-
tion. We need equations relating the n k. Substituting
Eq. (62) into Eq. (21) we obtain

(8'l8'2+8'28'3) . (69)

Substituting expansion (63) along with Eqs. (66)—(68) into
Eq. (23) and equating exponents of e'at gives

&l k =yl ~k(k~)(I2&,k+~&,k l+~'tt, k+ l), (70)

where &k(k&)=(A, +ikh) '. The Fourier components
of the continuum population not only exhibit a phase shift
relative to the corresponding Fourier component of the
upper-level population, but also a dependence (with a
phase shift) on the other Fourier components of level a.
This dependence arises due to the beat terms in the inten-
sity [Eq. (68)]. By substituting expansions (61)—(64}along
with Eqs. (65) and (70) into Eq. (25) we obtain the follow-
ing equation for the dk.

nik =y, &l(kh)n, k . (65} dk —— N50k+B—2(kb, )n,k

Thus we see the population in level I responds to being
driven by level a with a complex phase shift contained in
the &l term.

We next obtain an equation for the nzk which is more
complicated due to the fact that Eq. (23) contains a term
with I. The assumption that 8'& and 8'3 are weak allows
us to Ict

8'~-8'2(8'2+28'le' '+28'3e ' '),

+yl ~k(k~)(~&ak —l+~'&ok+ i »
where the complex dimensionless factor

Bg(kb )=2+y, &l(kLL)+yes&'k(kh)I2

(71)

(72)

can be interpreted as the phase lag of the kth Fourier
component of level a relative to the kth component of the
population difference.

Substituting Eq. (71) and the expansions of Eqs. (62)
and (64) into the polarization equation (14) we then obtain

+=@'ge'" 'I[k~+kbb kiiy. ~i—«~)][dk+N~ok yl~k(k—~)(~nak t+~'&-uk+i)]~B2(k~) kbbdkI—

+2@ok+ gp &ttttat (73)

The assumption that 8'l and 8'3 are weak limits these expansions to the nine Fourier coefficients d+ „do, n, +l,n, o, and
p+l,po. By equating the exponents of e'a'in Eq. (73) we find

+i(r) = ( I k +kg)[1 B2(0)]—kit I dQ+—(k +kgb kll )N)—
+ ( —[k„+kgb kily, &l(b )]yl&—k(b, )&n, o

+Ikm+ksb[1 —B2(~)]—klly ~l(&)Id')+2k,'q(8'~pl+8'3po) . (74)

Usmg Eq. (71) w&thout refe«nce to 8'l or 8'3 since they cannot saturate the response we obtain the following expression
for pleo,

do+%
B2(0)

which then gives us the following expression for H, in terms of do, d &, po, and p, :
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N S'i T '"
(k +kbb —kit)+ I k,b I

2 1

rr &r.(~)~S'2
X, —Q(0)$', T,do+ Q(i), )Ti—

2

kbb T1

ikb I

(N +do) —Q(h) S'2Tid i

+2k:b($'2pi+ S'3uo» (76)

where the generalized Stark-shift parameter, which as promised is now a function of b„ is

Q(b)=- k~+ kbb [1—82(h }] kt'ty, —&i(b, )

S2(a) I k.b I(T, T,)'"

' 1/2
kbb T1

Again we see that when yt~ao and yr~0, 82(b, )~2 and Q(h)~or, . It is significant to note that the Stark shift
becoming b, dependent is not solely due to the ionization as can be seen by letting yr ~0. We then still have the same ex-
pression only now 82(b, ) simplifies to 2+ y, &&(L). Q(b ) may equal zero for a specific value of i) but not in general.
Thus, either of these decay mechanisms causes in effect a built-in Stark shift.

Similar to above we can equate the exponents of e ' ' in Eq. (73}and obtain the expression for P'2

N S'2
' 1/2

«~+kbb ka)+—
I kab I2o 1

r r&r( ~)~S'2—Q(0) S'3Tido+
82(0)

Q( b, )Ti —— (N +do ) —Q( b, ) S'2T i
—d

+2k:b($'b -i+ S'iso) (78)

To find the required p we substitute expansions (61)
and (64) along with Eqs. (66} and (67) into Eq. (34).
Equating coefficients of exp( —2iv2t +mi ht) we find

~2-~($'2d~+2$'iS'2d~ i+2$'2$'3d +i}
4i)'i

&ors+2 m(~pm —i+~—Irm+ i }

g (ikb+y, +yiI2)n, ke'
k

(~ iag+~e rat) g n elelat

(S'2+2$', S'2e' '+2$'3$'2e ' ')ik,b/4A

ikh+y, +yrI2

where the two-photon complex denominator (differs from
single-photon definition)

——1/[y+i (or+ or, I2 —2v2+ md. )] .
X gp'e-' "+c.c. (84)

po —— i(k,b S'2—/4A)&2do . (81)

Keeping only terms linear in S', and S'3 and their com-
plex conjugates and noting that d+i must already have
such a field amplitude, we find from (79)

We solve for po without reference to S'i or S'3, since they
cannot saturate the response. Hence po is given by the
coefficient of e '"'in (37) with S' replaced by S'2,

1
~ao=

Ta+'VII2

ik,b S 2po +C.C. (85)

Together with Eq. (81) this gives

I2~2do
2Ti(x. +}'rI2) *

Similar to the case for po, we obtain n, o from Eq. (84) ig-
noring terms containing S', or S'&,

p, = i &i[$'2d—i+(2$'iS'2 —ior, &~$'2)do]
4A

(82)
where &2 is the m =0 case of the Lorentzian

k,bp, = i &,[—$'2d, +(2$',S',—t~,ad S', )d, ] .
4A'

1

1+(or+or, I2 —2v2+ md. ) /y
(87)

Now, using Eqs. (86) and (71) we can solve for do to ob-
tain

To obtain dk we first solve for the n,k by substituting
expressions (61) and (62} into Eq. (20) and then relate the
db to the n,k using Eq. (71). Thus 1+I2~2Tr /Ti

(88)
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re again lt ls assumed that I I2 ln the exp
TI. Now returning to Eqs. (84) and (71) and retaining the

terms linear ill 8 1 and 8'3 we obtain a general expression
for dk,

+~ok+(~~ak —1+I ~ak+1)yI[~k{k~) ~2(k~)~I(k+)]

+~2(k~)~I(k~)
g

(8 2P —k +28 1@2P—k+1+28 3@2P—k —1 )
4g

{@2 Pk+28 1 @2Pk+1+2~3+2Pk —1)4A'

2+y, &1(kh, )+yII2&k{kb )

(2y. '+yl ')(&kI) +y. +yII2}
We note that in the limit yI ~0 we recover the P (kh} found by Sargent. Using a (kb, ) in Eq. (89) gives for d 1 and

where we have defined &I(kb, )=(ikb, +y, +yII2) '. Comparing Eq. (89) with Eq. (57) in Ref. 4 allows us to identify
82(kh)&I(kh)/2 with T1P (kh). This then gives us the following generalized expression for the complex population
pulsation factor P (kh),

82{kh)S'I(kb )W(k4)= (90)
2T$

I2W2dO lk, b ik,'g
d, = —yIW[&k(b, ) —2T, W(b, )] +2T1~(~) 8'2(8'2P 1+28'1PO ) — 8'2(8'2P1+28'3po)

2T1{y. +yII2) 4R 4lrl

(91)
and 1 1

——d l. Substituting Eqs. (82) and (83) into (91) and solving for d, , we find

8'18'2f
1 + 8'28'3f 3d 1

———doI2 8',
1+I22~ (6) {N,+N3 )

where 8', is given by Eq. (35) and

fl =y~(~) ~1+~2+ 2 &sI2(&z»' —~1&2}— yII2W2 Nk(h)

y(ya+yII2) 2T1&(h}
(93)

and f;=f 1 ( —a).
Substituting Po and P 1 of Eqs. (81) and (82) into the polarization (76) we find

H 1(r)= (k„+kbb —kg )

'YI~k{~)~+2
+

~
k.b ~

(T, /T, )'" Q(b, )T, —
82 0

(Tl/T2)' ' (&+do)

id18'2[I2y&— 1 i Q(h)T, ]+d—ll [ —Q(0)T1 8', —i 8'28', y[8', 8'2&, (2—ice,I2&2)

+8 28 3 N2( 1 &co,I2 & 1)]]—
Substituting Eq. (91) along with Eqs. (81)—(83) into Eq. (94), we have

X8']
H, (r}= (k +kb„—k0)8 (0)

X
f k,b ) T2 I2&2TI/Tl+ yI&k(b. }W8'2 Q(b, )Tl—

1 +I2~2TI /Tl

' ]/2
khan Tj

[kb ( T2

(94)

+(Q0}T1'81i+8'28'g [8'l8'2 y&1(2 i'),I2&2)+ —8 283 Ny(l2i a3,I2&1)]—
i 8'28', I2[I2y&—1

—i (Qh) T]

8'18'2f 1 + 8'28'3f 3
(9&)

1+I,W(h} (&,+&3*)
2

9 3(r) is given by interchanging the subscripts 1 and 3 on the 8"s, &'s, and f's and replacing b by —b.
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V.
TYCHO-%'AVE,

T%'0-PHOTON ABSORPTION

Consider first the simple two-wave case of the field (59) [Fig. 3(b)]

Although this does induce a conjugate polarization at the frequency v3 ——v2+6, we assume that either the length of the
interaction is small enough, or the angle between K] and K2 is large enough so that the v3 component is not phase
matched and therefore can be neglected (this becomes clearer in the three-wave discussion). Substituting Eq. (96) into the
wave equation (50) and projecting on exp( —i Ki r)w, e find the propagation Eq. (51), where the temporally and spacially
slowly varying

(97)

where K].r=E~z.
Substituting Eq. (95) into Eq. (97), neglecting the 8'3 terms and using Eq (53.), we find the complex absorption coeffi-

cient

iao(k —+kgb kg ) —i aoyg&i, (4)I2~2Ty/Ti kbb
al =

1/2
—

2 Q(b. )Ti—
~

kgb
~
+z(0)(T2/Tl )' ' &2(0)(1+I2~2TI/Tl ) ik, g, /

' ]/2
1

T2

1+I2&(b ) (Hi+~3)

Qo [Izy&, —iQ(h) Ti ]P (b )y
+ &Q(0)Tl+Izy~l(2 i~ I2~2) I21+Iz~zTr/Ti

yrI2~i ~i(~)
X &i+ &2+ iso, I2(&—z Ni —&i~i)— 1—

y(y, +yqIz 2TiP b

where ao is given by Eq. (56) as EN
~
k,s ~

(T2/Ti)' /2'. It is useful to compare this result to the absorption coeffi-
cient of Sargent er al. In addition to the previously discussed changes in P (b, ), Ti, Q(h), and the saturation factor, we
have two entirely new terms. Of the previously mentioned effects, all but the new saturation factor arise from the addi-
tion of the population in level I and are further complicated by the ionization route. The new saturation factor, like
these other two new factors, arises solely due to the ionization. The first of the new terms [the second term in Eq. (98)]
affects the incoherent part of the expression while the second [last term in Eq. (98)] affects the coherent part.

VI. THREE-%AVE MIXING

We now consider three-wave phase conjugation diagrammed in Fig. 3(c). This also pertains to modulation spectros-
copy of two-photon media [Fig. 3(d)] and to two-photon laser and optical bistability instabilities. The signal (at fre-
quency vi ——vz —6) and conjugate (at frequency v3 ——vz+b, ) in combination with the pump (at frequency v2) induce po-
larizations affecting one another. If the angles and frequencies between the waves are small enough, these induced polar-
izations are phase matched to the corresponding waves, leading to a coupled-mode problem. For this case, we write the
field (59) as

i K&.r+i ht i K2.r iK3 r—id' —iv2tE(r,r)= 2 (A ie +A2e +A3e )e +cc. (99)

in which K&, K2, and K3 are nearly parallel to one another as depicted in Fig. 3(c).
Substituting this field with the corresponding polarization into the wave equation (50) and projecting onto

exp( —iK, r), we find

dA) = —a,a, +X,W )exp[i(2K, —K, —K, ) r],dz (100)

where ai is given by (98), z is taken along K2 for convenience (technically this z value should be divided by
K2 Ki/E2Ki ) and the coupling coefficient (which is often called —i~; )
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iA2 aoyg&i(h, )Ii.&2TI ITi
+1 Q(b, )Ti—

8', 82(0)(1+I2&2TI/Ti )

kbb Tl

T2

' 1/2

O'o A2
y&2(1 ic—o,I2& i)—

1+I2W2TI/Ti g", '

I~[liy& i —iO(b, )Ti ]P (b, )y

1+1',~(~P-(&,+&,')
2

rslz~2 ~~.(~)
x &3+&2+—,

'
irD, Ig(&g &'3 —Hi&2)— 1—

r() .+~il~)

In the limit that yi ——yq
——r0, =0, this answer is analo-

gous to the one-photon Xi except for some extra factors of
I2 and the first term proportional to &2. This term re-
sults from the term in the polarization 9'i [Eq. (74)] pro-
portional to 8'3@0 and arises in the two-photon case due
to conjugate scattering off the pump-induced two-photon
coherence p~. In the one-photon case this extra degree of
freedom does not arise and all components of 9', are pro-
portional to p&. However, here the field 8'i can interact
with po and give the correct frequency dependence for

VII. EFFECTS OF NEW DECAY PATHS

In this section we examine the effects of the new decay
paths on the probe absorption and coupling coefficients.
We look in several different coherence-lifetime and inten-

sity limits. The ionization do:ay and the cascade decay
cause different types of effects so we examine the two in-
dependently.

The coherent-dip limit is when the coherence lifetime is
short relative to the population difference lifetime. In this
limit and for a low-intensity field, the probe-absorption
spectrum develops a dip of approximate width
2(1+ I2)/Ti caused by the limited bandwidth of the
population pulsations and thus provides a means of
measuring T&. Decreasing yI causes the dip to turn into a
dispersive-type feature. This is shown in Fig. 4(a) where
we have plotted the real part of the complex probe-
absorption spectrum versus pump-probe detuning in units
of 1/Tq for the case where Ti ——10T2 and Iq ——1. We let
yi T2 ——0 and decrease yI T2 from 10000 to 0.1. We have
previously shown how atomic detuning and Stark shifts
cause the coherent dip to become asymmetric. ' Here the
asymmetry is due to a generalized Stark shift Q(b, ) caused
by population in the intermediate level. As yI decreases,
the population of level / increases and the phase lag it ex-
periences has more infIuence on the spectrum. Hence the
dispersive characteristic increases. In the presence of ioni-
zation decay the coherent dip also becomes asymmetric.
This is shown in Fig. 4(b) where we let yI Tz~ 10000 so
we can just examine the effect of increasing ionization de-
cay. We increase ylTz from 0 to 0.1 letting A, T2 ——0.01
since in general we do not expect many recombinations.
The coherent dip remains but becomes more dispersive
due to the influence of the phase-shifted continuum, and

the magnitude of the absorption peak decreases due to
fewer atoms in the unionized systems.

It is interesting to compare this result to another regime
handled by the theory, i.e., that for larger A, . Although in

general for a beam we do not expect many ionized elec-
trons to recombine, this case may describe a gas cell where
collisions can enhance the recombination rate. This limit
is illustrated in Fig. 4(c) where the parameters are the
same as in Fig. 4(b) except that now A, T2 ——y, and yl T2
increases from 0 to 0.5. The significant change is the
nearly immediate filling in of the coherent dip. By the
time yi reaches y/2 there is no longer any evidence of the
dip. The dip is dependent on a coherent interaction. In-
creasing A, increases the population of level b but does it
in an incoherent fashion (i.e., not by stimulated transi-
tions). Thus the overall absorption increases and the
coherent dip disappears. Thus we see that these new de-

cay paths can make it difficult to use coherent-dip spec-
troscopy as a means of measuring T, .

It is also important to notice that due to the dependence
of Ti on yi, by decreasing y~ we are effectively increasing
Ti. The increase of Ti with decreasing y~ is more ap-
parent when we go to the high-intensity limit. Here we

expect the Mollow-type' spectrum with gain inside the
Rabi sidebands. As shown in Fig. 5(a) as yi is decreased,
the Rabi sidebands move in due to the decrease in the
Rabi frequency [I2/(T, Tz)' for the two-photon case].
In addition the spectrum develops a slight asymmetry. In
order for this asymmetry to become significant yi must be
substantially smaller than y, as shown in the curve of
Fig. 5(a) where yi =y, /10. The effect of ionization is
shown in the high-intensity limit in Fig. 5(b) where we
have let yiTi vary from 0 to 1. Since Eq. (33) shows no
dependence of Ti on the ionization decay rate we do not
expect the location of the Rabi sidebands to change as we

vary yl. The increase of ionization causes asymmetries to
develop and rapidly causes the absorption and gain to de-
crease. This is the expected result since ~e are decreasing
the number of atoms in levels a, b, and I by allo@rin ioni-
zation and only a very small recombination (A, =y, /100).
The changes in the spectra caused by these two new decay
terms are not as drastic as those caused by introducing a
simple co, -type Stark shift. However, due to the depen-
dence of the Stark shift on Ti, by decreasing yI for a
given difference in k«and ki,i, we can decrease the effec-
tive Stark shift. This is illustrated in Fig. 6.
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FinaHy, we examine the effect of the new decay paths
on the coupling coefficient 1&. In Ref. 4 it was shown

that Stark shifts cause substantial asymmetries but main-

tain narrow resonances at the Rabi sidebands. The effect
of the third level is similar as shown in Figs. 7(a) and 7(b)
which give the real and imaginary parts of Xi for increas-

-Q. 4C I

Q

h, /y

(b)

Q. t

b

Q

h, /y

O. 0
G. 001

I I I I I'--"l2 Q 12
hay

FIG. 5. Re(a~) vs 6/y, for I2 ——10, y, =2y, and A, =y, /100.
In (a) we decrease y~/y, from 10000 to 0.1 for yI /y, =0 and in
(b) we increase y~/y, from 0 to 0.01 while y~/y, = 10000.

(c)

ing lifetime in level I with no ionization. The effects of
ionization are quite similar, although once again this
mechanism tends to decrease X& due to the loss of atoms.
Increasing yI when A, is large causes the resonances at the
Rabi sidebands to broaden substantially. The result of
these effects on phase conjugation reflection coefficients
will be examined in a forthcoming paper.

1. QG

Q. C

FI~ 4. Re(0 & ) vs Q/y for I2 —1 and y, =y/10 and

k =y/100. In (a) we increase the lifetime of level I

(y~/y= 10000, 1, and 0.1) for yq/y=0 and in (b) we increase

the ionization (yI/y=0, 0.01, and 0.1) for yI/y =10000. In (c)

all parameters are the same as in (b) except A, =y and yI/y in-

creases from 0 to 0.5.

—1. GG I l I I I
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h,/y

FIG. 6. Re(a&) vs 5/y, showing the effects of decreasing yI
when k kbb is nonz—ero. ko —kbb=o 283

l
k b I ~

yI/y, = 10000 and 0.1 and all other parameters are the same as
in Fig. 5(a).
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VIII. CONCLUSIONS

1GGGG

1.0

0. 3

We have examined the effects of two new decay paths
on two-photon two-level interactions. The inclusion of a
perturbation-type ionization decay and a decay to a third
intermediate level cause some significant changes in the
probe absorption and coupling coefficients. Population in
the third level, in addition to changing T& and M(,b, )
causes phase lags between the population Fourier com-
ponents giving rise to a new more generalized Stark-shift
term which is b, dependent and therefore not zero. This
causes asyrnrnetries in the spectra. The ionization decay
adds new terms to both the coherent and incoherent parts
of the spectrum and causes the amplitude of the spectral
features to decrease. Another important ionization regime
treated by the theory is that for which recombination is
negligible but for which the ionization rate ytI is substan-
tially slower than the other rates. Provided one observes
over times short compared to significant ionization, the
problem then reduces to the case with no ionization, but
with an overall linear absorption coefficient that dimin-
ishes slowly in time as the medium ionizes. Hence the
present theory treats the effects of ionization on two-
photon two-level media interactions except in transient re-
gimes, notably when the medium is ionizing fast com-
pared to the other relaxation processes.
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