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%e generalize the two-photon probe-absorption coefficient derived in a recent paper to include

any amount of Doppler broadening and an arbitrarily intense saturator wave. The analysis is per-
formed for both copropagating and counterpropagating pump and probe waves. By choosing a
Lorentzian velocity distribution we are able to perform the integrals analytically and thus examine
the transition from homogeneous broadening to extreme Doppler broadening both for zero and

nonzero Stark shifts. %e examine these transitions for both short coherence lifetimes and for coher-
ence lifetimes approaching the population difference lifetime. For homogeneous broadening the
probe-absorption spectrum has Rabi variations similar to the Mollow one-photon case. For Doppler
widths much larger than the saturator Rabi flopping frequency, the probe-absorption spectrum for
the bidirectional pump and probe approaches a Doppler-free Lorentzian with width equal to the
homogeneous linewidth and center displaced by the dynamic Stark shift. For Doppler broadening
as small as 1/2 T2, coherent dips fill in and Rabi variations disappear. We show for the bidirection-

al case that to second order for any degree of Doppler broadening or to any order for extreme

Doppler broadening the absorption coefficient is Doppler-free. For the unidirectional case the
Doppler-free conditions do not hold and the results are similar to those for one-photon inhomogene-

ous broadening and valid for two-photon running-wave inhomogeneous broadening.

I. INTRODUCTION

Two-photon Doppler-free spectroscopy is a commonly
used technique in high-resolution spectroscopy The .first
experiments using this method were performed by Bloem-
bergen and Levenson' and Grynberg et al. measuring hy-
perftne components in sodium, and many examples are
given in the review articles by these two groups. Since
then the technique has been used extensively, primarily
with alkali-metal atoms, to measure fine-structure split-
tings, isotope shifts, Stark splittings, and high-lying Ryd-
berg levels, and even to look at a number of molecules,
including NH3 and CH3F. In techniques employing
Doppler-free spectroscopy, moving atoms Doppler upshift
one running wave while Doppler downshifting a counter-
propagating wave an equal amount. Hence the Doppler
shifts cancel for a two-photon transition induced by one
photon from each of the two counterpropagating waves,
and thereby result in a narrow absorption spectrum. Al-
though this idea is widely accepted, it is in general only
true to second order in the field amplitudes, and therefore
may require low-intensity beams.

Three kinds of two-photon absorption configurations
are shown in Fig. 1. In a recent letter we reported results
for the second configuration for which the transmitted
probe intensity is measured as a function of the probe tun-
ing for counterpropagating pump and probe beams. We
showed that for Doppler widths much larger than the
saturator Rabi flopping frequency the probe-absorption
spectrum approaches a Doppler-free Lorentzian with its
center displaced by the dynamic Stark shift. In contrast
for weaker Doppler broadening and no Stark shift, Rabi
sidebands emerge ultimately producing an absorption
spectrum reminiscent of the Mollow one-photon case.
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FICi. 1. Three configurations for two-photon absorption
spectroscopy. In (a) intensity due to decay from upper level is
measured as a function of laser tuning v2. In (b) probe intensity
is measured as a function of probe tuning vl. Atoms with ve-

locity v as shown will see vl Doppler downshifted to v& —Kv and
v2 Doppler upshifted to v2+Ev. (c) Same as (b) except with

copropagating beams both vl and vq are Doppler upshifted.

With a Stark shift the spectrum develops dispersivelike
asymmetries. In this paper we generalize the two-photon
probe-absorption coefficient for a homogeneously
broadened medium subjected to an arbitrarily intense
saturator wave to allow for Doppler broadening for both
the case of the counterpropagating [Fig. 1(b)] and copro-
pagating [Fig. 1(c)] pump and probe. An equivalent
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analysis for the one-photon case was presented in two pa-
pers by Baklanov and Chebotayev. ' For the unidirec-
tional case the Doppler-free conditions do not hold and
for zero Stark shifts and pump detuning the results corre-
spond to those for the centrally tuned one-photon inho-
mogeneously broadened probe-absorption coefficient.
This unidirectional Doppler case is equivalent to a uni-
directional inhomogeneously broadened case for station-
ary atoms. In Sec. II we review the two-photon two-level
model used to obtain the probe-absorption coefficient. In
order to include Doppler broadening we analytically in-
tegrate the absorption coefficient over a Lorentzian velo-
city distribution. The inclusion of Doppler broadening is
discussed in Sec. III where the general answer for both the
unidirectional and bidirectional cases is presented.

It is well known that the form of the absorption spec-
trurn changes dramatically in different limits. For exam-
ple the strong-field Mollow spectrum obtained when the
level and coherence lifetimes are roughly equal transforms
into the coherent dip spectrum with a weak field and a
coherence lifetime much shorter than the population life-
time. In the rest of the paper we illustrate these limits nu-
merically and show the effects of Doppler broadening.
The formulas are evaluated and graphed on a personal
computer. One of the interesting features occurring in
multiphoton transitions is the dynamic Stark or level
shift. As shown in Ref. 5 the existence of the Stark shift
dramatically changes the absorption spectrum causing
dispersivelike asymmetries similar to those caused by de-
tuning. In Sec. IV we present results for the bidirectional
case in these different limits for systems without Stark
shifts and in Sec. V we show how Doppler broadening af-
fects systems with Stark shifts and also those which are
detuned. The same regimes for the unidirectional case are
presented in Sec. VI. The Appendixes contain the full
derivation of the bidirectional (Appendix A) and unidirec-
tional (Appendix 8) averages.

II. TWO-PHOTON T%'0-LEVEL MODEL

The theory is based on the two-photon two-level
scheme ' *' depicted in Fig. 2. %e review the derivation
of Ref. 5 here in order to familiarize the reader with both
the theory and the notation. The electric dipole matrix
element between the upper level a and the lower level b is
zero, and the pump field at frequency vz is approximately

TWG —PHOTON TWO —LEVEL DIAGRAM

P(r, t)= —,R(r, t)e '"'+c.c. , (3)

where the complex polarization H(r, t) also varies little in
the time 1/v. Combining Eqs. (1) and (3), we find

P(r, t) =2N g ( P,jPj+ P bjPjb+c. c.)e'", (4)

where we keep only terms varying little in an optical fre-
quency period (1/v).

The electric dipole coherences pj, are induced by the in-
teraction energies

1"j,= — P j,[$'(r, t)e '"'+c.c.]
1

2R

with a similar formula for pjb. The equations of motion
for pj, and pjb are obtained from the general Schrodinger
equation of motion

Pij — (1'ij+&~ij )P~j iP ~P]ij ~

where ~,"=irt(~, —to ) is the energy difference between
levels i and j and y;~ is the corresponding decay constant.
These equations are then integrated to first order in F
without making a rotating-wave approximation (RWA),
since v differs substantially from all +coj, and +~jb, but
~ b=co=2v allowing us to replace terms like coj. +3v
with mj&+ v. Substituting the resulting expressions for pj.,
and pjb into the polarization (4) and keeping only terms
that vary little in the time 1/v we have

one half the frequency difference co=co, —cob .The inter-
mediate levels j are assumed to be sufficiently non-
resonant with the field frequencies that the a~j and b~j
transitions can be accurately described by first-order per-
turbation theory and the j levels acquire no appreciable
population. The probe field with amphtude 8'i and fre-
quency v& must remain weak enough that saturation does
not occur and both fields are treated classically.

In general the polarization of the medium with the level
scheme in Fig. 2 is given by

P( r, t)=¹r(8'p)

=N g( P„Pj,+ Pb,Pjb)+c.c. ,
J

where P,j is the electric dipole matrix element between
the a and j states, 8' is the atomic electric dipole operator,
and p,j is the density-matrix element between j and a.
Since a~b is a two-photon transition, P,b vanishes. For
cases in which the polarization (1) is induced by the elec-
tric field

E(r, t)= —,
' 8'(r, t)e ' '+c.c. ,

where 8'(r, t) varies little in a time 1/v, but may have
rapid spatial variations like exp(iK r) we obtain the po-
larization

H =NB'(k„p„+kbbpbb)+2NS'"k bp, bei' ',

FIG. 2. Two-photon two-level model.
~here the two-photon coefficients k,~, k„, and kI,b are
given by
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k,b
——fi 'g P,J Pib/(coJb —v)

'g P,i Pjb/(coi, +v),

k =2iri 'g
i Pt, i a)i, /(cot, —v ),

J

kb, 2A——'g
~ P,; ~'a)Jb/(coj'b v—') .

J

(9)

with two waves. Thus, we suppose the electric field con-
sists of two modes in the form

E(r, t)= ,
' —[g',(r)e' b'+8'i(r)]e '+c.c. ,

i.e., the slowlying varying complex field amplitude 5'(r, t)
is given by

8'(r, t) =8',(r)e' '+ &q(r) .

We then derive the "two-level" equations of motion for
p„, pbb, and p,b using the expressions for pJ, and pjb and
the two-photon rotating-wave approximation, i.e., ne-
glecting terms like 1/[y+i (co+2v) ] compared to
1/[y+i (co —2v)]. According to Eq. (6), we have

p.b = (r+—i~)p.b i g—(~;pjb p;—~Ib)
J

p„=—Xgp~ —g (i &,jp&, +c.c. ) .
J

(12)

D = (D + 1 ) /—T i
—2 g (i P",Jpi, +c.c.),

J
(13)

where we write the population difference decay time 1/y,
by its traditional NMR name T]. Substituting the values
of p,i and pbi into (11),we have

p,b —— (y+ic—v+i&0, I)p,b i(k,b
8' /—4iri)e ' D, (14)

where the two-photon dimensionless intensity

For simplicity we take p~b
———p~, since we assume

p~&
——0. We likewise find the equation of motion for the

population difference D =p„pbb, —

8'i is the pump-wave amplitude, while 8'i is the probe
wave amplitude, and b, is the pump-probe beat frequency
v2 —v&. Similarly, we write the corresponding induced po-
larization in Eq. (3) as

9'(r, t) =H i(r)e' '+ H z(r) + Hi(r)e (21)

—2i (v&t —E2z) im fh, t —(1C2 —El )z]
pab =e @me

m

(22)

Here we assume 8'i is sufficiently small that other
Fourier components of the polarization are negligible. As
discussed in the single-photon theory, this occurs if 9'(r)
is a linear function of 8'i. To determine 9' we need to
solve the polarization (7) and equations of motion (14) and
(17) to first-order in 8', , while keeping all orders in the
pump amplitude 8'z. As in the one-photon, two-level
problem (see Ref. 9), it is clear that the field (19) induces a
set of Fourier components in the two-photon coherence

p,b and in the probability difference D. Hence, we ex-
pand them in terms of these components. The assump-
tion that 8'i is weak limits these expansions to six Fourier
coefficients. Thus we have

I =
~
k,b

@'
~
(T, T, )'"/2t,

the two-photon coherence decay time Ti =1/y, and the
Stark-shift parameter

iI [Zt —(SC, —X, )z]D= dk
k

which give

(23)

co, =(kbb —k„)/2
~
k,b ~

(Ti Ti)'~

Similarly we find

0 1D= (D+1)/Ti+— (i 8'k, be '"'pg +c.c. ) .
2R

(16)

(17) and

t

'
f ( m dk —

2v2 )t —m (K2 —K] )z —2EC2z]
p,b —— i@~(m b 2vi)e—

(24)

As discussed in Ref. 5, Eqs. (14) and (17) are the same as
those for a one-photon two-level system with the substitu-
tions

co~cu+co, I, P 8'/fink, b
8' /2A', v~2v .

These equations can be solved in steady state for
single-frequency operation, but we are concerned here

ik[b, t —(Xi —K( )z)D= ~~~ ke
k

(25)

Substituting the truncated expansions (22) and (23) along
with the field (19) into the polarization (7) and equating
coefficients of e' ' allows us to determine the slowly vary-
ing polarization H&(r) and from it the complex absorp-
tion coefficient a& which is found to be

E]N 0!O
ai —— i (k—„+kbb)+-aa 1+IiWi

tao, Ti+I2y& i(2—ice,Ii&i)—
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where a11 is I(.2N I k,b I(T2/T1)' /2eo and Ei and K2
are the wave numbers for modes 1 and 2. Other factors
appearing in Eq. (26) are the two-photon complex denom-
inator

p,b= pip [mb 2—v2 u—,m(K2 —K, )+2u,E2]

I [(m5 —2v2)f —m(E2 —x, )z+2~,z]Xe (32)

~ = 1/[y+i (o)+ci),I2 —2v2+md, )], For the case of copropagating probe and pump beams we
let K2 K& ——EC where

the m =0 case of the Lorentzian

=1/[1+(ai+cu, I2 —2v2+mh) /y ],
and the population pulsation factor P (6), which for this
case equals 1/(1+ ib T1). The arrival at Eq. (26) brings
us to the end of the review of the two-photon two-level
theory. a& represents the complex absorption experienced
by the probe at frequency vi for the homogeneously
broadened case. %e now generalize it to include inhomo-
geneous, in particular, Doppler, broadening.

rc
I u, I

=(v2/c)
I
v,

I
=(vi/c)

I u,

and substituting this into Eq. (32) we obtain

i [(mh —2v2)t —2']
p.,= g ip'(ma 2—v, 2—Kv, )e

By letting

v2 ——v2+ j'v,

v] =v)+EUz

(33)

(35)

III. INCLUSION OF DOPPLER BROADENING

In order to generalize Eq. (26) to a Doppler-broadened
medium we need to express ai as a function of velocity u

and then integrate over the Doppler velocity distribution
W(u),

(cz, )D~ fa, (u))v(v=)du . (29)

in the coefficients in Eq. (34) we retrieve Eq. (24}. We

find the same result for the D equation (Eq. 25). Thus we
ean obtain ai(u) for the unidirectional case by performing
the substitutions of Eqs. (35) in Eq. (26).

Likewise we do a similar substitution for the bidirec-
tional case where we let Ki- E2-K i—n Eq. (32). We
then obtain

We would normally expect W(u) to be a Maxwellian dis-
tribution, but in order to perform the integral analytically
we let W(u) be the Lorentzian

p,b ——pip [mb, —2v2+2(m —1}Eu,]

i f(mh —2v2)t+2(m —l )Kzl
Xe

In this case if we let

v2 ——vp+EUz

(36)

where 2u is the width of the velocity distribution. This
distribution yields exact results in both the Doppler and
homogeneously broadened limits and is a good approxi-
mation in between.

For moving atoms the time derivatives in the density
matrix equations of motion become convective deriva-
tives. ' Thus we have

d 8 8+ Uz
dt Bt Bz

(31)

where u, is the component of velocity along the z axis.
Using the expression in (31) for the derivative of (22) we
obtain

I
vt =v) —EU

(37)

in the coefficients we again retreive Eq. (24). The same
can be done for Eq. (23) to obtain D and thus for the bi-
directional case we obtain ai(u) by substituting Eqs. (37}
into Eq. (24). To find the average over the velocity distri-
bution W(u), we use the appropriate a, (u) in Eq. (29).

The Appendixes carry out the averages for a Lorentzian
velocity distribution for both unidirectional and bidirec-
tional cases using the calculus of residues and we just give
the results here. For the bidirectional case we have

iK]X
(a, ) = — (k„+kbb)+a (2I y&, iso, T, )(a„)—iautv, I2&1(a22)—aa

where

2 l &gI2
+aoI2(2(u T1 I27 ~1) y~1(ao ) + (a1 ~ + ( (a2 ~ y~ 1(ai ~ }

2y

(a2» = —iy

M(iwy) w y y'—
M(iw, y'} y' M( iy', w)—

r

~2+1 (y+ w) lw y+ y
M(iw, y') y' M( i y', w)—

(39)
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M (l N, y )G ( —l w) N {'Y —'Y )6 ( ~2 —l y )
&ao&= —& *

. , +
M(iw, y') y' M( i—y', w)

~2+'(w —y) . iw (y —y)6(~2 —'Y )
&al &= ly—B . , 6( l w—)'+

M lw, y' y' M —ly', N

(41)

[62+i (w —y))6( l—w)
& a2 & =y'&

[h2 —b, + l'(2N +y )]M (iw, y')
iw {y y)6(~2 l Y )

y' [52+bi —(2y'+y)]M( i—y', w)
(43)

(44)

iEC)/
&al &„d——— (k«+kbb)+ao( ice, T—l &b» &+2I2&b22 & iI2&b3—3 &)

&2+l'(w+y) lw 6{62—iy')
& 03 &=ly8, 6( —lw)+ (y +y)

where M(iw, y) is given by Eq. (A15) as M(iw, y)=(52+iw) +y and 6(iw) is given by Eq. (A30). In practice for the
Doppler-broadened limit where N ~ ao, we have M(+iw, y)~ —N2, M(+iy, w)~N2, and 6( iw—)~0 causing all the
&a„& except & a» & to be zero thus giving us the Doppler-free expression given in Ref. 4.

For the undirectional case me obtain

/I 2 s T]12—I'~(&) I &b & —,T &b &+ (&b &
—&b &)+

'
(&b &

—&b &)
2 2

(45)

M( —iw y) w y —y'

M( —iw, y') y' M(iy', N)

lP M( —iw, y) w iy(y2 y'2)—

[ A2 b, +i (—w+—y) j M( iw, y—') y' [ 5+i(y'—+y)]M(iy', w)

—~sy[ —~2+l (w —y) j iw ~*y(y' y)-
&b„&=

[ h2 b—+i (—w +y )]M( iw, y') — y' [ h2 6+i (y'—+y )]—M(iy', w)
~ ~ g / ~ I ~

(46)

(47)

(4g)

i y'(2y+i 5)[ 62+ 6, +i (N—y)][ b—2+i (w—+y )]
&b, &=

[—b2 —b, +i(w +y)]M( iw„y')N(i—w)

y'(2y+l i3)( &2+i'. l y—+13l)( &—2+l y+Pl —)—2LU
( b2 5+i y—+p—l)M( —p , ly)Q

w y (2y+ib, )(y'+y)[b, +i(y' —y)]
y' [ 6+i(y'+y)]M—(iy', w)N(b2+iy')

&b, &=
y(2y+ih)[ b2+b+—i(u' —y)][ 52+i (w+y)]— iw y(2y+ib )(y'+y)[g+i (y' y)]+

M( —iw, y')N(iw) y' M(iy', w)N(b, 2+i y')

y(2y+i b, )( h2+ b, i y+ pl )—( —&2+i—y+ pl)
M( —p , ly)Q

&b, &=—

y~, ( b,2 a+ l'y+ pl ){ &2+ 2 y—+Pl—)——2k N
M( —p , l)yQ

y'co, [ 62+i {w—+y)] w y'cu, (y'+y) y2CO, ( 52+i y—+pl )
&b3&= i

' +,+2N
M ( i w, y')N (i N) — y' M (i y', w)N {62+i y') M{ Pl y')Q—

—ly cu [—62+6+i (w —y) j[—62+I (N —y)] y co (y — y)[+ +(ly —y)]
[ F2 5+i (—N+y—)]M( iw, y')N(iw) — y' [ b, +i(y'+y—)]M(iy', w)N(62+iy')

y2CO, ( —62+6 —iy+pl)( 42 iy+ —pl)—
+2'

( —~2 —~+iy+Pl)M( —P»y )Q

y~, [ —~2 —b+l (w+y)j[ —~2+i{w+y)1
M( iw, y')N(lw)—

(50)

(51)

(52)
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FIG. 3. (a) Real part of (a~ )~ vs ETi for Ii ——0.25 for homogeneous ( wT~ ——0) and extreme Doppler ( wT~ ——10000) broadening.

T2 ——2T~. (b) The imaginary part for the same parameters.

y~. [ ~z+—~+i (w y)—][ i) 2—+t (w —y)) iw y~, (y' y)—[~+i (y' y)—]
M( iw, y'—)N(iw) y' M(iy', w)N(b&+iy')

ya), ( 62+6 i—y+Pi)( —&2—t'y—+13()
M( —Pi, y')Q

(54)

The expressions for M, 8, G, Pl, N, and Q which appear
in Eqs. (39)—(54) are given in the Appendixes in Eqs.
(A15), (A28), (A30), (820), (835), and (836), respectively.

The general expression for (at)„d simplifies substan-
tially in the extreme Doppler limit. Since the unidirec-
tional case is not Doppler free one needs to normalize by
multiplying by Z =(w +y)/y to prevent all terms from
vanishing in this limit. After the Z normalization, the
first and third terms in Eqs. (51)—(56) and the first term
in Eq. (50) all go to zero. The general expressions for
(a t ) [Eqs. (38) and (45)] can be evaluated for any degree
of Doppler broadening by merely changing the value of w,
the width of the Doppler distribution.

IV. BIDIRECTIONAL RESULTS: ZERO
STARK SHIFTS

In Secs. IV and V we examine the results for the bi-
directional pump and probe. To second order in the

I

strong field, the probe absorption coefficient (26) ap-
proaches the simple form '

ai-ao(2y&'iI2 ice, Ti )—, (55)

aside from the constant index term proportional to
k +k&&. This is the identical result found for the probe-
absorption coefficient in the extreme Doppler limit, which
confirms the well-known result that for low intensities the
absorption spectrum is Doppler-free. Thus, in this low-
intensity limit we do not expect the degree of Doppler
broadening to affect the width of the Lorentzian. This is
borne out in Fig. 3(a) which shows the real part of the
probe-absorption spectrum as a function of pump-probe
detuning for the dimensionless intensity Ii ——0.25 and for
two different velocity distributions widths w, expressed in
units of 1/Ti. The case for w=0 is the homogeneous
limit and w =10000 gives the Doppler limit within the
resolution of the graphs. The curves are nearly identical,

h

V
8

10000

0. 4

h

V
8

CL

1.00

FIG. 4. Re(a&)M vs b, T, for Iz 10 for decreasing amo——unts of Doppler broadening from the Doppler limit to the homogeneous
limit. (a) ra Tl ——2„5,20, and 10000. (b) GATI

——0, 0.25, 0.5, 0.75, and 1.0. In both cases T2 ——2T I .
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FIG. 5. log( m~HM ) vs loge,
'

u) for I2 ——1, 2, 5, and 10.

I

0 6
AT~

FIG. 6. Re(a~)~ vs ET' in the coherent-dip limit for
mT2 ——0, 0.25, 0.5, and 1. I2 ——1 and T~ ——10T2.

differing only in the height of the absorption peak. This
difference is caused by the fact that in the Doppler limit
relatively fewer atoms are saturated than in the homo-
geneous limit where aB the atoms are saturated. Figure
3(b) shows the imaginary part of at for the same parame-
ters and again there is very little difference between the
two limits.

This result is strikingly different from that for a high-
intensity field in the homogeneous limit where the two-
photon absorption spectrum has the same shape as the
one-photon result of Mollow with wide wings out past the
Rabi sidebands and negative regions corresponding to
gain. As demonstrated in Figs. 4(a) and 4(b), as the
Doppler width is increased to 0.5y, the Rabi wiggles van-
ish but the spectrum remains power broadened. When the
Doppler limit is reached the spectrum has narrowed to the
Doppler-free Lorentzian of width 2/T2 but substantial
Doppler broademng is needed to overcome the power
broadening and approach this width. In order to more
thoroughly examine the width of the Lorentzian as a
function of Doppler broadening we have calculated the
full width at half maximum (wFwHM) of the absorption
spectrum for several values of the intensity. The results
are presented in Fig. 5 which shows in log-log form
wFwHM plotted against the Doppler width w for four dif-
ferent intensities I2. Of course, this particular measure
really has no meaning for the cases in which the spectrum

is not bell shaped so for each curve we have limited the
minimum Doppler width w which is allowed. However
that part of the curve is well away from the region where
the Doppler limit is approach. We can see that as the in-
tensity is increased so too is the Doppler width required to
reach the Doppler-free Lorentzian.

The previous results have all been for the limit where
the population difference and coherence lifetimes have the
same order of magnitude. We now examine the limit
where the coherence lifetime T2 is much shorter than the
population difference lifetime T(. This regime is known
as the coherent-dip limit because the absorption spectrum
shows a dip reminiscent of the Lamb dip but of a com-
pletely different origin. The coherent dip is caused by the
fact that population pulsations have a limited bandwidth
given approximately by (1+I2)/T, . The coherent dip as
yuch only occurs for low intensities, evolving into the
Mollow-type spectrum as the intensity increases. We ex-
amine this regime for both high and low intensities. Fig-
ure 6 shows the real part of a( as a function of pump-
probe detuning (now in units of 1/T2) as the Doppler
width is increased. It can be smn that the coherent dip is
nearly immediately wiped out. By the time w =1/2T2
there is no longer any evidence of a dip. This result is ex-
pected physically since the dip is due to the atomic
response to the coherent superposition between the two

(a} (b}

h

U
V
E

Q. 0

FICr. 7. (a~)~ vs b Tz in the high intensity (I2 ——10), short dipole lifetime ( T& ——10T2) limit. (a) Re(a&)~ for wT2 ——0, 025, 05,
and 1. (b) Im(a& )~ for the same parameters.
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FIG. 8. Re(o, i )bd vs ETi in the high intensity (Iq 10)——regime when the lifetimes are on the same order ( Ti ——2T~ ) for wT~ ——0,
0.25, 0.5, and 1. (a}coqTl ——0.1 and 52T~ =(u —2v2) T~ ——0. (b} coqT~ ——0 and 52T~ ——1.

fields (fringe pattern) and with any degree of Doppler
broadening the atoms see only an average field.

As mentioned above the coherent dip is only a low-
intensity phenomenon. In the high-intensity regime the
curves resemble those for equal hfetimes as shown in Ref.
4. We illustrate this regime in Fig. 7(a) which shows the
Rabi sidebands rapidly vanishing as coherent effects are
wiped out and the Doppler-free Lorentzian is approached.
The lack of power broadening in the extreme Doppler
limit is due to the fact that in this case only a small frac-
tion of the atoms experience saturation whereas with a
small degree of Doppler broadening a larger fraction of
the atoms are saturated. We also present the imaginary
part of a, in this limit in Fig. 7(b). It shows how multiple
regions of anomalous dispersion obtained in the homo-
geneous limit rapidly vanish as the standard dispersive-
type curve is reached for to as small as y.

V. BIDIRECTIONAL RESULTS: NONZERO
STARK SHIFTS AND DETUNING

In this section we examine the effects of Stark shifts
and detunings from the atomic resonance frequency in the
various limits examined in Sec. IV, still for the bidirec-
tional case. Stark shifts which are inherent to many two-

photon systems, particularly in Rydberg atoms, add a de-

gree of complexity unique to multiphoton problems. In

general both Stark shifts and detunings cause asymmetries
to appear in the otherwise symmetric absorption spectra.
Often the effects of the Stark shift and detuning are very
similar since the Stark-shift term frequently occurs in the
argument of a Lorentzian. Such is the case for the low-
intensity limit discussed below. However, as shown in Eq.
(26) the Stark shift also occurs outside of arguments and
then causes effects markedly different from simple detun-
ings.

We first examine the limit where T, and Tt have the
same order of magnitude. In the weak-field case the Stark
shift is insignificant because as seen in Eq. (55) co, only
occurs multiplied by Iz in the argument of &, and only
causes a very slight shift of the Lorentzian, as long as
co,I2 is not comparable or large relative to y. Stark shifts
do have a marked effect on the strong-field-absorption
spectrum for the homogeneously broadened case, where
once again the effect is very similar to that caused by de-
tuning, and the changes caused by Doppler broadening in
the two are also very similar. This is illustrated in Pigs.
8(a) and 8(b) where we show the real part of ut with
co, Ti ——0.1 and (co —2vz)Ti ——0 in (a) and (co —2vi)Ti
=0.1 while co, Ti ——0 in (b). Both are shown for several
values of the Doppler width w and I2 —10. Both sets of
curves are remarkably similar and vary in the same
manner as iv is increased. In particular, for the homo-
geneously broadened case a Stark shift or detuning causes

(b)
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FIG. 9. Same as Fig. 6 except in (a} coq T2 ——0.5 and 52T2 ——0. (b) coq T2 ——0 while 52T2 ——0.1.
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FIG. 10. Same as Fig. 7(a) except in (a) n)g Tp ——0.1 and 62T2 ——0. (b) cog Tp ——0 and 62T2 ——0.1.
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a. D

FIG. 11. The real (a) and imaginary (b) parts of Z(a~ )„q for homogeneous ( wT, =0) and inhomogeneous ( mT~ ——10000) broaden-
ing. Other parameters the same as in Fig. 3.

G. 0

FIG. 12. (a) Re(a~),q for the same parameters as in Fig. 6. (b) The same except scaled by Z and showing the homogeneously
( mT2 ——0), intermediately ( mT2 ——10) broadened and inhomogeneously ( mT2 ——10O00) broadened limits.



EFFECTS OF DOPPLER BROADENING ON T%O-PHOTON. . . 3043

the gain of one Rabi sideband to turn into an absorption
peak while causing that of the other to grow. When

Doppler broadening is taken into account, as the width of
the Doppler distribution increases, the asymmetry disap-
pears. The absorption peak initially broadens and shifts
inward away from the Rabi frequency while the gain van-
ishes. As in the zero Stark-shift case, as the Doppler limit
is approached, the spectrum reaches the 2/Tz width
predicted in Eq. (55). In the extreme Doppler-limit Stark
shifts or detuning merely displace the Doppler-free
Lorentzian from its zero-Stark-shift location.

We now examine the regime where Ti «Ti. As
shown in Sec. IV, for the low-intensity limit, the coherent
dip found in the homogeneously broadened case is filled
in by Doppler broadening larger than 1/2Tq. The same is
true when Stark shifts or detuning are included as is illus-
trated in Figs. 9(a) and 9(b). In this case while the effect
of the detuning and the Stark shift are quite dissimilar in
the homogeneously broadened limit (a phenomenon which
we will examine more closely in a forthcoming paper) as
the broadening is increased the curves once again ap-
proach the same shape of the shifted Lorentzian. The fi-
nal case to be examined is the strong-field limit for these
lifetimes. The transition from homogeneously to Doppler
broadened for both a Stark-shifted but centrally tuned and
a detuned system with no Stark shift are shown in Figs.
10(a) and 10(b) where once again the effect of detuning
and Stark shifting are very similar, and once again the
asyminetries appearing in the homogeneously broadened
case disappear as the Doppler broadening is increased.

VI. UNIDIRECTIONAL RESULTS

The probe-absorption coefficient averaged over Doppler
broadening for a unidirectional pump and probe contrasts
substantially with the counterpropagating case. It is

equivalent to unidirectional non-Doppler inhomogeneous
broadening. Also, due to the similarity between the one-
and two-photon theories it is of interest to compare the re-
sults to those for one-photon inhomogeneous broadening.
In this section we present the unidirectional results in the
same limits that were examined above for the bidirectional
case. In general the unidirectional absorption coefficient
does not approach a Lorentzian. To prevent (a, ) from
vanishing in the extreme Doppler limit and yet still reduce
to the correct homogeneous value for w=0, we have nor-
inalized some of the following results by multiplying
(ai) by Z =(to+y)/y

First we examine the results for zero Stark shifts and
zero detuning. As shown in Appendix 8, in the unidirec-
tional case & i is no longer independent of velocity and is
therefore not Doppler free. Thus Eq. (55) no longer de-
scribes the Doppler-broadened result. In Fig. 11 we
present the results for the two limiting cases of homogene-
ous and extreme Doppler broadening for a low-intensity
pump. All parameters are the same as those for Fig. 3 ex-

cept here we have normalized by multiplying by Z. As
required, the homogeneously broadened results are identi-
cal for the two cases, but for the copropagating pump and
probe, in the extreme Doppler limit, we obtain for the real
part of ai a slight dip instead of a Lorentzian peak and

0. 4
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FEG. 13. (a, )„d vs AT2 for the large intensity, short dipole
lifetime limit. (a) The real and (b) the imaginary parts. All pa-
rameters are the same as in Fig. 7. (el Z Re(a~ ) for the homo-

geneous (wrq ——0) and inhomogeneous {mT2 ——10000) limits.
All other parameters as in (a).

for the imaginary part a slight dispersive-type curve of
opposite sign.

We next examine the low-intensity limit with a short
coherence lifetime. Figure 12(a), corresponding to the bi-
directional case of Fig. 6 with the same parameters, shows
the change caused by slight Doppler broadening. The
coherent dip is not filled in as it was before, and in fact as
shown in Fig. 12(b) (which is Z normalized) even when we
reach the extreme Doppler limit, there is still a dip. Since
the filling in of the dip depends on the angle between

pump and probe, it offers a means of measuring the dif-
fusion of atoms through the system by varying the
pump-probe angle.

Now we examine the short-coherence-lifetime limit for
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FIG. 16. Same as Fig. 1S except for the homogeneously ( mT2 ——0) and inhomogeneously ( mT2 ——10000) broadened limits.

O. 25

(0)
and 10(b) for small Doppler widths the results are similar,
illustrated now in Fig. 17(a) only for the Stark-shifted
case. However, in the Doppler limit, shown in Figs. 17(b)
and 17(c), we again see the characteristic dispersive shape
as in Fig. 16(a) and the broad shoulders with a much
smaller dip than seen in Fig. 16(b).

VII. CONCLUSIONS

-Q. 4

6. Q

Q. 0

We have shown how the simple analytical model of a
Lorentzian velocity distribution for the Doppler broaden-
ing can be included for copropagating and counter-
propagating pump and probe beams and have looked at
the transition from homogeneous to extreme Doppler
broademng for the probe absorption with an arbitrarily in-
tense field. The unidirectional and bidirectional cases are
significantly different. We find that for the bidirectional
case for weak intensities the spectrum is narrow for any
amount of Doppler broadening but even a degree of
broadening as small as I/2Tz fills in coherent dips. For
strong intensities the homogeneously broadened spectrum,
characterized by a width of about twice the Rabi frequen-

cy, narrows in the Doppler limit to a non-power-
broadened width of 2/T2 This limit . is reached only
when the Doppler broadening is significantly larger than
the Rabi frequency. This is true in all level and coherence
timescale regimes. In this limit Stark shifts acting simi-
larly to detunings merely displace the Doppler-free
Lorentzian from its nonzero value and all asymmetries
vanish. In contrast, the unidirectional results are similar
to those for one-photon inhomogeneous broadening. In
this case the spectrum never becomes Doppler free and
coherent dips are not filled in.

—3. Q'
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FIG. 17. (a) ZRe(a~)„d for the same parameters as in Fig.
10(a). (b) and (c) the same as Figs. 10{a)and 10{b)except for the
unidirectional case scaled by Z and for the homogeneously
{mT2 ——0) and inhomogeneously (mT2 ——10000) broadened lirn-
its.
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APPENDIX A: COUNTERPROPAGATING PUMP
AND PROBE

In this appendix we derive the equations for the probe-
absorption coefficient a, averaged over Doppler broaden-

ing,

(ai) =fai(u) W'(u)du

for the bidirectional case. All the averages are done as-
suming the Lorentzian velocity distribution W(u} of Eq.
(30). We need to express ai [Eq. (26)) as a function of
velocity. As discussed in Sec. III for a counterpropagat-
ing pump and probe we replace v1 by v1 —ECU and v2 by
vz+Ku where we now let u represent the z component of
velocity for typographical simplicity. Having made these
substitutions we have (setting x =2Ku)

b(x)'= vz+Kv —(vi —Ku) =b, +x,
hz(x)'= p) 2(vz+—Ku)+Nslz ——bz —x,
& i(x)'= & i ——[y+i (&z —&)]

Nz(x)'= [y+ i (az —x)]-',

~3(x)'= [y+i (b z
—6—2x) ]

Wz(x )' =[1+(bz —x) /yz]

W(x)'= [1+iTi (b +x)]
where the primes indicate the substitutions for vi and vz
have been made. Note that & i remains independent of x,
i.e., it is Doppler free. Using Eq. (30) we have for any
function g(v)

( g ) iza
——f du W(u)g (u )'= —f dx

where w =2K' is the width of the velocity distribution in
frequency units. Substituting Eq. (26) into Eq. (A3) we
obtain

iE]N
(ai )bd

——— (k~, +bbb)+ap(2lzy& i icosT~ )—(a i i ) iapcuslz&—i(azz )
eo

2
i CugI2

+aplz(tpisTi —Izy&i) y~i(ap) + (ai &+ ( &az &
—y~i &a3 ) )

2y
(A4)

where bd stands for bidirectional. The ak representing
the functions over which the integral is performed are

Substituting this into Eq. (A3) and moving into the com-
plex plane we obtain

a i i ——(1+Iz&'z)

Q22 r ~ 2Q11

(A5)

(A6)

w m dz (hz —z) +y
—"z +w (hz —z) +y'

(A13)

and

Qp =Q»P

Q1=$~2 Qp,

az =y'~z'~3"ap,

1+ IzP'(& i+&3) (A7)

(AS)

(A9)

where

M(iwy) w yz —y'

M(iw, y') y' M( i y', w)— (A14)

The four poles of the integrand are located at z =+ice
and z =b,z+iy'. We close the contour in the lower half
plane and evaluate the residues at z = —i co and
z =42 —i@'. %e then obtain

(A10)
M(z, x)=(bz+z) +x (A15)

We thus need only to evaluate the integral in Eq. (A3) for
the expressions (A5) through (A10) to obtain the complete
answer for (ai)bd. The integrals are most easily evaluat-
ed in the complex plane using the residue theorem and
thus for each one we need to evaluate the integrand at
each of its poles. For the sake of typographical simplicity
we drop the primes in the expressions which follow.

First we determine Q» as a function of z,

y +(b,z
—x)

a ii(x) =(1+IzWz) (A 1 1)
y' +(hz —x)

where

We proceed in the same manner to determine (azz).
First we obtaiii azz(x),

y [y i (b z
—x)]-

azz(x) =
(x —b, z

—i y')(x bz+iy')—(A16)

(A17}

Substituting into Eq. (A3) and evaluating at the poles
z = —im and z =h2 —i y', we obtain

6z+i(y+w) iw y+y'
azz = 'y +

M(iw, y') y' M( i y',w)—
y'=y(1+I')'~' . (A12) The final four averages require us to determine ap(x)
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N i +&3
1+ I2

2 1+iTi(i3,+x)(b2 —x)2+y
ao —— [1+iT~(6+x)]

(b,2
—x)3+y' (A18)

Then X as a function of x becomes

which is more involved due to the complexity of ao. We
can write ao as

[y —i (53—b, —2x)][1+iT,(6+x)]
[y i(—b '3—5—2x)][1+iTi(6+x)]+yI3&i[y+i(&+x)]

(A20)

In order to determine the poles of ao we need to factor the denominator of X. We do this using the quadratic formula to
obtain

den(X) = —2Ti(x —P )(x —P+ ),
where

i (2~3h+ Ti~h+yIz~ i~3h~h }

4T1~3h~h

1 2[1+YIz&i&3hZ h(r+ib, )]
2 Ti~3h~h

2 1/2
2&3h+ Ti~h+rIz& i&3h~h

2T1~3h~h

(A21)

(A22)

and

&3h=[r —i(~z —~)] '

Wh ——(I+iTib, )

(A23)

(A24)

which are the standard homogeneous expressions for &3 and P . Using the factorization in Eq. (A21) we can then ex-

press X as

( I+2i &3hx)(1+ i Ti Whx)x=—
2T, &3h&h (x —p )(x —p+)

Finally, we obtain

1 [(b3—x) +y'](1+2i &3hx)
ao(x) =-

2Ti&'3h [(h2 —x) +y' ](x —p )(x —p+)

Substituting this into the integral of Eq. (A3} we then obtain

wB ~ [(b2—z)'+ Y ](1+2i&3hz)
(ao) = — dz

(z +w )[(bz—z) +y ](z —p )(z —p+)

where

8= 1

2Tl ~3h

(A25)

(A26)

(A27)

(A28)

The location of the poles at p+ is not immediately obvious, however, graphical analysis shows them to always be in the

upper half plane for any parameters of interest. Thus, by closing the contour in the lower plane we are left with only the
two poles at z = iw and z—= b,z

—i y'. This finally gives us
T

M(lw, y)G( iw) w—( Y r)G'(~— '2r )
+ —,

M (iw, y') y' M ( i y', w}— (A29)

1+2i &3hz
G(z)=

(z —p )(z —p+)
(A30)

Having evaluated ao we can now easily evaluate the remaining three terms. To obtain a& we note that it is merely



BARBARA A. CAPRON AND MURRAY SARGENT III

y&zao so we can write it as

(Az —x —i y)(1+2i &31, )
a, (x)= —iya

[(b z
—x)z+ y'z](x —p )(x —p+ )

(A31)

Following the same procedure as before we substitute this into Eq. (A3) and after closing the contour in the lower half
plane and enclosing the two poles at z = —im and z =62 —i y' we obtain

(a, ) = iy—a bz+i (w —y) iw G(is,z iy—')

M(i, y)
6( —' )+y (y' —y)M( iy, )

Using the same procedure for az we can write

(b z
—x i y—)(1+2i&3sx)

az(x)= —y 8
(2x bz—+6 iy—)[(x —bz)'+y'](x —p )(x —p+)

(A33)

[hz+1 (w —y)]6 ( —iw)
(az) =yz8

[hz 5+—i (2w+ y) ]M (iw, y')

iw (r' r)6—(~z ir'}-
y' [hz+6 i (2y'+y—)]M( iy', w)—

Repeating the procedure a final time for a3 we obtain

(bz —x +iy)(1+2i &3i,x)
a3(x) =iyB

[(b,z —x) +y' ](x —p )(x —p+ )
(A35}

hz+i (w+y)
(a3) =iy8 . , 6( —iw)

M iw, y'

lw, 6 (~z+, (y'+y) (A36)

Using the expressions for the (a„) in Eq. (A4) we obtain
Eq. (38).

APPENDIX 8: COPROPAGATING PUMP
AND PROSE

Now we proceed in the same manner to derive Eq. (45)
for the copropagating pump and probe. For this configu-
ration we replace v& by v&+KU and v2 by v2+It. U. Making
these substitutions and again setting x =2EU we have

b,(x)'= vz+Eu —(vl+EU) =b,
bz(x) =bz —x

&1(x)'=[y+i (5z+g x)]-
&z(x)'= [y+i (b z

—x)]
&3(x)'=[y+i (b z 5 x}]-—
Wz(x)'= [1+(hz —x) /y ]

P (x)'=(1+ihT, )

where once again the primes indicate the substitutions for
vl and vz have been made. We note that for this case &1
is no longer Doppler free but b, and therefore W are. The
expressions for b,z, &z, and Wz are the same as in the bi-
directional case. Since &1 is no longer Doppler free,
when we substitute Eq. (26) into Eq. (A3) we now obtain

iK]X
(a, )„,= — (k„+kgb)+ao( icosT1 (bl, ~+2I—z(bzz) —iIz(b33 ~)

«o

iI2 ~s T]12—I'zm(b)ao Iz(bl) icosT, (bz)+— ((b3) —(b4))+ ((bs) —(b6))
2 2

where ud stands for unidirectional and the bk are given by bz b 1 /re'I, —— (87)

b 1 1
——(1+I3 &z)

bzz r~ lb 1 1

b33 r~s~ l~zb 1 1

~1(~1+~2 )bll

1+ IzP (&'1+&3')

(83)

(85)

1++Iz&(&I+&3'}

b4 b3&'ll&3', ——

bs =bs~r~'1

(89)

(810)
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be=b4~y~I ~ (811)

(x —bt) +y
b2q(x}=

x b2 —6+i—y (x —&2)2+y'2
(813)

%'e note that b&& is the same as a
&& but we reevaluate it

since for this case we close all the contours in the upper
half plane. Proceeding as before, we determine each bl, as
a function of x, substitute it into Eq. (A3), move into the
complex plane, and determine the poles. Since the expres-
sions for bi„b2z, and bi3 have the saine two poles, we
shall handle them as one group. Thus expressing them all
as functions of x and dropping the primes we have

(x —h2)+y
bii(x) = (812)

(x b,z)+y—'

(x —b.2) —(b, —iy)2
+ud 2 2 2(x b—p) (5—i y—) +iI2 yP ( b i y—)

(818)

We then factor the denominator to obtain

(x —b.2)i —(6—iy)
+lid (x —Pi)(x —Pi)

(819)

where now

As in the previous case we need to factor the com-
plex denominator in Eq. (88) in order to evaluate
the remaining integrals. We again let X= —,

'
[2

+ y12~(~i+~3)] ' which when expressed as a func-
tion of x becomes

—yes(x hi —i y )—
b33(x) =

(x b2 —5+i—y)[(x —hp) +y' ]
(814)

~syf ~&+i(~ y)]—
[ h2 b, +i (w +—y)]—M( iw, y')—

LU -itsy(y'-y)
+ y' [ b2 b—+i(y—'+y)]M(iy', iJ)

(817)

When these three expressions are each substituted into Eq.
(A3) they each have two poles in the upper half plane.
These are for z =iud and z =b,2+iy'. Evaluating each of
the residues at these poles and taking the sum we obtain
the following expressions for the averages:

+. . . (815
M( —i i'') y' M(iy', w)

'

iy M( iic,y)—
[—kg —5 +l(N +y)] M( liO, y —)

(816)y' [ 9+i (y'—+y)]M(iy', w)
'

Pi, 2=~2+[(~ iy)—(~ iy —iI2y—~)]'" . (820)

All of the remaining integrals thus have poles at Pi and
Pq. These poles are not always in one half plane as is the
case for the bidirectional configuration. Instead their lo-
cations are dependent on 5, T], y, and I2. %hen

h(h+h~)(b, —h~) (0, (821)

[I2(yTi —1)/2 —1]'
7

T]
(822)

the Pi pole is in the upper half plane while the P2 pole is
in the lower half plane and otherwise the poles switch
planes. In the expressions which follow we close all the
contours in the upper plane, assume that Eq. (821) is true
and that the Pi pole is in the upper half plane. When Eq.
(821) does not hold we merely replace Pi with P2 and vice
versa.

Using Eq. (819) for X we express bi b6 as func—tions
ofx,

(x h2+ 0—i y )(x ——52+ i y)
bi(x)=iy (2y+ib, )

(x 52 5+—i y )(—x —Pi)(x —Pi) [(x —h2)'+ y']
(x 62+5 i y )(x ——b2+iy)—

b2(x) =y(2y+i b, )
(x —Pi }(x—P2)[(x —h2) +y' ]

x —he+i y
b3(x) = —i1 Cd@

(x —Pi)(x —P2)[« —~z)'+ y']
(x —h2+ 6—i y)(x —52 —I'y )

b4(x) = i y'~, —
(x b2 g+iy)(x —P—&)(x ——P2)[(x —hq) +y' ]
(x b, 2 6+iy)(x h2+iy —)——

b5(x) = —yeas
(x —Pi)(» —P2) [(x —&2}'+y' ]

(824)

(825)

(826)

(827)

(x —h2+ 5—iy }(x—&i,—iy)
b, (»)= y~, —

(x —Pi)(» —P2)[(x —42) +y']
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(829)

Substituting Eqs. (823)—(828) each into Eq. (A3} and going into the complex plane, we see that while Eq. (821) holds
they all have the same three poles in the upper half plane at z =pl, z =iw and z =b,z+i y' .Evaluating the residues at
these poles and summing the results we obtain the following averages:

ir'(2r+i~}[—~z+~+t (w —r)]l —i}z+t(w+r)l u y'{2y+i a}(y'+y)[b+L (y y)]—
[ bz —b+—i (w +y)]M( iw—,y')N(iw) y' [ d—I+i (y'+y)]M(iy', w)N(bz+iy')

y (2y+i 6)( —bz+ b, —iy+P, )( Az—+i y+P&)—2N
( ~z ~+tr+P»M( P—l r'}Q

r(2r+l ~}[ ~z+~+t (w —r)l[ —~z+i(w +r }1 lw y(2y+lk)(r +r)[5+i(y —y)]
M( iw,—y')N(iw)

+ y' M(i y', w)N(b z+i y')

830y(2y+ ib, )( &z+—& l y+—P'l )( ~z—+ l r +131)

M( —p ly')Q

y'~. s[ ~—z+t (w +r) l w r'~s(y'+y } r'~s( —~z+ir+4 }
(b, )=—i, +—, , , +2w

M( iw, y—')N(iw) y' M(iy', w)N(hz+iy') M( —p ly')Q

—iy'tos[ —&z+&+t (w —y}][—~z+i(w —y}l w r los(r' r}[—~+t (r' r}l-
(b4) = +-

[ hz —5+i—(w+y)]M( iw, y—')N(iw) y' [ b, +i (y—'+y}]M(iy', w)N(bz+iy')

y los( hz—+6 i y —+Pl )( bz i—y + 13—l )
+2M

( hz b, +—iy+—pl)M( —p ly')Q

ycos[ —bz —b, +i (w+y)][ 5z+—i (w +y)] iw yeas(r +y}[—l5+'(r +'r }]
(b, &=-

M( iw, y')N—(iw) y' M(iy', w)N(bz+iy')

yros ( bz —b +i y +pl—)( &z+ t r +—13l )

M( —p yl')Q

(831)

(832)

(833)

ytos[ —Qz+ 5+ l (w —y )][—bz+i (w —y )]
(b6) =-

M ( iw, y')N—(t'w)

in gqs. (829)—(834), M(z, x) is given in Eq. (AI5),

N(z) =(z —Pl)(z —Pz) (835)

lw r~s(r' r}[~+—t(r' r}l-
y' M(iy', w)N(b, z+i y')

rcos( ~z+~+ly+13l)( —&z—l'y+Pl)
M( —p yl')Q

(834)

Q =(P, —Pz)(P&+w ) . (836)

Equations (829)—(834) hold while Eq. (821) is true. The
equivalent expressions when it is not true are the same ex-
cept that P& and Pz are interchanged. Using these equa-
tions for the (bk ) in Eq. (82) we obtain the results of Eq.
(45).
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