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Effect of collisions on line profiles in the vibrational spectrum of molecular hydrogen

J, D. Kelley and S. L. Bragg
McDonnell Douglas Research Laboratories, St. Louis, Missouri 63166

(Received 25 April 1986)

A semiclassical calculation of density-broadening and line-shift coefficients in the vibrational-
rotational spectrum of molecular hydrogen is presented. These parameters are obtained as functions
of temperature and upper-state quantum numbers, and the calculated results are in good agreement
vrith experimental values obtained from fundamental and overtone electric quadrupole spectra, ex-

cept for the 4-0 overtone density-broadening coefficient. Results from Raman and electric-field-
induced spectra in the fundamental band are also discussed. The calculation includes construction
of an intermolecular potential for the Hz-Hz interaction. The vibrational phase shift resulting from
collision is shown to account for the vibrational state dependence of the broadening and shift coeffi-
cients, and the observed temperature dependence of the line shift is reproduced by the calculation.

I. INTRODUCTION

The vibrational-rotational spectrum of gas-phase
molecular hydrogen is of interest for several reasons. As-
tronomers observe the electric quadrupole spectrum of hy-
drogen in the major planets and use these observations to
model the planetary atmospheres. ' Accurate quantum-
mechanical calculations of the H-H interaction potentials
are available, and these calculations allow critical compar-
isons of calculated and observed line positions. Similarly,
experimentally observed quadrupole-absorption line
strengths can be compared with theoretical values.

Line shifts and broadening in Ht resulting from col-
lisions with Hq or a foreign gas are of considerable
theoretical interest. These parameters probe the inter-
molecular interaction potential, and they can provide in-
formation on both the angular and radial dependence of
the interaction. A sequence of overtone transition mea-
surements provides additional valuable data on the depen-
dence of the interaction potential on the H2 vibrational
coordinate.

For all these reasons, there have been numerous experi-
mental studies of the molecular hydrogen spectrum. The
first observation of a vibrational transition in hydrogen
was made in the electric quadrupole spectrum by
Herzberg. There have been several subsequent
quadrupole-absorption measurements. Line-shift coef-
ficients have been measured for the fundamental absorp-
tion band, ' ' the first overtone, ' ' and higher over-
tones. Broadening coefficients for the fundamental '

and various overtone transitions have also been deter-
mined. In addition to the quadrupole-absorption studies,
the fundamental band of H2 has been observed in the
electric-field-induced spectrum' ' and in the Raman
spectrum. ' ' Line-shape parameter values are provided

by these studies. A comparison of the density broadening
and shift coefficients obtained in the various measure-
ments forms part of the discussion below.

This publication summarizes the extensive set of Hi
quadrupole-absorption measurements previously obtained
by one of us; included in this summary are results which
have not previously appeared in publication. A theoreti-
cal calculation of collision-induced line shifts and self-
broadening coefficients in the 1-0 through 4-0 vibrational
bands is also presented. The calculation uses some simpli-
fying characteristics of hydrogen and its isotopes to ob-
tain the vibrational dependence of the shift and broaden-
ing coefficients.

II. OUTLINE OF CALCULATIONS

The semiclassical line-shape theory of Anderson 0 has
formed the basis for many subsequent theoretical studies
of the effects of molecular collisions on the shape of spec-
tral lines, and the approach here is a modified version of
the Anderson approach.

In the Anderson theory ' ' the linewidth [half width at
half maximum (HWHM)] is given by

]/2=&~or (1)

and the line shift by

CO —NO=AQO'; .
In these equations, n is the perturber number density, u is
the relative collision velocity, and u = f uf (u)du
denotes an equilibrium average. The quantities cr, and o;
are the real and imaginary parts of the optical cross sec-
tion o. For isolated lines and collision times short com-
pared with the time between collisions,

ua(uj;Ufjf)= f uf(u)du f F(u, b)2gbdb . (3)

with

F(u, b)= ( 1
)Itlf —1lly
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~

U J;m;)] (4)
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In Eqs. (3) and (4), b is the impact parameter of the col-
lision, u;j; and Ufjf label the vibrational-rotational states
connected by the optical transition, and k is the tensor or-
der of the transition ( k =0 for an isotropic Raman transi-
tion, 1 for a dipole transition, and 2 for an electric quad-
rupole or anisotropic Raman transition). The m's are pro-
jection quantum numbers. The quantity S(u, b) is the S
matrix associated with a radiator-perturber collision of
velocity u and impact parameter b; in using Eq. (4) we as-
sume that the radiator and perturber molecules can be dis-
tinguished. This assumption is satisfactory even for self-
broadening or shifting except when the possibility of reso-
nance effects exists. The formal correction for such ef-
fects and the practical implications for self-broadening
and shifting in Hz will be discussed in Sec. U below.

The differences among various semiclassical approaches
to the calculation of collisional effects on line shapes arise
from the different approaches employed in the calcula-
tions of S(u, b). In Anderson's original treatment, the rel-
ative motion in the collision coordinates was considered a
set of straight-line trajectories for all u and b, and the S
matrix was approximated as an expansion to second order
in the interaction potential. The work of Fiutak and Uan
Kranendonk ' on self-broadening in hydrogen is a
relevant example of this type of treatment.

The straight-line-trajectory assumption causes problems
in the second-order expansion, because the 5-matrix ele-
ments depend on the time-integrated interaction potential,
an&I for interactions of the form VI ——CR ", the integral

f VI[A(r)]dt diverges for b~0, or A(t)~ut. To
avoid this difficulty a lower limit for b is introduced. '

A more realistic treatment of the classical collision tra-
jectory is to solve the equations of motion using the spher-
ically symmetric part of the interaction potential. This
avoids the divergence for b ~0 and the calculation can be
done for all b It is still p. ossible in some cases that the in-
teraction strength is sufficiently large that a second-order
expansion is not adequate, and a unitary treatment of the
S matrix which includes inelastic collision processes if
necessary, is required. Examples of such treatments can
be found in the work of Nielsen and Gordon and Smith,
Giraud, and Cooper.

Theoretical treatment of collision broadening and the
shift in line center for the vibrational-rotational lines of
molecular hydrogen is simplified somewhat by the fact
that o, and cr; are both small (=10 times gas kinetic
cross section). This allows separation of the phase shift,
reorientation ( m changing), and inelastic (j or U changing)
collisional contributions to these cross sections. This
separation is seen most easily by using Gordon's
classical-limit expressions for o„and o;. For S-branch
electric quadrupole transitions Gordon obtains

o.„=u 'f uf (u)du f [1—cos(z) )P,i cos (a/2)]2m bdb,

f, uf (u)&u f »n(z))&, i cos'(a/2)2mbdb,

(6)

where g is the total phase shift, o. is the reorientation an-
gle and P,I is the probability that no changes in j or U

o„=u -' f uf(u)du f I [1—P„cos'(a/2)]

+g(rj)P, i cos"(a/2)]2nbdb .

(7)

The term in square brackets is the contribution to cr, due
to rotational inelasticity and/or reorientation in the ab-
sence of any phase shift; when averaged over b and u this
term will be comparable with the broadening cross section
for a transition in the rotational spectrum. Because the
experimentally determined rotational broadening cross
sections are small, about 0.4X10 ' cm for Hz, and be-
cause they can be adequately reproduced by a second-
order Anderson-type treatment, ' it is safe to assume
that P,i cos~(a/2)=1 for most of the u, b range.

Equations (1) and (2) can now be rewritten, using Eqs.
(7) and (6), as

~~in=&(ya+yu»
ciP —67o=l1 Sq (9)

In these expressions ya and y„represent rotational and
vibrational contributions to the density-broadening coeffi-
cient y, and 5„represents the vibrational contribution to
the line-center-shift coefficient. The subscript notation
anticipates the results presented below; the bj and bm
contributions are purely rotational in origin, and by far
the largest contribution to the phase shift is vibrational in

origin so that 5zt-0 and 5=5„. Moreover, the phase shift
is the only contribution the vibrational degree of freedom
makes to the self-broadened Hz line shape; the vibrational
spacing and anharmonicity are large enough that vibra-
tionally inelastic processes (vibration-translation and
vibration-vibration energy transfer) make a negligible con-
tribution.

The foregoing considerations allow considerable simpli-
fication in the calculation of density broadening and shift
coefficients for fundamental and overtone transitions in

Hz. The separability of ya and y„ for Hz allows these
contributions to be obtained independently. Experimental
values for yzi obtained from the pure rotational spectrum
can be used in conjunction with calculated y, 's for the
fundamental and overtone vibrational transitions to obtain
total-broadening coefficients y, and the line-shift coeffi-
cients 5 can be equated to 5„ to a good approximation.
The calculation is then reduced to obtaining the collision-
al phase shifts rj(b, u) associated with the vibrational
motion, and then integrating cosy and sing over b and u

to obtain

y„=f uf (u)du f (1 cosrI)2nbdb, —

5„=f uf(u)du f sin(z))2nbdb .

In the semiclassical formulation used here,

q; f(b, u) = (+f(ri, rz)
~ f

—(+;(ri,rz)
~ f

VI(rl rz r)«
I pf(ri, rz) )

VI(ri, rz, t)dt
~

4';(r„rz) ),
(12)

occur in the collision characterized by u and b. Similar
expressions can be obtained for the Q and 0 branches.

If Eq.' (5) is rewritten with cosz) = 1 —g (z) ), then
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where i and f are the initial and final states of the two-
molecule collision system and Vi(ri, r2, t) is the time-
dependent interaction potential with the relative H2-H2
motion described by a classical trajectory defined by b
and u.

The total calculated density-broadening coefficient y
for an 5-branch transition (O,j~u,j+2) can be con-
structed by adding the experimental value for ya obtained
from the pure rotational spectrum (O,j~O,j+2) to the
calculated y„as indicated in Eq. (8). The data of Keijser
et al. ' were used here to obtain yit, as shown in Table I.

Obtaining y for the Q branch is less direct because
there is no rotational Q branch, so that ya is not directly
available. The contribution of yR to the total Q-branch y
values can be estimated by subtracting the calculated y„
from the total y values observed in the Q-branch funda-
mental spectrum. These estimated yq values can then be
used for calculating y in the overtone transitions. This
approach to obtaining the S- and Q-branch y values relies
on the separability of rotational and vibrational contribu-
tions to the total broadening and the expectation that yit
is essentially independent of vibrational quantum number.

III. INTERACTION POTENTIAL

An accurate intermolecular potential for the H2-H2 col-
lision system is a prerequisite for calculation of the
broadening and shift coefficients. An "exact" potential

TABLE I. Rotational contribution y~ to line-broadening
coeffirient. Values derived from results in Ref. 27 for the pure
rotational spectrum.

Rotational
transition

S(0)
S(1)
S(2)
S(3)

fg
(10 cm 'amagat ' at 300 K)

1.4
1.7
1.2
1.2

would allow calculation of any observable property deter-
mined by pairwise interactions in a molecular hydrogen
system. For example, in addition to the line-shape param-
eters of interest here, elastic scattering cross sections
should be accurately obtainable from the interaction po-
tential. Thus, in a space-fixed coordinate system, the po-
tential function must have the proper dependence on the
intermolecular separation R and associated orientation an-
gles 8 and 4, the orientation angles for molecules 1 and
2, Hi, pi and 6}i,(I}2, and vibrational coordinates r, and rz.

To our knowledge there is no highly accurate H2-Hz in-
teraction potential available in the literature which satis-
fies all these criteria. However, there is an accurate
"rigid-rotor" potential which does got include the r&, r2
dependence. The complete interaction potential can be
written in the form

VI(rl r2 R)= Vooo("i r2 R}+g (4'ir) Vi! (ilj'1, P2 R) g I I (6i 41)I! (i 2 42)I ij.

I I l2A, m&m2m

(13)

where the Fs are spherical harmonics and Vi! ij are
) 2

themselves sums of terms that represent the short- and
long-range contributions to VI. The first term in the
ii l2!(, sum is explicitly indicated as Vooo.

The results of Norman, Watts, and Buck (NWB) pro-
vide a rigid-rotor potential of the form indicated in Eq.
(13) but with ri and r2 replaced by ro (ro ——0.767X10
cm}, the average H-H separation for H2 in u =0,j=0. To
incorporate the effect of bimolecular collision on H2 vi-
brational motion, an explicit r&, rz dependence must be
added to the rigid-rotor interaction.

An estimate of the r„r2 dependence in VI can be made
by inference from the accurate ab initio Hi-He interaction
potential calculated by Meyer, Hariharan, and Kutzel-
nigg ' (MHK) and refined by Senff and Burton. The
leading terms in the H2-He potential, i.e., Vooo and the
equivalent pair V022 and V202, each have a counterpart in
the H2-H2 potential. The hydrogen system also has V22~
terms which do not appear for H2-He; the quadrupole-
quadrupole interaction is included in V22~. Given the
similarity between He and Hz as collision partners for H2,
one can use the working hypothesis that the fractional
change with varying r, (or r2) in each constituent term of
V200, Vi02, or V02i for Hi-H2 is the same as that for Hi-
He.

Specifically, we begin with

Vooo(r „r2,R)= V„,~(r i, r2, R)

C6(&i &z) Cs(&i iz)
R R

(14)

exp[ —p (R */R —1) ], R (R '
1, R)R (15)

The parameter p is umty for Vooo Voz2»d V202' R
5.&X10 cm for Vooo and S.8~10 cm for V20p and
Voz2 ~

In the H2-He interaction potential, the coefficients
C„(r) arise almost entirely from the dispersion interac-
tion ' and therefore depend on the polarizabilities of the
collision partners. Expanding the C„(r) for Hz-He in a
Taylor series to second order about r =ro, we obtain

C„(r)=C„(ro)[1+a„(r ro}+P„(r—ro) ], — (16)

with similar expressions for Vzoz and Vozz. The subscript
rep refers to the repulsive potential terms. The function
f(R} serves to damp the contribution of the long-range
terms for small R and has the form
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C„
C„(ro) dr

1 1 dCn
2 C„(&o) dr'

A similar second-order expansion for H2-82 yields

(18)

(r1 ~2)=C (&o &o)I 1+& [(&i —&o)+(&2—&o)l+& (&i —&o)(&2 —&o) +P [(&i —&o) +(&2 —&o) ]I (19)

(20)

where the coefficients a„and P„ for H2-H2 are partial derivatives with respect to r, or, equivalently, ri as in Eqs. (17}
and (18). Insofar as the C„values are solely functions of the polarizabilities of the collision pair, a„and P„are identical
in Eqs. (16) and (19) because they are determined by the rate of change of the polarizability of H2 with intramolecular
separation. MHK give values of C„ for three r values, including ro; these allow evaluation of a„and P„ for the long-
range terms in Vooo and V2O2, Vo22. The values of C„(&o),u„, and P„are shown in Table II.

A similar procedure can be used to estimate a„~ and P„~ in the expansions

V„&(ri,ri,R)= V p(ro, ro R)t 1+a„&[(r&—ro)+(rz —ro)]++ p(i'& —ro)(r2 —ro)+P t[(ri —ro) +(r2 —ro) ]I

TABLE II. Interaction potential parameters for H2-H2 in a.u.
(1 a.u. distance =0.529' 10 ' cm; 1 a.u. energy =27.21 eV).

O'rep

Prep

C b

Q6

P6
C b

O!8

ps
CIO'

OIO

pro

3.7264
1.4706
0.0224
0.91
(1.%
0.165
(0.31)'
12.14
0.57
0.0

215.2
0.86
0.20

48 I 3.0
1.15
0.40

0.1315
1.6
0.0
(2.26j'

(1.9)'

0.254
1.35
0.26

12.18
2.0
1.5

307.2
1.6
3.8

0.0403

0.929

41.67

The final interaction potential used in the calculations is Vooo,

the other terms are shown for comparison {see text).
"Values taken from Ref. 32.
'These values are taken directly from the H2-He potential; the
final optimized values are shown without parentheses.

where

V~&(ro, ro, R)=A exp( —cR dR ) .— (21)

If the MHK results for H2-He are used, one finds that

a„~ and P„& are not constants, but vary slowly with R. In
addition, there is no reason to assume that the valence in-
teractions responsible for the repulsive parts of Vooo or
Vie, VO2i should be more than approximately the same
in H2-Hz and Hz-He. Nonetheless, the Hi-He results can
be used to provide initial values of a„~ and P„~, and these
can be refined using the experimental data as discussed
below. The initial va1ues were obtained by evaluating
dV„~ldr and 8 V„~iBr' for H2-He at R =2.64)& 10
cm, near the turning point of Vooo(ri, r2, R) for a direct
collision with average energy at T =300 K. The initial
values based on H2-He and the final values actually used
are shown in Table II.

Table II also shows the coefficient values obtained by
NWB for the rigid-rotor Hi-Hz interaction, i.e.,
V„z(ro, ro, R} and C„(ro,ro, R). Comparing these coeffi-
cients for the angle-independent Vooo terms with those for
the angle-dependent terms, one sees that the Vooo coeffi-
cients are 15—50 times larger than the V2o2 values and
100—300 times larger than the V2q4 values.

Since the a and P values are comparable in Vooo, V2o2,
and V22g, it is clear that vibrational perturbations in the
H2-Hq collision system wiB be dominated by Vooo. Calcu-
lation of y„and 5„ therefore requires only Vooo, and the
rest of the interaction potential can be neglected. The Hz
rotational degree of freedom is unaffected by Vooo, and
the only role rotation plays in the y„5„calculation is to
define the initial and final j values, which affect the vibra-
tional wave functions and matrix elements parametrically.

To summarize, the interaction potential VI used in the
calculations below is given by Vooo and depends only on
the radial coordinates r&, r2, and R. It has the functional
form given in Eq. (14) with Eqs. (15), (19), (20), and (21)
substituted therein. The parameter values are given in
Table II. The r&, r2 dependence of the long-range terms
was derived from Hi-He as discussed above and the ex-
pansion coefficients were not subsequently varied. The
two independent expansion coefficients for the short-
range term were estimated from Hz-He, but were varied
from these initial values to optimize the fit to experimen-
tal shift and broadening coefficients. The sensitivity of
the calculations to parameter variations and the relation-
ship of the results here to those obtained with simpler po-
tential functions are discussed in Sec. VII.

IV. MATRIX ELEMENTS AND TRAJECTORY
CALCULATIONS

To evaluate the phase shifts g,z „J'(b,u) given .by Eq.
(12), a set of trajectories R (t) was obtained by numerically
solving the Hamiltonian equations of motion in the rela-
tive center-of-mass coordinates R (t), 8(t). The spherical
term Voce(ro, ro, R) was used as the potential, so that the
angular vdocity 0 is constant. A Runge-Kutta algorithm
was employed and each trajectory was begun with 8 large
enough so that further increase made no difference in the
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result. At each velocity tt trajectories were obtained for
15 impact parameters from b =0—9.8X10 cm. In-
creasing b,„had a negligible effect on the results for all
u. Forty initial u values were chosen, representing ten
collision energies equally spaced between 0.001 and 0.01
eV, ten equally spaced between 0.01 and 0.10 eV, and 20
between 0.10 and 0.50 eV. This set of b and u values was
large enough to accuratdy perform the integrations over b
and u which define the ensemble-averaged quantities y„
and 5„,Eqs. (10) and (11). It should be noted that the set
of trajectories needs to be generated only once. The re-
sults can then be stored for use in computing y„and 5„
for any transition at any temperature below 500 K. Ex-
tending the calculations to higher temperature requires an
extension of the u-value set to collision energies above
0.50 eV.

The only matrix elements required to evaluate Eq. (12)
are (u,j I

r
I u,j) and (u,j I

r
I u,j) for the uj values cor-

responding to each state encountered in the set of transi-
tions. Because the interaction potential is angle indepen-
dent, only the j-dependent vibrational wave functions are
required. The calculations reported here were performed
with matrix elements computed from the accurate ab ini
tio potential for H2 obtained by Kolos and Wolniewicz. 2'

Some calculations were performed with use of j-dependent
Morse wave functions to compute the r and r matrix
elements. For a given U,j state, the r-matrix elements are
some 10% smaller with the Morse functions than with the
exact functions; the r2 elements differ by less than 1%.
For a fixed interaction potential, the Morse function re-
sults for y„and 5„are similar to those obtained with the
more exact wave functions and are not further discussed.

V. EXPLICIT PHASE-SHIFT EXPRESSION

Unlike the case of foreign-gas broadening and line
shifting, construction of explicit expressions for the 1P;

and pf in the phase-shift expression Eq. ( 12) must take
account of the effect of indistinguishability in H2-H2 col-
lisions. The single-molecule transitions observed and dis-
cussed in this work are characterized by the change in u

and j associated with one molecule (O,j~u, j'), but the
two-molecule wave functions are not, in general, simple
products. For a system in which one molecule makes a
transition 0,j,~u,j,' while the collision partner remains
in state 0,jb, the final-state symmetric (+ ) and antisym-
metric (—) wave functions are

1'-(ri, r2)

1
I 0„, «1)~j (~14'1)ko,j,(»2)llj (8242)

+—Poj, (»1)~j,(814'1)4„'«2)&j (~A'2)1 .

The initial-state wave functions 1II;(ri, r2) are given by the
right-hand side of Eq. (22) with u =0 and j,' replaced by
j„except for the case j,=jb, for which

q't (ri r2) = No.f, (»1)~J,(()14'1)40 J,(»2)~J,(~202) ~

In Eqs. (22) and (23), p„j and Rj are the normalized
single-molecule wave functions for radial and angular

motion. The time-integrated interaction potential can be
written

f Vj(r„»2, t)dt = E(ri+r2)

+Frir2+G(ri+r2) . (24)

Substituting Eqs. (22), (23), and (24) into the phase-shift
expressioll, Eq. (12), oile obtallls

rj. = E(&uj,
'

I
r

I uj.'& —(Oj. I
r

I oj. &)

+F[(&uj'
I

»
I uj'& —(oj. I» I oj. &)&ojb I» I ojb &]

+G((uj,' I
r

I uj,') —(OJ, I
r'I Oj, ))

F&uj-b I
»

I uj' &'5(J' jb) . (25)

5=5;+(nfln)5, , (26)

The symmetry-indicating superscript over rj„refers to the
upper state and is independent of lower-state symmetry.
The last term in Eq. (25) is zero except when the transi-
tion terminates on a j value identical to that of the nonab-
sorbing collision partner. This term results from sym-
metrization of the wave functions; when it is absent the
+ and —phase shifts are identical and equal to that cal-

culated using a simple product form for the two-molecule
wave functions.

When the last term in Eq. (25) is nonzero, there are two
different phase shifts for a given, single-molecule transi-
tion, each displaced from the mean value by equal and op-
posite amounts. Two situations then arise. In the absence
of a +,—symmetry-selection rule, the net line-center
shift obtained by averaging Eq. (25) over b and u is the
same as that obtained without the last term. In the pres-
ence of a selection rule, e.g., only "+"upper states al-
lowed, the line shift will differ from that calculated
without the last term. This additional contribution to the
line shift, termed the "coupling shift, " has been observed
in the fundamental Q-branch Raman spectrum of H2 by
May et al. , ' and has been interpreted and discussed in
subsequent papers. ' '

The coupling-shift effect is different in the electric-
quadrupole spectrum than in the isotropic Raman or
electric-field-induced spectra. In the latter two spectra,
scattering or absorption in the two-molecule system de-
pends on the net polarizability derivative with respect to
the displacement coordinate. For isotropic Raman
scattering or field-induced Q-branch absorption, the col-
lision partners can be considered to be polarizable breath-
ing spheres, so that only the in-phase, symmetric (+ ) vi-
brational upper state is allowed, independent of the rela-
tive orientations of the collision partners. For allowed
quadrupole absorption the transition moment depends on
the orientation of the collision partners and there is no
rigorous +,—selection rule, so that the observed line-
center shift is insensitive to the coupling term.

Because the coupling term is present only when the fi-
nal j-state of the transition is the same as the (constant) j-
state of the collision partner, the coupling-term magnitude
differs for different transitions in an H2 sample at equili-
brium. May et al. ' have expressed the line-shift coeffi-
cient for the fundamental Raman Q branch as
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where 5; is independent of rotational quantum number
and 5, is essentially equivalent to the contribution of the
last term in the phase-shift expression, Eq. (25). The ratio
nj. /n is the equilibrium fraction of molecules in state j.
For Hz at 300 K, about 65% of the molecules are in j= 1.
This means that Q(1) has a larger ensemble-averaged
coupling-term contribution to 6 than Q(0), Q(2), etc.
This coupling term will be small for all 5-branch transi-
tions because j=2 is the smallest final-state value possi-
ble, but the 0(3) value will be comparable to the Q(1)
value. Additionally, the coupling terms will be very small
for all overtone transitions, because (uj

~
r

~
Oj) decreases

rapidly as U increases.
In summary, the coupling term should have little effect

on the observed line-center density shifts for any transi-
tion in the electric-quadrupole spectrum, but the coupling
term produces an observable effect in certain transitions
in the fundamental isotropic Raman and in the electric-
field-induced Q-branch spectra.

VI. DATA ANALYSIS

The electric-quadrupole spectra of Hq for various tran-
sitions in the 1-0 through 4-0 vibrational bands have been
obtained by one of us. Many of the results have been re-
ported in previous publications, ' ' although the
density-broadening coefficients given here differ by
5—20%%uo from the earlier reported values ' because of an
improved reanalysis of the collision-narrowing contribu-
tion to the linewidths.

The experimental procedures and data reduction have
been described and will be summarized only briefly
here. The H2 spectra were obtained using a Fourier-
transform spectrometer (Fl'S) and multipass absorption
cell at the National Solar Observatory of the National Op-
tical Astronomy Observatories, Tucson, Arizona. The
resolution was 0.009 cm ', permitting full reolution of
all spectral features. The multipass absorption cell has a
base path length of 6 m, and the actual path length was
483 m. All measurements were made at room tempera-
ture (-296 K) and the Hz pressure ranged from 80 kPa
(0.8 atm) to 270 kPa (2.7 atm). This high-pressure limit
was dictated by the mechanical characteristics of the mul-
tipass cell. Because these quadrupole-absorption features
are weak, particularly the overtones, most of the results
discussed were obtained at the highest pressure.

Molecular hydrogen and diatomic hydrides are unusual
in that their cross sections for pressure-broadening col-
lisions are appreciably smaller than the gas-kinetic cross
section, about 2 orders of magnitude smaller for self-
broadening in H2. For H2 the small broadening cross sec-
tions allow ready observation of collision narrowing. As
first discussed by Dicke, velocity-changing collisions in
an absorber in the absence of broadening lead to a line-
width that is smaller than the Doppler width. The extent
of this narrowing depends on the collision frequency, and
the resulting linewidth is more or less inversely propor-
tional to the perturber density. Collision broadening is
directly proportional to the perturber density in the binary
collision approxirrlation, so the net result is a linewidth
which first decreases and then increases with increasing

TABLE III. Effective diffusion coefficients for S-branch
transitions.

Line

1-0 S(1)
2-0 S(1)
3-0 S(1)
4-0 S(1)

D {cm s ' at 25'C and 1 amagat)

1.30
1.27
1.23
1.18

TABLE IV. Experimental and calculated electric-quadrupole
line-shape parameters (in units of 10 cm 'amagat ' at
296 K).

Experiment'
5 y

Calculationb

1-0 Q(l)
Q(2)
Q(3)
Q(4)

—2.13(4)
—2.0(1)
—2.2(2)
—2(2)

2.4(4)
2.8{3)
3(1)

—1.9
—1.9
—1.9
—1.9

S(0)
S(1)
S(2)
S(3)

—1.8(1)
—1.9(1)
—1.4(1)
-2.0(2)

2.8(3}
2.6{7)
3.1(9)
2.3(5}

—2.1

—2.2
—2.3
—2.4

2.2
2.6
2.2
2.3

2-0 Q(1)
Q(2)
Q(3)

—4.8(2)
—4(3)

4(4)

4.6(7)
5.5(7)
5.5(7)

—3.8
—3.8
—3.8

4.9
5.3
5.5

S(0)
S(1)
S(2)

—4.5(9)
—4.3(3)
—4(3)

4.7(6)
4.8(6)
4.5(6)

—4.0
—4.1

—4.2

4.9
5.3
5.0

0(2)
0(3)

—5{5)
—5{10)

3(1)
3(1)

—3.6
—3.5

44
4.6

3-0 Q(1)
Q(2)
Q(3)

—5.8
—5.8
—5.8

9.7
10.3
10.5

S(0)
S(1)
S(2)
S(3)

7.5(9)
8.5(9)

11(1)
9(1)

—6.0
—6.1

—6.2
—6.3

9.8
10.4
10.3
10,7

4-0 Q(1)
Q(2)
Q(3)

—7.8
—7.8
—7.8

17.6
18.1
18.5

S(0)
S(1)
$(2)
S(3)

—8.0(5)
10(1)
11{1)
10(1)
14( I )

—8.0
—8.1
—8.2
—8.3

17.9
18.6
18.7
19.3

'Parentheses indicate uncertainty in the 1ast significant figure.
'The calculated y is given by the sum y~+y„. The values of
yq for S- and 0-branch transitions are given in Table I. An ap-
proximate y~ for the Q branch is obtained by subtracting the
calculated y, from the experimental y value for each 1-0 Q(J);
the results are used to obtain y values for the 2-0 through 4-0 Q
branches.
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TABLE V. Comparison of various experimental line-shape parameters at 300 K (in units of 10 ' cm ' amagat ').

Line

Electric quadrupole data
This work Other values

y 5
Raman data Field-induced data

1-0 S(0)
S(1)
S(2)
S(3)

1-0 Q(1)

Q(2)

Q(3)

2-0 S(1)
4-0 S(1)

—1.8(1)
—1.9(1)
—1.4(1)
—2.0(2)
—2.13(4)

—2.0(1)

—2.2(2)

—4.3(3)
—8.0(5}

2.8(3)
2.6(7)
3.1(9)
2.3(5)
2.4(4}

2.8(4)

3(1)

4.8{6)
11(1)

—1.67'
—2.40'
—3.53'
—1.77'
—2.40'

4 5c

—8.6d

1.64'

—4.5'
—3.1'
—3.2~

3 0h

—3.1'
—3.4'
—2.1

—2.2'

—3.3'
—2.3'
—2.0'

1.0'
0.7'

0 gk

0 8h

1.3
1.3j

2 8h

1.9'

3 61

—2.6'

—1.4'

1.1'

p gm

1.8'

1 6m

2.8'
3m

'Reference 4.
bReference 10.
'Reference 5.
dReference 6.
'Reference 13.
fReference 14.
N'Reference 15.

"Reference 16.
'Reference 1'7.

'Reference 18.
"Reference 19.
'Reference 11.

Reference 12.

density. In the quadrupole Hi spectra discussed hereth, e
minimum linewidth in the 2-0 overtone band occurs at
about 2.5 amagat and is about 60% of the zero-density
Doppler width.

In order to extract density-broadening coefficients from
the quadrupole data, the Galatry profilei was used to fit
the various lines. This function was derived from a soft-
colhsion model for collision narrowing, i.e., small velocity
changes per collision, and includes collision broadening as
a statistically independent process. The Galatry line is
characterized by specifying the Doppler width and then
obtaining the diffusion coefficient D and collision-
broadening coefficients y which give the best statistical fit
to the data.

The Galatry profile is not the only line-shape function
which has been employed to include collision narrowing.
A hard-collision model developed by Nelkin and Ghatak
has been used for H2 as well. Murray and Javan' have
compared both models to their fundamental-band Raman
data, and conclude that neither model is perfect, although
the hard-collision model is somewhat better when a large
density range is considered. The Galatry profile was used
here because a computationally convenient algorithm is
available, and because the best fit to both the Galatry
and Nelkin and Crhatak line shapes leads to essentially the
same y and B values. ' Furthermore, the Galatry profile
provides a better fit in the density region corresponding to
the minimum linewidth, ' which is the region in which
the quadrupole spectra were obtained.

It proved difficult to obtain unambiguous y and D

values from the numerical fitting algorithm when both
parameters were allowed to vary simultaneously. At a
given density, more than one pair of y and D values lead
to a statistically equivalent Galatry fit. In other words,
such a pair of Galatry line shapes differ by less than the
random noise in the data. These rms noise levels range
from about 3% of the maximum absorption in 4-0 S(1) to
0.1% in 1-0 S(1). To eliminate ambiguity in the fits, the
value of D was fixed for each transition and the y value
was varied to obtain the best fit. Were it not for the
maximum-pressure limitation in the multipass cell, the y
values could have been determined unambiguously by in-
creasing the Hq density to a few tens of amagats. This op-
tion was not available, so the reported y values are based
on four densities from 0.8 to 2.6 amagat in the 1-0 Q
branch, two densities (1.4 and 2.6 amagat) in the 1-0 S
branch and 2-0 overtones, and one density (2.6 amagat)
for the 3-0 and 4-0 overtones.

Choosing the proper D value for these various transi-
tions requires some consideration. For the fundamental
band, the value of H2 self-diffusion at 25 C (D =1.34
cm s ' amagat ') is usually chosen. ' ' This experimen-
tal value for diffusion of para hydrogen into normal hy-
drogen corresponds to all rnolecules in U =0. When a se-
quence of overtone transitions is considered, one must ac-
count for the significant increase in the average H2 inter-
nuclear separation with U. This increase implies a higher
gas kinetic collision frequency and smaller D value than
that appropriate to the vibrational ground state. More-
over, the requirement of identical emission and absorption
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line shapes implies that neither the upper- nor the lower-
state D value is correct, but an average of the two should
be used. We define a state-dependent D value based on a
simple rigid-sphere model ' as

D,)
——1.34

2(01 ir iol&
cm s amagat

(Uj
~

r
~
uj + 01

~

r
~

01

and the resulting average value for absorption from the
ground state as

D„J———,
' (1.34+D„J) cm~ s ' amagat (28)

at 25'C.
Table III lists D„j for a sequence of S(1) transitions.

The experimental broadening coefficients y were obtained
using the appropriate D„, and are shown in Table IV.
These y (HWHM) values must be considered less accurate
than the experimental line-shift coefficients 5, also shown
in Table IV, because they are more sensitive to the line-

shape function.
The experimental line-shape parameter values obtained

for the electric-quadrupole transitions are compared with
literature values in Table V; most of the earlier data are
for Raman Q-branch transitions in the fundamental band.
Note that the quadrupole 5 values for the fundamental
band will not contain a coupling-shift contribution and
thus should be somewhat smaller than the values for Ra-
man and field-induced measurements. Note also that the
Raman and field-induced 1-0 Q-branch y values are ap-
preciably smaller than the corresponding quadrupole
values. Both Raman scattering and field-induced absorp-
tion in the Q branch are dominated by isotropic (tensor
order k =0) processes whereas quadrupole absorption is
an anisotropic ( k =2) process. Energetically elastic
reorientation collisions make a contribution to the rota-
tional component of y for k =2 processes, but not for
k =0 processes. ' The quadrupole Q- and S-branch y
values are therefore expix:ted to be of comparable magni-
tude, and both should be larger than the Raman or field-
induced Q-branch values. The data in Table V verify
these relationships.

VII. DISCUSSION OF THE CALCULATION
AND COMPARISON WITH DATA

As stated in Sec. II, the interaction potential was arbi-
trary to the extent that a«~ and P«~ values were varied to
optimize the overall data fit. We originally assumed that
these two parameters could be varied independently to op-
timize the 5, and y„values for 4-0 S(1},and then taken as
fixed for the rest of the transitions. As Fig. 1 shows, this
is not the case. The calculated 5„values are very sensitive
to P„~ for a given a„,„value; choosing a«~ essentially
fixes P„~ for reasonable agreement with experiment. In
addition, for any pair of a„~,P„~ values which give agree-
ment with the experimental line shift, the calculated
broadening coefficient is essentially the same.

Given the definitions, Eqs. (17) and (18), p„p sh«id be
ositive, so that a«~ must be less than 1.05 If the rep

sive interaction is approximately exponential in r, then
P„~=—,a«~. As Fig. 1 shows, decreasing a«~ requires an
increase in P«~ to maintain agreement between the experi-
mental and calculated 5 values. For o;„p less than 0.75,
the required P«z value corresponds to an interaction
which increases much more rapidly than exponentially.
%ithin the limits 1.05 & o:„p& 0.75, the calculated 6„
values increase linearly with upper-state vibrational quan-
tum number in both the S and Q branches, but the slopes
of the 5, -versus-u curves vary. For agreement with the
experimental 1-0 S(1) shift as well as the 4-0 S(1) shift, a
value of a„p=0.9 (+0.05} is required. The actual values
used to obtain the calculated results shown in Table IV
are listed in Table II. One obvious conclusion from the
foregoing discussion is that the line-shift coefficients
place much more stringent requirements on the choice of
potential parameters than do the broadening coefficients.
An interaction potential chosen to reproduce broadening
coefficients alone will not necessarily be adequate for cal-
culating line shifts. In Tables IV and VI we have assumed
that the total 5 value is essentially equal to 5„. The con-
tribution of the pure rotational line shift is known to be
small in H2.

The calculated S-branch broadening coefficients report-
ed in Table IV were obtained by adding experimental y~
values obtained from the pure rotational S branch to the
y„values calculated here [cf. Eq. (8) and the subsequent
discussionj. The same set of ya values was used for the
two 0-branch lines since y„ is the same for S(J) and
0 (J+2), and ya does not depend on the direction of the

n„= 1.0 e„„=0.91
0.82

20

ua 16
C$

E
'Ql

14
t=

12

10'

xpt

n„,„=1.0 o.„„=0.91 O.,e = 0.82J

I

0. 1 0.2

pep (a u -)

I

0.3 0.4

FIG. ). p„dependence of 5, and y„ for fixed values of o'„~.
The dashed vertical lines connect the calculated y„values vrhich

correspond to 6„values in agreement ~ith experiment for a
given value of o.„p.
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TABLE VI. Comparison of experimental and calculated electric-quadrupole Q-branch line-shift
coefficients and experimental Raman results with coupling shift removed (in units of 10
cm 'amagat ').

Quadrupole 5
Line

1-0 Q(1)
4-0 Q(1)
1-0 Q{1)
4-0 Q(1)
1-0 Q(1)
1-0 Q{2)
1-0 Q(3)
4-0 Q(1)
1-0 Q(1)
4-0 Q(1)
1-0 Q(1)
4-0 Q(1)
1-0 Q(1)
4-0 Q(1)

Temperature (K)

500
500
400
400
296
296
296
296
224
224
160
160
85
85

Expt.

—2.13(4)
—2.0(1}
—2.2(2)

Calc.

4.3
21

1.3
6.0

—1.9
—1.9
—1.9
—7.8
—4.0

—18
—6.0

—17
—8.5

—39

Raman 5

—1.5(1)
—1.5(1}
—1.5(1)

—4.1(1)

—6.0(1}

—8.6(3)

'From the data in Ref. 17; see Eq. 26.

j-changing transition. The 2-0 Q-branch values were ob-
tained by subtracting y„ from the 1-0 Q-branch experi-
mental y values to obtain y)t. These ya values were then
used in conjunction with the calculated y„ for the 2-0 Q
branch.

The calculated line shifts are in good agreement with
the quadrupole data for the 1-0 through 4-0 S-branch
transitions and the 1-0 and 2-0 Q-branch results. The cal-
culated pressure-broadening coefficients also agree well
with the data except for the 4-0 overtone, for which the
calculation overestimates the data by -50—80%. It is
apparent from Table IV that both the line-shift coefficient
data and calculation lead to a nearly linear dependence on
vibrational quantum number. This result had been antici-
pated, and a linear dependence has been explicitly calcu-
lated for Hz-He systems. The broadening-coefficient
calculation results in a quadratic u dependence for y„
such that y„ is -33% of the total y for the fundamental
but is 90% of the total for the 4-0 overtone.

The linear 5 and quadratic y vibrational dependences
are an inevitable consequence of the physical model used
to describe these collision phenomena. That is, for any in-
teraction potential in which the r dependence is expanded
through quadratic terms, the sequence of O,j~u,j' phase
shifts il„ for each value of u and b depend linearly on u.
This results from the nearly linear u dependence of
Hui'

I
r l,

uj'& —&oj I
r

I
oj &1 and f &~i

'
I
r

I uj '&

—&0J
I

r'
I oj & l.

We have verified by direct calculation that the
ensemble-averages sing, and (1—costi„) can be accurately
replaced by g„and —,'rid for u &4; consequently 5„ is
linear and y„ is quadratic in U.

A consequence of the calculated quadratic y„depen-
dence is the impossibility of significantly improving the
agreement between the experimental and calculated 4-0
S-branch broadening coefficients without worsening the
agreement for the 1-0 through 3-0 transitions. There is no
set of interaction potential parameters within the context

of the physical model that can lead to agreement for all
four upper u levels. Nonetheless, the agreement between
the set of calculated and experimental quadrupole shift
and broadening coefficients taken as a whole is satisfacto-

Although the quadrupole absorption data were taken at
296+I K, there are some Raman measurements for the
fundamental band at lower temperatures. In order to fur-
ther compare the calculations to experiment, the tempera-
ture dependences of the calculated 5„and y, were ob-
tained and are shown in Table VI (5„)and Fig. 2 (y, ) for
a few transitions. The calculated temperature dependence
of the 1-0 Q(1) quadrupole shift below 300 K is in good
agreement with the experimental Raman values of Looi
et al. ' for the shift urithout the coupling term [5; in Eq.
(26)]. There seems to be no available data for the tem-
perature dependence of y. The curves in Fig. 2 reflect
only the vibrational contribution y„; however, for the 4-0

9x l03
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FIG. 2. Calculated temperature dependence for the vibration-
al contribution to the line-broadening coefficient in the 1-0 and
4-0 Q(l) transitions.
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overtone the vibrational effect dominates and y=y„.
The origin of the temperature dependence in 5„can be

so:n in Fig. 3, which shows the contributions of each term
in the interaction potential [Eq. (14}]to the net phase shift
integrated over impact parameter as a function of col-
lision energy. As the collision energy decreases below 0.02
eV, the contribution of the attractive terms, particularly
the I/8 term, increases relative to that of the repulsive
term. It is apparent that the thermal-average phase shift
asymptotically approaches a constant positive value, i.e., a
blue line-center shift, as the temperature increases toward
1000 K or so.

Several other conclusions can be drawn from Fig. 3.
The phase-shift contributions from all of the attractive
terms in the interaction potential are significant, and each
is appreciably larger in magnitude than the net phase shift
for collision energies above 0.02 eV. The small net line
shift observed at room temperature is coincidental in a
sense, resulting from the near cancellation of positive and
negative phase shifts in the thermal average. The much
larger line shifts observed with He (Ref. 13) (blue shift) or
Ar (Ref. 13) (red shift) as collision partners for Hi are
easily understandable. Helium is less polarizable and Ar
more polarizable than H2, and relatively small changes in
the attractive interaction will result in large changes in the
net phase shift.

As Fig. 3 shows, the contribution of each potential term
increases rapidly for collision energies below 0.01 eV. In
this low-energy regime the effect of the attractive H2-H2
well, about 0.004 eV deep, becomes important. For col-
lision energies below 0.005 eV there exists a critical im-
pact parameter b*(E) such that every collision trajectory
with b &b" spirals into the repulsive wall. For b=b",
the time required for completion of the coBision increases
substantially; the phase shifts associated with those trajec-
tories become large enough that the replacement of sing
by rl in Eq. (11) is not a good approximation, particularly
for the 4-0 overtone. The subset of trajectories for which
sinrl&1) is not large enough to significantly affect the
thermal average in H2-H2, but this observation is not
necessarily valid for other systems with stronger net in-
teractions.

The low-collision-energy ( &0.01 eV) regime with its

25x10 16

20 7
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Vrep—total
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FIG». 3. Individual contributions of each term in the interac-
tion potential to the phase-shift cross section as functions of col-
lision energy.
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FIG. 4. Rotational state dependence of the line-shift coeffi-
cient for pure rotational transitions.

large net phase shifts is particularly important in accu-
rately calculating 5, . At 300 K, this energy regime ac-
counts for approximately 50%%uo of the total thermally aver-
aged 5, . The broadening coefficient is much less sensitive
to low-energy collisions, with only 10% of the total y„at
300 K resulting from collisions with energies less than
0.01 eV.

Although vibrational transitions are emphasized in this
work, it is worth noting that the coupling between rota-
tion and vibration leads to a vibrational contribution to
the line shift and broadening coefficients even in the pure
rotational S-branch spectrum. The calculated vibrational
contribution to the broadening coefficient y, for 0-0 S(0}
through 0-0 S(10) is less than 1&&10 cm 'amagat
and is therefore small compared to the rotational contri-
bution y11 (see Table I). The calculated vibrational contri-
bution to the line-shift coefficient 5, is displayed in Fig. 4
for two temperatures. The absolute values increase rough-
ly by an order of magnitude from 0-0 S(0) to 0-0 S(10).
Cooper, May, and Gupta have measured 5 (i.e., 5„+511)

for 0-0 S(0) and 0-0 S(1) to be approximately 1&(10
cm 'amagat '. Taking this 5 value for S(0) and com-
b1111ng 1t wlt11 the calclllated 5„, oile estjnlates
511 -2.5X10 cm 'amagat ' This va. lue is about 10%
of the line-shift coefficient for the fundamental vibration-
al band and makes a decreasing relative contribution for
the overtone sequence.

The approximate total line-shift curves, shown in Fig.
4, were generated by taking this estimated 5z value and
adding it to the calculated 6„*s. The main point to be
drawn from Fig. 4 is that, for high-j rotational transitions
in pure H2, the line shift is not correctly calculated by a
rigid-rotor approximation. The line-shift coefficients in
the H2 rotational spectrum with He (blue shift) or Ar (red
shift) as a perturber are observed to be about ten times
larger than that for pure H2. This is almost certainly a vi-
brational effect, with 5„accounting for most of the shift,
just as in the vibrational spectrum. One can anticipate on
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this basis that the observed rotational transition line shifts
in Hz-He and Hz-Ar mixtures will increase in magnitude
with upper state j values.

As mentioned previously, the coupling-shift coefficient
term 5, in Eq. (26) does not contribute to the hne shift in
the quadrupole spectra. The effect of 5, in the Raman
and field-induced Q-branch fundamentals is clear and im-
portant, however. An optimum choice of the interaction
potential should permit calculation of the coupling-shift
contribution to the total Raman hne shift with an accura-
cy comparable with the results already described. The in-
teraction potential used here does not lead to agrimnent
with the observed' ' coupling term; the calculated cou-
pling shift is an order of magnitude too small. No varia-
tion of a„„and P«~ in the interaction potential repro-
duced the observed value [—1.1X10 cm 'amagat
for 1-0 Q(1)) and simultaneously preserved agreement
with the extensive quadrupole data set. May et al. ' and
Looi et al. ' encountered the same difficulty in obtaining
agreement using a calculation based on a Lennard-Jones
model for the Hz-Hi interaction potential. They conclud-
ed that only the attractive term contributed to the cou-
pling shift, and discarded the repulsive-term contribution.
Had we suppressed the repulsive term in our calculation,
agreement with the experimental value could have been
obtained, but there is no physical justification for this pro-
cedure. Each term in the interaction potential, taken as a
Taylor series in r„r2, contributes a;rir2 to the coupling
shift, where a; is the linear r coefficient in the expansion
(a;=a„~, a6, etc.). One cannot use a„~ without using

a„z as well, but this is what selectively suppressing the
repulsive contribution to the coupling shift implies.

One possible solution to this problem would be incor-
poration of an explicit 8 dependence into the potential
parameters a„„and P„p; the H2-Hz potential of MHK
shows this characteristic. We chose not to do this because
it would require two more adjustable parameters to fit a
single quantity, i.e., 5, . A better solution would be calcu-
lation of an ab initio H2-Hz interaction potential at the
same level of accuracy as the H2-He potential. The result-
ing function could be then optimized as necessary using
the existing data set and a calculation like that presented
here.

VIII. CONCLUDING REMARKS

The calculations discussed above show that the vibra-
tional phase shift suffices to explain the observed U depen-
dence of both line shift and broademng coefficients in
vapor-phase molecular hydrogen. Furthermore, the rota-
tional and vibrational contributions to broadening in hy-

drogen are separable; as one progresses to high overtones,
the vibrational contribution increasingly dominates the to-
tal broadening coefficient. A distinction between isotro-
pic Raman (or electric-field-induced) and electric-
quadrupole spectra was made with regard to the coupling
shift. The coupling shift was shown to be important only
in the Raman or field-induced Q branch, and there only
for the fundamental vibrational band. The intermolecular
interaction potential used in these calculations was gen-
erated by extending the rigid-rotor potential of NWB
(Ref. 29) to include an explicit H-H separation depen-
dence. By construction, this potential fits the thermo-
dynamic and scattering data discussed in Ref. 29 as well
as the line-shape parameters.

It is important to realize that the nearly complete
separation of rotational and vibrational effects on the line
shapes, while valid for Hz and D2, will lose its validity for
molecular species in which rotationally inelastic and
reorientation probabilities are large. For such a molecule,
e.g., CO, pressure broadening is dominated by rotational
effects with little vibrational dependence. Moreover, the
line shift is much less than that expected simply by
averaging the phase shift over all collisions.

Note added in proof. The room-temperature Raman
Q-branch broadening coefficients for 1-0 Q(0) through 1-

0 Q(3) obtained by Toich, Melton, and Roh should be
added to those listed in Table V. These values are close to
those obtained by Allin et al. ' as shown in Table V. The
recent work of Bischel and Dyer should also be noted.
They obtain temperature-dependent Raman line-shift and

broadening coefficients for 1-0 Q(0) and 1-0 Q(1). Their
room-temperature 1-0 Q(0) broadening coefficient is about
10% smaller than the value given in Ref. 12 (see Table V),
and their 1-0 Q(l) value is almost identical to that in Ref.
19 (Table V). Bischel and Dyer utilize the temperature-
dependent line-shift data to obtain the 5; coefficient as in

Eq. (26). These 5; values are in good agreement with the
calculated 5 values shown in Table VI.
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