# X-ray transitions in Br XXIV-XXVIII

# J. F. Seely,\* T. W. Phillips, R. S. Walling, J. Bailey, R. E. Stewart, and J. H. Scofield University of California, Lawrence Livermore National Laboratory, Livermore, California 94550 (Received 19 February 1986)

Transitions in the wavelength region 4.9–8.1 Å from Br XXIV, XXV, XXVI, XXVII, and XXVIII have been identified in spectra from laser-produced plasmas. The identifications were made using *ab initio* calculations of wavelengths and oscillator strengths. Spatially resolved spectra were recorded for laser irradiation intensities from  $3 \times 10^{13}$  to  $4 \times 10^{14}$  W/cm<sup>2</sup>. The dependence of the spectral lines on the distance from the target and on the irradiation intensity was very useful in distinguishing the transitions from different ionization stages.

## I. INTRODUCTION

The demonstration of gain<sup>1,2</sup> on transitions in Ne-like selenium and yttrium has stimulated interest in the x-ray and extreme-ultraviolet spectroscopy of Ne-like ions. Gain was observed on transitions between the  $2p^{5}3s(J=1)$  and  $2p^{5}3p(J=2)$  levels, whereas computational modeling had predicted that the transition from the  $2p^{5}3p(J=0)$  level should have the highest gain. The improvement of these models may require the inclusion of processes other than electron collisional transitions from the ground state of a Ne-like ion.<sup>3,4</sup> This will require a knowledge of the densities and atomic rates from other charge states.

In this paper, we report the identification of x-ray transitions in the Mg-like through O-like ionization stages of bromine (Br XXIV, XXV, XXVI, XXVII, and XXVIII). Transitions in Ne-like Br XXVI have previously been observed by Burkhalter *et al.*,<sup>5</sup> Boiko *et al.*,<sup>6</sup> Hutcheon *et al.*,<sup>7</sup> and Gordon *et al.*<sup>8</sup> Burkhalter *et al.*<sup>5</sup> also identified several Na-like and Mg-like transitions that are satellites of the Ne-like transitions. Gordon and co-workers analyzed the Na-like spectra of bromine<sup>8</sup> and higher Z elements.<sup>9</sup> Transitions in F-like<sup>7,8</sup> and O-like<sup>8</sup> bromine have also been identified. The present work greatly expands the number of identified transitions in Br XXIV, XXV, XXVII, and XXVIII.

The plasma was produced from a laser-irradiated microdot of NaBr and NaCl, and the spectra were recorded by a spatially resolving crystal spectrometer. It was found that the Ne-like transitions diminished gradually as a function of distance from the target, and the Na-like transitions diminished very rapidly. The intensity of the laser was varied from  $3 \times 10^{13}$  to  $4 \times 10^{14}$  W/cm<sup>2</sup>, and it was found that the Na-like and Ne-like transitions were dominant in the low-irradiation shots and that the Ne-like, F-like, and O-like transitions were dominant in the high-irradiation shots. The dependence of the spectral lines on the distance from the target and on the irradiation intensity was very useful in distinguishing the transitions from different ionization stages. A number of misidentifications in previous work have been corrected.

The transitions identified using *ab initio* calculations of the wavelengths and relative oscillator strengths (gf)

values) are discussed below and summarized in Tables I–VI. The measured and calculated wavelengths typically agreed to within a few mÅ. For isolated transitions that are collisionally excited from the ground state of a given ionization stage, the observed relative intensities and the calculated gf values were in good qualitative agreement. A more detailed study of the Ne-like intensities has been reported elsewhere.<sup>10</sup>

### **II. EXPERIMENTAL CONDITIONS**

The experimental conditions have been discussed by Bailey et al.<sup>10</sup> The plasma was produced using the microdot technique.<sup>11,12</sup> A dot of target material composed of 10% NaBr, 90% NaCl, and a trace of Al was deposited onto a thick Mylar substrate. The diameter of the dot was 25  $\mu$ m. The target was irradiated by the Phoenix laser beam ( $\lambda$ =0.53  $\mu$ m) focused to a diameter of 100  $\mu$ m and with a pulse duration of 800 psec. The plasma expanding from the microdot was confined to a column by the surrounding carbon plasma. The expansion of the microdot plasma was essentially one dimensional with a small transverse size, and this small size resulted in low opacity and narrow line profiles (typically 3 mÅ).

The spectra were recorded using a flat crystal spectrometer positioned to view the plasma at an angle of 5° to the target surface. Spatial resolution was provided by a slit parallel to the target surface and 30  $\mu$ m in width. The crystal was Pentaerythritol (PET), and the resolving power of the instrument was  $\lambda/\Delta\lambda = 2500$ . Single-shot spectra were recorded on Kodak Direct Exposure film.

## **III. WAVELENGTH MEASUREMENTS**

The spectra produced using irradiation intensities of  $3 \times 10^{13}$  and  $1 \times 10^{14}$  W/cm<sup>2</sup> are shown in Fig. 1. The Na-like and Ne-like bromine transitions are intense in the low-irradiation  $(3 \times 10^{13} \text{ W/cm}^2)$  spectrum, and the high-irradiation  $(1 \times 10^{14} \text{ W/cm}^2)$  spectrum contains intense transitions from Ne-like, F-like, and O-like bromine. The Al XII  $1s^{21}S_0 - 1s2p \ ^1P_1$  transitions at 7.7575 Å is present on both spectra, and the Cl XVI  $1s^{21}S_0 - 1s2p \ ^1P_1$  transition (4.4445 Å) and dielectronic satellites appear on the

34 2942



FIG. 1. (a) The bromine spectrum produced at an irradiation intensity of  $1 \times 10^{14}$  W/cm<sup>2</sup> and at a distance of 50  $\mu$ m from the target and (b) the spectrum produced at  $3 \times 10^{13}$  W/cm<sup>2</sup> and 40  $\mu$ m from the target. The gf values of some of the stronger transitions in BrXXVI, XXVII, and XXVIII are indicated in (c), (d), and (e), respectively.

high-irradiation spectrum. The Al XII and Cl XVI resonance transitions were used as primary wavelength references, and we have adopted the wavelengths of Safronova.<sup>13</sup>

The wavelength scale for the high-irradiation spectrum, on which both the Al XII and Cl XVI reference lines appear, was established using these two reference lines and



FIG. 2. The bromine spectra showing the Ne-like 3C and 3D transitions and the Na-like and Mg-like satellites at the indicated laser irradiation intensities and distances from the target are shown in (a), (b), (d), and (e). The gf values of transitions in Br XXV-XXVII are shown below the spectra in (c) and (f).

the geometry of the instrument. The wavelengths of the Ne-like transitions measured using this scale agree with the measurements of Hutcheon *et al.*<sup>7</sup> to within a few mÅ. The measurements of Gordon *et al.*<sup>8</sup> and of Boiko *et al.*<sup>6</sup> are systematically lower by up to 18 and 24 mÅ, respectively. The wavelengths on the low-irradiation spectrum were measured using the Ne-like transitions that

were measured in the high-irradiation spectrum as secondary references. The precision of the wavelengths, measured with respect to the Ne-like transitions, is estimated to be 2 mÅ. The accuracy of the absolute wavelengths depends on the accuracy of the wavelength scale of the high-irradiation spectrum, and this scale is believed to be accurate to 10 mÅ.

# IV. LINE CALCULATION AND IDENTIFICATION

Identification of the lines in these spectra was accomplished by comparing the observed wavelengths and intensity patterns with those calculated for each of the ion stages expected in the plasma. Ab initio wavelengths and oscillator strengths were calculated using a relativistic atomic structure program written by one of us.<sup>14</sup> For each calculation, self-consistent Dirac-Fock orbitals were determined from an average-configuration potential including exchange. These single-particle orbitals were used to form states of total angular momentum J in *jj* coupling which were then used in the diagonalization for the eigenstates. For all ionization stages, we performed multiconfiguration diagonalizations. We used the length form of the dipole matrix operator for the oscillator strengths and have included a correction for the Breit interaction in our wavelengths. The amount of configuration interaction (CI) varied considerably for each ionization sequence. In each case we included those configurations which would cause significant mixtures with the configurations involved in our identifications. For highly charged ions, this implies at least the mixing of all configurations within the same spectroscopic complex. However, for Br XXIV transitions and the Br XXV transitions involving an n=4 spectator electron, we only included those configurations which have a hole in the 2p subshell. In addition, for any transitions involving an electron in a shell above n=4, we combined more approximate CI calculations with wavelength extrapolations from calculations for transitions from lower shells.

Our identifications are summarized in Tables I–VI and discussed by charge state below. The labels for the transitions in Tables II–VI correspond to the dominant *jj*-basis state component in each of the levels for the transitions. These components are labeled with respect to the vacancies in the n=2 shell and the occupancies in shells with  $n \ge 3$ . We have for simplicity suppressed the intermediate quantum numbers for all levels are likely to have significant mixtures of several basis states; thus a complete description of these states would be unnecessarily complicated. For the transitions in Br XXVI (Table I), we retain the notation of Burkhalter *et al.*,<sup>5</sup> although these levels also may contain mixtures.

### A. Ne-like transitions

The wavelengths and intensities of the Ne-like transitions, measured on the high-irradiation spectrum, are listed in Table I. The wavelengths are compared with the calculated wavelengths and with the previously measured wavelengths.<sup>6-8</sup> The presently measured wavelengths agree with the measurements of Hutcheon *et al.*<sup>7</sup> to



FIG. 3. The bromine spectrum from 6.8 to 7.0 Å and at distances of (a) 140  $\mu$ m, (b) 90  $\mu$ m, and (c) 50  $\mu$ m from the target. Transitions in Ne-like, F-like, and O-like bromine are identified. The calculated gf values are shown in (d).

within a standard deviation of 3 mÅ and are significantly larger than the measurements of Gordon *et al.*<sup>8</sup> and Boiko *et al.*<sup>6</sup> The profiles of the strongest n=3 transitions (3C, 3D, 3F, and 3G) are distorted near the target, possibly by opacity

A line at 7.44 Å has previously<sup>5-7</sup> been identified as the Ne-like 3E transition (gf=0.007). As shown in Fig. 2, the intensity of the 7.44-Å line in the low-irradiation spectrum is greater than the 3D transition (gf=1.482) near the target and diminishes rapidly away from the tar-

|            |                                                  | Pres  | . Meas.   |       |       |               |             |             |
|------------|--------------------------------------------------|-------|-----------|-------|-------|---------------|-------------|-------------|
|            |                                                  | λ     | Relative  | Pres. | Calc. | Р             | rev. Measur | ed          |
| Key        | Transition <sup>a</sup>                          | (Å)   | Intensity | λ     | gf    | $\lambda^{b}$ | λ°          | $\lambda^d$ |
| 3 <i>G</i> | $2s^22p^6 - [2p^{5(^2P_{3/2})}, 3s]_1$           | 8.033 | 10        | 8.033 | 0.130 | 8.034         | 8.030       | 8.029       |
| 3 <i>F</i> | $-[2p^{5}(^{2}P_{1/2}), 3s]_{1}$                 | 7.795 | 9         | 7.795 | 0.084 | 7.798         | 7.790       | 7.792       |
| 3 <i>E</i> | $-[2p^{5}(^{2}P_{3/2}), 3d(^{2}D_{3/2})]_{1}$    | 7.440 | e         | 7.441 | 0.007 | 7.442         | 7.436       | 7.439       |
| 3 <i>D</i> | $-[2p^{5}(^{2}P_{3/2}), 3d(^{2}D_{5/2})]_{1}$    | 7.356 | 12        | 7.351 | 1.482 | 7.358         | 7.351       | 7.352       |
| 3 <i>C</i> | $-[2p^{5}(^{2}P_{1/2}), 3d(^{2}D_{3/2})]_{1}$    | 7.173 | 13        | 7.167 | 1.983 | 7.172         | 7.169       | 7.166       |
| 3 <i>B</i> | $-[2s 2p^{6} 3p (^{2}P_{1/2})]_{1}$              | 6.826 | 10        | 6.812 | 0.082 | 6.824         | 6.815       | 6.818       |
| 3 <i>A</i> | $-[2s 2p^{6} 3p (^{2}P_{3/2})]_{1}$              | 6.776 | 11        | 6.762 | 0.292 | 6.772         | 6.765       | 6.768       |
| 4 <i>G</i> | $-[2p^{5(2}P_{3/2}), 4s]_{1}$                    | 5.944 | 2         | 5.934 | 0.020 | 5.940         | 5.928       | 5.920       |
| 4 <i>F</i> | $-[2p^{5}(^{2}P_{1/2}), 4s]_{1}$                 | 5.810 | 2         | 5.800 | 0.032 | 5.807         | 5.793       | 5.886       |
| 4 <i>D</i> | $-[2p^{5(^{2}P_{3/2})}, 4d(^{^{2}D_{5/2}})]_{1}$ | 5.787 | 10        | 5.779 | 0.424 | 5.784         | 5.771       | 5.778       |
| 4 <i>C</i> | $-[2p^{5}(^{2}P_{1/2}), 4d(^{2}D_{3/2})]_{1}$    | 5.667 | 8         | 5.658 | 0.295 | 5.663         | 5.649       | 5.658       |
| 4 <i>B</i> | $-[2s 2p^{6}4p(^{2}P_{1/2})]_{1}$                | 5.307 | e         | 5.309 | 0.031 |               | 5.305       |             |
| 4 <i>A</i> | $-[2s 2p^{6}4p ({}^{2}P_{3/2})]_{1}$             | 5.299 | e         | 5.297 | 0.089 | 5.305         | 5.292       |             |
| 5 <i>D</i> | $-[2p^{5(^{2}P_{3/2})}, 5d(^{^{2}D_{5/2}})]_{1}$ | 5.266 | 5         | 5.269 | 0.17  | 5.264         | 5.251       | 5.261       |
| 5 <i>C</i> | $-[2p^{5}(^{2}P_{1/2}), 5d(^{2}D_{3/2})]_{1}$    | 5.162 | 3         | 5.162 | 0.10  | 5.161         | 5.148       | 5.160       |
| 6 <b>D</b> | $-[2p^{5}(^{2}P_{3/2}), 6d(^{2}D_{5/2})]_{1}$    | 5.022 | 1         | 5.023 | 0.09  |               | 5.005       | 5.024       |
| 6 <i>C</i> | $-[2p^{5}(^{2}P_{1/2}), 6d(^{2}D_{3/2})]_{1}$    | 4.927 | 1         | 4.926 | 0.05  |               |             | 4.931       |

TABLE I. Transitions in Ne-like Br XXVI.

<sup>a</sup>The designation of the upper level includes the intermediate quantum numbers in parentheses.

<sup>b</sup>Hutcheon, Cooke, Key, Lewis, and Bromage (Ref. 7).

<sup>c</sup>Gordon, Hobby, and Peacock (Ref. 8).

<sup>d</sup>Boiko, Faenov, and Pikuz (Ref. 6).

<sup>e</sup>Blended with Br XXVIII transitions.

get. The 7.44-Å line in the low-irradiation spectrum is identified here as a Na-like transition at 7.441 Å with gf = 1.90 (see Table II). In the high-irradiation spectrum shown in Fig. 2, the 7.44-A feature diminishes gradually away from the target while the Na-like transitions diminish rapidly. It is also apparent in this spectrum that the 7.44-A feature is a blend of more than one transition. In the high-irradiation spectrum near the target, the 7.44-A feature is a blend of two F-like transitions at 7.439 and 7.443 Å (see Table V). However the 3E transition can be identified in the high-intensity spectra at distances far from the target where the other isolated F-like transitions are observed to disappear but the 7.44-A feature persists. These new identifications illustrate the importance of having spectra with spatial resolution and taken at low- and high-irradiation intensities. The Ne-like 4A and 4B transitions are also blended with stronger O-like transitions.

A line at 5.305 Å was identified by Gordon *et al.*<sup>8</sup> as a blend of the 5*B* transition (gf=0.014). We observe a strong line at 5.307 Å in the high-irradiation spectrum, and this line diminishes with distance away from the target faster than the Ne-like transitions and in a manner similar to the O-like transitions. This line is identified here as the O-like transition with calculated wavelength 5.311 Å and gf=0.75 (see Table VI).

### B. Na-like transitions

X-ray transitions in Na-like ions originate on upper levels with two n=3 electrons and a vacancy in the n=2 shell. The strongest transitions are of the type 3d-2p and 3p-2s and appear as satellites on the long-wavelength

sides of the Ne-like 3C and 3D transitions. Na-like transitions with more highly excited spectator electrons (n > 3) appear on the wings of the 3C and 3D transitions and are in many cases blended with the Ne-like transitions.

The wavelength region near the Ne-like 3C and 3D transitions and the Na-like satellites are shown in Fig. 2. The calculated gf values are shown below the spectra. Several F-like transitions are prominent in the high-irradiation spectrum shown in Fig. 2(a) and are weak in the low-irradiation spectrum shown in Figs. 2(d) and 2(e). The Na-like transitions diminish with distance from the target much more rapidly than the F-like and Ne-like transitions.

The Na-like transitions with n=3 electrons are listed in Table II. The measured wavelengths are in good agreement with the calculated wavelengths shifted to longer wavelengths by 0.002 Å. Several of our identifications differ from those of Gordon *et al.*<sup>8</sup> shown in the last column in Table II.

The spectral features appearing on the long-wavelength wings of the Ne-like 3C and 3D lines (see Fig. 2) are blends of a large number of Na-like transitions with an n=4 spectator electron. The wavelengths of the four observed spectral features are listed in Table III along with the calculated wavelengths and gf values.

### C. Mg-like transitions

Listed in Table IV are the calculated wavelengths and gf values for the x-ray transitions that terminate on the

| TABLE II. Tran | sitions in | Na-like | Br XXV | with | n=3 | excited | levels. |
|----------------|------------|---------|--------|------|-----|---------|---------|
|----------------|------------|---------|--------|------|-----|---------|---------|

| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                   |     |                                                     | Pres  | . Meas.   |       |       |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------|-------|-----------|-------|-------|-------------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                   |     |                                                     | λ     | Relative  | Pres. | Calc. | Prev. Meas. |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                    | Key | Transition <sup>a</sup>                             | (Å)   | Intensity | λ٥    | gf    | λ°          |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                    | 1   | $(3p_{3/2}) - (2s_{1/2}, 3p_{3/2}, 3p_{3/2})_{3/2}$ | 6.844 | 5         | 6.842 | 0.56  |             |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                     | 2   | $(3s_{1/2}) = (2p_{1/2}, 3s_{1/2}, 3d_{5/2})_{3/2}$ | 7.195 | 6         | 7.189 | 1.07  | 7.200       |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                    | 3   | $(3p_{3/2}) - (2p_{1/2}, 3p_{3/2}, 3d_{3/2})_{5/2}$ | 7.204 | 7         | 7.198 | 1.37  | 7.188       |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                    | 4   | $(3d_{3/2}) - (2p_{1/2}, 3d_{3/2}, 3d_{5/2})_{3/2}$ |       |           | 7.218 | 0.82  |             |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                    | 5   | $(3d_{5/2}) - (2p_{1/2}, 3d_{3/2}, 3d_{5/2})_{3/2}$ |       |           | 7.226 | 1.81  |             |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                    | 6   | $(3d_{3/2}) - (2p_{1/2}, 3d_{3/2}, 3d_{3/2})_{3/2}$ | 7.229 | 3         | 7.230 | 2.49  |             |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                    | 7   | $(3p_{3/2}) - (2p_{1/2}, 3p_{3/2}, 3d_{3/2})_{1/2}$ |       |           | 7.233 | 1.11  |             |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                     | 8   | $(3p_{1/2}) - (2p_{1/2}, 3p_{1/2}, 3d_{3/2})_{1/2}$ |       |           | 7.233 | 0.93  |             |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                    | 9   | $(3s_{1/2}) = (2p_{1/2}, 3s_{1/2}, 3d_{3/2})_{1/2}$ |       |           | 7.236 | 1.31  |             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                     | 10  | $(3p_{3/2}) - (2p_{1/2}, 3p_{3/2}, 3d_{3/2})_{3/2}$ |       |           | 7.238 | 1.60  |             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                     | 11  | $(3d_{5/2}) = (2p_{1/2}, 3d_{3/2}, 3d_{5/2})_{7/2}$ |       |           | 7.238 | 3.42  | 7.232       |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                     | 12  | $(3d_{5/2}) - (2p_{1/2}, 3d_{3/2}, 3d_{3/2})_{3/2}$ |       |           | 7.239 | 0.65  |             |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                     | 13  | $(3d_{5/2}) - (2p_{1/2}, 3d_{3/2}, 3d_{5/2})_{5/2}$ | 7.240 | 13        | 7.243 | 3.93  | 7.246       |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                     | 14  | $(3p_{3/2}) - (2p_{1/2}, 3p_{1/2}, 3d_{5/2})_{5/2}$ |       |           | 7.244 | 0.96  |             |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                    | 15  | $(3d_{3/2}) - (2p_{1/2}, 3d_{3/2}, 3d_{3/2})_{1/2}$ |       |           | 7.246 | 0.65  |             |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                     | 16  | $(3p_{3/2}) - (2p_{1/2}, 3p_{1/2}, 3d_{3/2})_{3/2}$ |       |           | 7.252 | 0.66  |             |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                     | 17  | $(3s_{1/2}) - (2p_{1/2}, 3s_{1/2}, 3d_{3/2})_{3/2}$ | 7.254 | 7         | 7.253 | 1.44  |             |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                     | 18  | $(3p_{1/2}) - (2p_{1/2}, 3p_{1/2}, 3d_{3/2})_{3/2}$ | 7.262 | 7         | 7.262 | 1.88  | 7.254       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                     | 19  | $(3p_{3/2}) - (2p_{1/2}, 3p_{3/2}, 3d_{5/2})_{5/2}$ | 7.266 | 1         | 7.268 | 0.88  |             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                     | 20  | $(3p_{3/2}) - (2p_{1/2}, 3p_{3/2}, 3d_{5/2})_{5/2}$ | 7.279 | 2         | 7.280 | 0.44  |             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                     | 21  | $(3d_{5/2}) - (2p_{1/2}, 3d_{3/2}, 3d_{5/2})_{5/2}$ | 7.290 | 3         | 7.291 | 0.42  |             |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                     | 22  | $(3d_{5/2}) - (2p_{1/2}, 3d_{5/2}, 3d_{5/2})_{7/2}$ |       |           | 7.292 | 0.41  |             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                     | 23  | $(3d_{3/2}) - (2p_{1/2}, 3d_{3/2}, 3d_{3/2})_{5/2}$ | 7.295 | 4         | 7.298 | 0.96  | 7.285       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                     | 24  | $(3p_{1/2}) - (2p_{3/2}, 3p_{3/2}, 3d_{3/2})_{3/2}$ |       |           | 7.349 | 0.69  |             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                     | 25  | $(3d_{5/2}) - (2p_{3/2}, 3d_{5/2}, 3d_{5/2})_{3/2}$ |       |           | 7.391 | 0.75  | 7.391       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                     | 26  | $(3s_{1/2}) - (2p_{3/2}, 3s_{1/2}, 3d_{5/2})_{3/2}$ | 7.395 | 4         | 7.393 | 0.91  |             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                     | 27  | $(3p_{3/2}) - (2p_{3/2}, 3p_{3/2}, 3d_{5/2})_{5/2}$ |       |           | 7.396 | 0.69  |             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                     | 28  | $(3p_{3/2}) - (2p_{3/2}, 3p_{3/2}, 3d_{5/2})_{1/2}$ | 7.399 | 5         | 7.397 | 0.81  |             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                     | 29  | $(3s_{1/2}) - (2p_{3/2}, 3s_{1/2}, 3d_{5/2})_{1/2}$ |       |           | 7.407 | 0.61  |             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                     | 30  | $(3d_{3/2}) - (2p_{3/2}, 3d_{3/2}, 3d_{5/2})_{1/2}$ |       |           | 7.410 | 1.11  |             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                     | 31  | $(3d_{3/2}) - (2p_{3/2}, 3d_{3/2}, 3d_{5/2})_{5/2}$ | 7.407 | 5         | 7.410 | 1.59  | 7.403       |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                     | 32  | $(3d_{5/2}) - (2p_{3/2}, 3d_{3/2}, 3d_{5/2})_{5/2}$ | 7.420 | 7         | 7.419 | 2.22  | 7.413       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                     | 33  | $(3p_{1/2}) - (2p_{3/2}, 3p_{1/2}, 3d_{5/2})_{1/2}$ |       |           | 7.421 | 0.57  |             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                     | 34  | $(3d_{5/2}) - (2p_{3/2}, 3d_{5/2}, 3d_{5/2})_{3/2}$ |       |           | 7.425 | 1.03  |             |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                     | 35  | $(3p_{3/2}) - (2p_{3/2}, 3p_{3/2}, 3d_{5/2})_{3/2}$ | 7.427 | 2         | 7.431 | 1.27  |             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                     | 36  | $(3d_{3/2}) - (2p_{3/2}, 3d_{3/2}, 3d_{5/2})_{5/2}$ |       |           | 7.439 | 1.77  |             |
| 38 $(3s_{1/2}) - (2p_{3/2}, 3s_{1/2}, 3d_{5/2})_{3/2}$ 7.4410.8239 $(3d_{5/2}) - (2p_{3/2}, 3d_{5/2}, 3d_{5/2})_{7/2}$ 7.441147.4421.907.43640 $(3d_{3/2}) - (2p_{3/2}, 3d_{3/2}, 3d_{5/2})_{3/2}$ 7.441147.4421.907.43641 $(3d_{5/2}) - (2p_{3/2}, 3d_{3/2}, 3d_{5/2})_{5/2}$ 7.4480.75 | 37  | $(3p_{3/2}) - (2p_{3/2}, 3p_{3/2}, 3d_{5/2})_{5/2}$ |       |           | 7.441 | 1.55  |             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                     | 38  | $(3s_{1/2}) - (2p_{3/2}, 3s_{1/2}, 3d_{5/2})_{3/2}$ |       |           | 7.441 | 0.82  |             |
| 40 $(3d_{3/2}) - (2p_{3/2}, 3d_{3/2}, 3d_{5/2})_{3/2}$ 7.4431.1241 $(3d_{5/2}) - (2p_{3/2}, 3d_{3/2}, 3d_{5/2})_{5/2}$ 7.4480.75                                                                                                                                                         | 39  | $(3d_{5/2}) - (2p_{3/2}, 3d_{5/2}, 3d_{5/2})_{7/2}$ | 7.441 | 14        | 7.442 | 1.90  | 7.436       |
| 41 $(3d_{5/2}) - (2p_{3/2}, 3d_{3/2}, 3d_{5/2})_{5/2}$ 7.448 0.75                                                                                                                                                                                                                        | 40  | $(3d_{3/2}) - (2p_{3/2}, 3d_{3/2}, 3d_{5/2})_{3/2}$ |       |           | 7.443 | 1.12  |             |
|                                                                                                                                                                                                                                                                                          | 41  | $(3d_{5/2}) - (2p_{3/2}, 3d_{3/2}, 3d_{5/2})_{5/2}$ |       |           | 7.448 | 0.75  |             |

<sup>a</sup>The designation is (lower level, upper level: hole state, excited state) J, where hole state is the missing n=2 electron, excited state is the list of n=3 electrons, and J is the total angular momentum. <sup>b</sup>Ab initio calculations shifted to longer wavelengths by 0.002 Å.

<sup>c</sup>Gordon, Hobby, and Peacock (Ref. 8).

 $2p^{6}3s^2$  or  $2p^{6}3s^3p$  levels of Mg-like Br XXIV. The upper levels of these transitions have one missing 2p electron. Many of these transitions are blended with stronger Nalike transitions. Four spectral lines are identified in the low-irradiation spectrum as Mg-like transitions, and all four of these lines are very weak. The 7.460-Å line is the same transition observed by Burkhalter *et al.*<sup>5</sup> in the elements Se and Zr and by Gordon *et al.*<sup>9</sup> in the elements Kr through Mo. Several transitions to the  $2p^{6}3p3d$  and  $2p^{6}3d^2$  levels have much higher gf values (up to

gf = 5.5, but these transitions are not present in the spectra. However, these transitions require the population of configurations involving two excited electrons and are thus expected to be weak.

# D. F-like transitions

The F-like transitions are prominent in the highirradiation spectrum, and the classification of these transitions is given in Table V. Also listed are the classifica-

|     |                                                     | Ν     | leas.     |               |      |
|-----|-----------------------------------------------------|-------|-----------|---------------|------|
|     |                                                     |       | Relative  | Cal           | lc.  |
| Key | Transition <sup>a</sup>                             | λ     | Intensity | $\lambda^{b}$ | gf   |
| 1   | $(4f_{7/2}) - (2p_{1/2}, 3d_{3/2}, 4f_{7/2})_{9/2}$ |       |           | 7.160         | 4.16 |
| 2   | $(4f_{7/2}) = (2p_{1/2}, 3d_{3/2}, 4f_{7/2})_{5/2}$ |       |           | 7.170         | 2.94 |
| 3   | $(4f_{5/2}) = (2p_{1/2}, 3d_{3/2}, 4f_{5/2})_{5/2}$ |       |           | 7.175         | 2.85 |
| 4   | $(4f_{7/2}) - (2p_{1/2}, 3d_{3/2}, 4f_{7/2})_{7/2}$ |       |           | 7.178         | 4.48 |
| 5   | $(4d_{5/2}) - (2p_{1/2}, 3d_{3/2}, 4d_{5/2})_{7/2}$ |       |           | 7.182         | 3.89 |
| 6   | $(4p_{3/2}) - (2p_{1/2}, 3d_{3/2}, 4p_{3/2})_{5/2}$ | 7.183 | 5         | 7.184         | 3.42 |
| 7   | $(4p_{1/2}) - (2p_{1/2}, 3d_{3/2}, 4p_{1/2})_{3/2}$ |       |           | 7.184         | 2.30 |
| 8   | $(4d_{5/2}) - (2p_{1/2}, 3d_{3/2}, 4d_{5/2})_{5/2}$ |       |           | 7.187         | 3.14 |
| 9   | $(4f_{5/2}) - (2p_{1/2}, 3d_{3/2}, 4f_{5/2})_{7/2}$ | 7.187 | 4         | 7.189         | 4.64 |
| 10  | $(4p_{3/2}) - (2p_{1/2}, 3d_{3/2}, 4p_{3/2})_{3/2}$ |       |           | 7.190         | 2.35 |
| 11  | $(4d_{3/2}) - (2p_{1/2}, 3d_{3/2}, 4d_{3/2})_{5/2}$ |       |           | 7.193         | 3.62 |
| 12  | $(4f_{7/2}) - (2p_{3/2}, 3d_{5/2}, 4f_{7/2})_{5/2}$ |       |           | 7.354         | 2.53 |
| 13  | $(4f_{5/2}) - (2p_{3/2}, 3d_{5/2}, 4f_{5/2})_{7/2}$ |       |           | 7.357         | 2.89 |
| 14  | $(4f_{7/2}) - (2p_{3/2}, 3d_{5/2}, 4f_{7/2})_{9/2}$ |       |           | 7.360         | 3.38 |
| 15  | $(4f_{7/2}) - (2p_{3/2}, 3d_{5/2}, 4f_{7/2})_{7/2}$ | 7.366 | 4         | 7.364         | 3.29 |
| 16  | $(4f_{5/2}) - (2p_{3/2}, 3d_{5/2}, 4f_{5/2})_{5/2}$ |       |           | 7.365         | 2.48 |
| 17  | $(4p_{3/2}) - (2p_{3/2}, 3d_{5/2}, 4p_{3/2})_{5/2}$ |       |           | 7.371         | 2.62 |
| 18  | $(4d_{5/2}) - (2p_{3/2}, 3d_{5/2}, 4d_{5/2})_{7/2}$ | 7.377 | 4         | 7.375         | 3.48 |

TABLE III. Transitions in Na-like Br XXV with n=4 excited levels.

<sup>a</sup>The designation is (lower level, upper level: hole state, excited state) J, where hole state is the missing n=2 electron, excited state is the list of excited electrons, and J is the total angular momentum. <sup>b</sup>Ab initio calculations shifted to longer wavelengths by 0.002 Å.

tions of Hutcheon *et al.*<sup>7</sup> and of Gordon *et al.*<sup>8</sup> In the cases where these authors assigned the same measured wavelength to more than one transition, we have assigned their measured wavelength to the transition with the largest *gf* value. When this is done, then our classifications are in substantial agreement with the classifications of Hutcheon *et al.*<sup>7</sup> and of Gordon *et al.*,<sup>8</sup> where comparisons can be made. The high resolving power of our instrument and the small source size resulting from the use of the microdot technique resulted in narrow linewidths and in the resolution of a number of blends in the earlier spectra.<sup>7,8</sup> The agreement with the calculated wavelengths is typically within 7 mÅ.

### E. O-like transitions

The O-like transitions are also present in the highirradiation spectrum. Figure 3 illustrates the spectral region from 6.8 to 7.0 Å, where F-like, O-like, and Ne-like transitions appear. The intensities of these spectral lines vary differently with distance from the target surface depending on ionization stage. This variation is useful in distinguishing the O-like from the F-like transitions. The measured wavelengths of the O-like transitions thus identified are listed in Table VI. Where comparisons can be made, our measurements are in satisfactory agreement with the results of Gordon *et al.*<sup>8</sup> With a few exceptions,

TABLE IV. Transitions in Mg-like Br XXIV.

|     |                                                                       | Pres  | . Meas.   |       |       |               |
|-----|-----------------------------------------------------------------------|-------|-----------|-------|-------|---------------|
|     |                                                                       |       | Relative  | Pres. | Calc. | Prev. Meas.   |
| Key | Transition <sup>a</sup>                                               | λ     | Intensity | λ     | gf    | $\lambda^{b}$ |
| 1   | $(3s_{1/2}, 3s_{1/2})_0 - (2p_{1/2}, 3s_{1/2}, 3s_{1/2}, 3d_{3/2})_1$ | 7.262 | с         | 7.264 | 1.48  |               |
| 2   | $(3s_{1/2}, 3p_{3/2})_1 - (2p_{1/2}, 3s_{1/2}, 3p_{3/2}, 3d_{3/2})_1$ | 7.266 | с         | 7.267 | 1.34  |               |
| 3   | $(3s_{1/2}, 3p_{3/2})_2 - (2p_{1/2}, 3s_{1/2}, 3p_{3/2}, 3d_{5/2})_3$ | 7.279 | с         | 7.273 | 1.95  |               |
| 4   | $(3s_{1/2}, 3p_{3/2})_1 - (2p_{1/2}, 3s_{1/2}, 3p_{3/2}, 3d_{3/2})_2$ | 7.290 | с         | 7.282 | 1.60  |               |
| 5   | $(3s_{1/2}, 3p_{3/2})_2 - (2p_{1/2}, 3s_{1/2}, 3p_{3/2}, 3d_{3/2})_1$ | 7.295 | с         | 7.291 | 1.16  |               |
| 6   | $(3s_{1/2}, 3p_{3/2})_2 - (2p_{1/2}, 3s_{1/2}, 3p_{3/2}, 3d_{3/2})_2$ | 7.316 | 1         | 7.308 | 1.44  |               |
| 7   | $(3s_{1/2}, 3p_{1/2})_0 - (2p_{1/2}, 3s_{1/2}, 3p_{1/2}, 3d_{3/2})_1$ | 7.336 | 1         | 7.323 | 1.03  |               |
| 8   | $(3s_{1/2}, 3s_{1/2})_0 - (2p_{3/2}, 3s_{1/2}, 3s_{1/2}, 3d_{5/2})_1$ | 7.460 | 1         | 7.455 | 0.97  | 7.46          |
| 9   | $(3s_{1/2}, 3p_{3/2})_2 - (2p_{3/2}, 3s_{1/2}, 3p_{3/2}, 3d_{5/2})_3$ |       |           | 7.474 | 1.12  |               |
| 10  | $(3s_{1/2}, 3p_{3/2})_1 - (2p_{3/2}, 3s_{1/2}, 3p_{3/2}, 3d_{5/2})_2$ | 7.481 | 1         | 7.484 | 1.09  |               |

<sup>a</sup>The designation is (lower level, upper level: hole state, excited state) J, where hole state is the missing n=2 electron, excited state is the list of n=3 electrons, and J is the total angular momentum.

<sup>b</sup>Extrapolated from the measurements of Gordon *et al.* (Ref. 9) for the elements Kr through Mo. <sup>c</sup>Blended with Br XXV transitions.

TABLE V. Transitions in F-like Br XXVII.

|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pres    | . Meas.   |                |       |       |             |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|----------------|-------|-------|-------------|
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | Relative  | Pres.          | Calc. | Prev. | Meas.       |
| Key | Transition <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | λ       | Intensity | λ <sup>ь</sup> | gf    | λ°    | $\lambda^d$ |
| 1   | (2n, n) = (2n, n, 2n, n, 5d, n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |           | 5.017          | 0.12  |       |             |
| 2   | $(2p_{1/2}) - (2p_{1/2}, 2p_{3/2}, 0, 0, 5d_{5/2})/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.014   | 1         | 5.018          | 0.13  |       |             |
| 3   | $(2p_{1/2}) - (2p_{1/2}, 2p_{3/2}, 0, 0, 5/2)_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.033   | 2         | 5.037          | 0.26  |       |             |
| 4   | $(2p_3/2) = (2p_3/2, 2p_3/2, 0, 0, 0, 0, 0, 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.000   | -         | 5.037          | 0.15  |       |             |
| 5   | $(2p_{3/2}) = (2p_{3/2}, 2p_{3/2}, 2p_{3/2}, 3p_{3/2}, 3p_{3/2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 111   | 1         | 5.114          | 0.08  |       |             |
| 6   | $(2p_3/2) - (2s_1/2, 2p_3/2, 1p_3/2)s/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.1.1.1 | •         | 5.159          | 0.09  |       |             |
| 7   | $(2p_3/2) = (2s_1/2, 2p_3/2, 1p_3/2)s_2/2$<br>$(2p_3/2) = (2s_1/2, 2p_3/2, 4p_3/2)s_2/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 1 5 5 | 2         | 5,160          | 0.10  |       |             |
| 8   | $(2p_3/2) = (2s_1/2, 2p_3/2, 4p_3/2)s_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 167   | 1         | 5 171          | 0.08  |       |             |
| 9   | $(2p_{3/2}) - (2p_{1/2}, 2p_{3/2}, (p_{1/2}, 3))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.401   | 2         | 5.408          | 0.26  |       | 5,400       |
| 10  | $(2p_{1/2}) - (2p_{1/2}, 2p_{1/2}, a_{3/2}, a_{3/2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 407   | 1         | 5.414          | 0.08  |       | 5.412       |
| 11  | $(2p_{3/2}) - (2p_{1/2}, 2p_{3/2}, 4d_{3/2})_{5/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.416   | 4         | 5.420          | 0.26  |       | 5.429       |
| 12  | $(2p_{3/2}) - (2p_{1/2}, 2p_{3/2}, 4d_{3/2})_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.426   | 1         | 5.422          | 0.24  |       |             |
| 13  | $(2p_{3/2}) - (2p_{1/2}, 2p_{3/2}, 4d_{3/2})_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | -         | 5.423          | 0.15  |       |             |
| 14  | $(2s_{1/2}) - (2s_{1/2}, 2p_{1/2}, 4d_{2/2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |           | 5.434          | 0.20  |       |             |
| 15  | $(2s_{1/2}) - (2s_{1/2}, 2p_{1/2}, 4d_{5/2})_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |           | 5.435          | 0.18  |       |             |
| 16  | $(2p_1/2) - (2p_1/2, 2p_2/2, 4d_2/2) \le (2p_2/2) - (2p_1/2, 2p_2/2, 4d_2/2) \le (2p_1/2, 2p_2/2) \le (2p_1/2, 2$ | 5.445   | 2         | 5.452          | 0.21  |       | 5,493       |
| 17  | $(2s_{1/2}) - (2s_{1/2}, 2p_{1/2}, 2q_{1/2}, 4d_{2/2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5,500   | 1         | 5.512          | 0.15  |       | 5,507       |
| 18  | $(2n_1/2) - (2n_2/2) 2n_2/2 4d_5/2) s/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.510   | 2         | 5.516          | 0.20  |       |             |
| 19  | $(2p_{3/2}) = (2p_{3/2}, 2p_{3/2}, 4d_{5/2})_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01010   | -         | 5.530          | 0.25  |       |             |
| 20  | $(2p_{1/2}) - (2p_{1/2}, 2p_{3/2}, 3d_{5/2})/2$<br>$(2p_{1/2}) - (2p_{1/2}, 2p_{3/2}, 4d_{5/2})/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 526   | 4         | 5.531          | 0.36  |       |             |
| 21  | $(2p_{1/2}) - (2p_{1/2}, 2p_{3/2}, 3/2, 3/2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.548   | 8         | 5.553          | 0.58  |       | 5.530       |
| 22  | $(2p_3/2) - (2p_3/2, 2p_3/2, 4d_{s}p_{s}) - (2p_{s}p_{s}p_{s}) - (4d_{s}p_{s}) - (2p_{s}p_{s}p_{s}p_{s}) - (4d_{s}p_{s}p_{s}) - (2p_{s}p_{s}p_{s}p_{s}p_{s}) - (4d_{s}p_{s}p_{s}p_{s}p_{s}p_{s}p_{s}p_{s}p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.560   | 2         | 5.555          | 0.30  |       |             |
| 23  | $(2p_{3/2}) - (2p_{3/2}, 2p_{3/2}, 4d_{5/2})_{2/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.564   | 2         | 5,565          | 0.17  |       |             |
| 24  | $(2s_{1/2}) - (2s_{1/2}, 2p_{3/2}, 4d_{5/2})_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | -         | 5.574          | 0.33  |       |             |
| 25  | $(2s_{1/2}) - (2s_{1/2}, 2p_{3/2}, 4d_{5/2})_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5,609   | 1         | 5.622          | 0.21  |       |             |
| 26  | $(2s_{1/2}) - (2s_{1/2}, 2p_{3/2}, (as_{1/2}))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.617   | 1         | 5.629          | 0.19  |       |             |
| 27  | $(2p_1/2) - (2s_1/2, 2p_1/2, 3p_2/2)s/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.374   | 4         | 6.368          | 0.07  |       | 6.359       |
| 28  | $(2p_{1/2}) - (2s_{1/2}, 2p_{1/2}, 3p_{3/2})_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.527   | 6         | 6.521          | 0.16  |       | 6.512       |
| 29  | $(2p_1/2) - (2s_1/2, 2p_1/2, 3p_3/2))/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.542   | 6         | 6.536          | 0.16  |       | 6.531       |
| 30  | $(2s_{1/2}) - (2s_{1/2}, 2s_{1/2}, 3p_{2/2})_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.547   | 5         | 6.537          | 0.23  |       |             |
| 31  | $(2p_{3/2}) - (2s_{1/2}, 2p_{3/2}, 3p_{3/2}, 3)_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | -         | 6.565          | 0.08  |       |             |
| 32  | $(2p_{3/2}) - (2s_{1/2}, 2p_{3/2}, 3p_{3/2})s_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.566   | 5         | 6.568          | 0.25  |       | 6.556       |
| 33  | $(2p_{1/2}) - (2s_{1/2}, 2p_{1/2}, 3p_{1/2})_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.569   | 10        | 6.573          | 0.17  |       | 6.567       |
| 34  | $(2s_{1/2}) - (2s_{1/2}, 2s_{1/2}, 3p_{1/2})_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.579   | 5         | 6.579          | 0.11  |       |             |
| 35  | $(2p_{3/2}) - (2s_{1/2}, 2p_{3/2}, 3p_{1/2})_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.609   | 10        | 6.604          | 0.24  |       | 6.598       |
| 36  | $(2p_{3/2}) - (2s_{1/2}, 2p_{3/2}, 3p_{1/2})_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |           | 6.608          | 0.22  |       |             |
| 37  | $(2p_{3/2}) - (2s_{1/2}, 2p_{3/2}, 3p_{3/2})_{5/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.635   | 7         | 6.634          | 0.27  |       | 6.624       |
| 38  | $(2p_{1/2}) - (2s_{1/2}, 2p_{1/2}, 3p_{3/2})_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.639   | 5         | 6.638          | 0.13  |       |             |
| 39  | $(2p_{3/2}) - (2s_{1/2}, 2p_{3/2}, 3p_{3/2})_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.644   | 4         | 6.644          | 0.18  |       | 6.633       |
| 40  | $(2p_{1/2}) - (2s_{1/2}, 2p_{1/2}, 3p_{1/2})_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.664   | 2         | 6.665          | 0.13  |       |             |
| 41  | $(2p_{3/2}) - (2s_{1/2}, 2p_{3/2}, 3p_{1/2})_{5/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.688   | e         | 6.687          | 0.18  |       | 6.674       |
| 42  | $(2p_{3/2}) - (2p_{1/2}, 2p_{3/2}, 3d_{5/2})_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.876   | e         | 6.878          | 0.19  |       |             |
| 43  | $(2p_{3/2}) - (2p_{1/2}, 2p_{3/2}, 3d_{3/2})_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.886   | е         | 6.888          | 0.49  |       | 6.877       |
| 44  | $(2p_{1/2}) - (2p_{1/2}, 2p_{1/2}, 3d_{3/2})_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.899   | 9         | 6.903          | 1.90  |       | 6.888       |
| 45  | $(2p_{3/2}) - (2p_{1/2}, 2p_{3/2}, 3d_{3/2})_{5/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.917   | 10        | 6.919          | 2.96  | 6.918 | 6.905       |
| 46  | $(2p_{3/2}) - (2p_{1/2}, 2p_{3/2}, 3d_{3/2})_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.921   | 8         | 6.925          | 1.86  |       | 6.909       |
| 47  | $(2s_{1/2}) - (2s_{1/2}, 2p_{1/2}, 3d_{3/2})_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |           | 6.931          | 0.86  |       |             |
| 48  | $(2s_{1/2}) - (2s_{1/2}, 2p_{1/2}, 3d_{3/2})_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.932   | 9         | 6.932          | 1.36  |       |             |
| 49  | $(2p_{3/2}) - (2p_{1/2}, 2p_{3/2}, 3d_{5/2})_{5/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |           | 6.938          | 0.12  |       |             |
| 50  | $(2p_{3/2}) - (2p_{1/2}, 2p_{3/2}, 3d_{3/2})_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |           | 6.938          | 0.86  | 6.931 | 6.925       |
| 51  | $(2s_{1/2}) = (2s_{1/2}, 2p_{1/2}, 3d_{5/2})_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.947   | 5         | 6.946          | 1.05  |       |             |
| 52  | $(2p_{3/2}) - (2p_{1/2}, 2p_{3/2}, 3d_{5/2})_{5/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.973   | 8         | 6.978          | 0.60  | 6.972 | 6.966       |
| 53  | $(2p_{3/2}) - (2p_{1/2}, 2p_{3/2}, 3d_{5/2})_{5/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.978   | 8         | 6.985          | 0.54  | 6.991 | 6.983       |
| 54  | $(2s_{1/2}) - (2s_{1/2}, 2p_{1/2}, 3d_{3/2})_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.056   | 5         | 7.061          | 1.13  |       |             |
| 55  | $(2p_{1/2}) - (2p_{1/2}, 2p_{3/2}, 3d_{5/2})_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.066   | 8         | 7.068          | 1.48  | 7.063 | 7.057       |
| 56  | $(2p_{1/2}) - (2p_{1/2}, 2p_{3/2}, 3d_{3/2})_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.078   | 10        | 7.079          | 1.98  | 7.077 | 7.071       |
| 57  | $(2p_{3/2}) - (2p_{3/2}, 2p_{3/2}, 3d_{5/2})_{5/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.092   | 7         | 7.087          | 1.07  |       |             |
| 58  | $(2p_{3/2}) - (2p_{3/2}, 2p_{3/2}, 3d_{3/2})_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.106   | 2         | 7.100          | 0.57  | 7.092 |             |

2949

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |               |  |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|--|--|--|--|--|--|--|--|--|
| KeyTransitiona $\lambda$ Intensity $\lambda^b$ gf59 $(2p_{1/2}) - (2p_{1/2}, 2p_{3/2}, 3d_{3/2})_{3/2}$ 7.11447.1180.3260 $(2p_{3/2}) - (2p_{3/2}, 2p_{3/2}, 3d_{5/2})_{5/2}$ 7.11997.1251.5161 $(2p_{1/2}) - (2p_{1/2}, 2p_{3/2}, 3d_{5/2})_{3/2}$ 7.13277.1310.0962 $(2p_{3/2}) - (2p_{3/2}, 2p_{3/2}, 3d_{5/2})_{3/2}$ 7.13277.1400.7163 $(2s_{1/2}) - (2s_{1/2}, 2p_{3/2}, 3d_{5/2})_{3/2}$ 7.14967.1551.2164 $(2p_{3/2}) - (2p_{3/2}, 2p_{3/2}, 3d_{5/2})_{1/2}$ 7.15927.1560.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Drov           | Meas          |  |  |  |  |  |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | λ <sup>c</sup> | $\lambda^{d}$ |  |  |  |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |               |  |  |  |  |  |  |  |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |               |  |  |  |  |  |  |  |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.118          | 7.111         |  |  |  |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |               |  |  |  |  |  |  |  |  |  |
| 63 $(2s_{1/2}) - (2s_{1/2}, 2p_{3/2}, 3d_{5/2})_{3/2}$ 7.14967.1551.2164 $(2p_{3/2}) - (2p_{3/2}, 2p_{3/2}, 3d_{5/2})_{1/2}$ 7.15927.1560.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.132          | 7.124         |  |  |  |  |  |  |  |  |  |
| $64  (2p_{3/2}) - (2p_{3/2}, 2p_{3/2}, 3d_{5/2})_{1/2} \qquad 7.159 \qquad 2 \qquad 7.156 \qquad 0.36$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |               |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.150          | 7.140         |  |  |  |  |  |  |  |  |  |
| $65  (2p_{1/2}) - (2p_{1/2}, 2p_{3/2}, 3d_{5/2})_{3/2} \qquad 7.164 \qquad 5 \qquad 7.171 \qquad 0.15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |               |  |  |  |  |  |  |  |  |  |
| $66 \qquad (2s_{1/2}) - (2s_{1/2}, 2p_{3/2}, 3d_{3/2})_{3/2} \qquad 7.181 \qquad 1 \qquad 7.191 \qquad 0.08$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               |  |  |  |  |  |  |  |  |  |
| $67  (2s_{1/2}) - (2s_{1/2}, 2p_{3/2}, 3d_{3/2})_{1/2} \qquad 7.195 \qquad 2 \qquad 7.191 \qquad 0.28$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |               |  |  |  |  |  |  |  |  |  |
| $68  (2s_{1/2}) - (2s_{1/2}, 2p_{3/2}, 3d_{5/2})_{1/2} \qquad 7.206 \qquad 4 \qquad 7.213 \qquad 0.72$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |               |  |  |  |  |  |  |  |  |  |
| $69  (2s_{1/2}) - (2s_{1/2}, 2p_{3/2}, 3d_{5/2})_{3/2} \qquad 7.240 \qquad 7 \qquad 7.249 \qquad 0.32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |               |  |  |  |  |  |  |  |  |  |
| 70 $(2p_{1/2}) - (2p_{3/2}, 2p_{3/2}, 3d_{5/2})_{3/2}$ 7.337 1 7.345 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |               |  |  |  |  |  |  |  |  |  |
| 71 $(2p_{1/2}) - (2p_{1/2}, 2p_{1/2}, 3s_{1/2})_{1/2}$ 7.411 5 7.425 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | 7.403         |  |  |  |  |  |  |  |  |  |
| 72 $(2p_{3/2}) - (2p_{1/2}, 2p_{3/2}, 3s_{1/2})_{5/2}$ 7.439 8 7.451 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | 7.436         |  |  |  |  |  |  |  |  |  |
| 73 $(2s_{1/2}) - (2s_{1/2}, 2p_{1/2}, 3s_{1/2})_{3/2}$ 7.443 6 7.451 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |               |  |  |  |  |  |  |  |  |  |
| 74 $(2p_{3/2}) - (2p_{1/2}, 2p_{3/2}, 3s_{1/2})_{1/2}$ 7.480 3 7.493 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | 7.473         |  |  |  |  |  |  |  |  |  |
| 75 $(2p_{3/2}) - (2p_{1/2}, 2p_{3/2}, 3s_{1/2})_{3/2}$ 7.496 5 7.510 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | 7.488         |  |  |  |  |  |  |  |  |  |
| 76 $(2s_{1,2}) - (2s_{1,2}, 2p_{1,2}, 3s_{1,2})_{1,2}$ 7.572 1 7.585 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |               |  |  |  |  |  |  |  |  |  |
| 77 $(2p_{3,2}) - (2p_{3,2}, 2p_{3,2}, 3s_{1,2})_{1,2}$ 7.615 2 7.631 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.617          | 7.608         |  |  |  |  |  |  |  |  |  |
| 78 $(2p_1 q) - (2p_1 q, 2p_1 q, 3s_1 q)_{1/2}$ 7.655 7 7.668 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.657          | 7.651         |  |  |  |  |  |  |  |  |  |
| 79 $(2p_{3,0}) - (2p_{3,0}, 2p_{1,0}, 3s_{1,0})_{1,0}$ 7.690 8 7.705 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.692          | 7.685         |  |  |  |  |  |  |  |  |  |
| $80  (2s_1a) - (2s_1a) - 2s_1a - 3s_1a) + a  7.701  3  7.714  0.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |               |  |  |  |  |  |  |  |  |  |
| $81  (2n_1) = (2n_1) - (2n_2) - (3n_1) - (2n_1) - (2n_1$                |                | 7 704         |  |  |  |  |  |  |  |  |  |
| $82  (2p_{1}p_{2}) - (2p_{1}p_{2}, 2p_{1}p_{3}, 2p_{3}p_{3}, 3s_{1}p_{3}) = 7.712  5  7.728  0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.712          |               |  |  |  |  |  |  |  |  |  |
| $\begin{array}{c} 1 \\ 83 \\ (2s_{1}c_{2}) - (2s_{1}c_{2}) 2s_{1}c_{2}(s_{1})c_{2}(s_{2})c_{2}(s_{1})c_{2}(s_{2})c_{2}(s_{1})c_{2}(s_{2})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_{2}(s_{1})c_$ |                |               |  |  |  |  |  |  |  |  |  |

TABLE V. (Continued).

<sup>a</sup>The designation is (lower level, upper level: hole state, excited state) J, where hole state is the list of the missing n=2 electrons, excited state is the excited electron, and J is the total angular momentum.

<sup>b</sup>The calculated positions of the transitions from 2s hole states have been shifted to shorter wavelengths by 0.007 Å with respect to the 2p hole states.

<sup>c</sup>Hutcheon, Cooke, Key, Lewis, and Bromage (Ref. 7).

<sup>d</sup>Gordon, Hobby, and Peacock (Ref. 8).

<sup>e</sup>Blended with stronger Br XXVIII transitions.

| TABLE VI. | Transitions | in O-like | Br XXVIII. |
|-----------|-------------|-----------|------------|
|-----------|-------------|-----------|------------|

|     | Pres. Meas.                                                           |       |           |       |       |               |  |  |  |
|-----|-----------------------------------------------------------------------|-------|-----------|-------|-------|---------------|--|--|--|
|     |                                                                       |       | Relative  | Pres. | Calc. | Prev. Meas.   |  |  |  |
| Key | Transition <sup>a</sup>                                               | λ     | Intensity | λ     | gf    | $\lambda^{b}$ |  |  |  |
| 1   | $(2p_{1/2}, 2p_{3/2})_2 - (2p_{1/2}, 2p_{1/2}, 2p_{3/2}, 4d_{3/2})_2$ | 5.186 | 1         | 5.187 | 0.20  |               |  |  |  |
| 2   | $(2p_{1/2}, 2p_{3/2})_2 - (2p_{1/2}, 2p_{1/2}, 2p_{3/2}, 4d_{3/2})_3$ | 5.190 | 1         | 5.189 | 0.54  |               |  |  |  |
| 3   | $(2p_{3/2}, 2p_{3/2})_2 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 4d_{3/2})_2$ |       |           | 5.190 | 0.39  |               |  |  |  |
| 4   | $(2p_{3/2}, 2p_{3/2})_0 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 4d_{3/2})_1$ |       |           | 5.190 | 0.28  |               |  |  |  |
| 5   | $(2p_{3/2}, 2p_{3/2})_2 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 4d_{3/2})_3$ |       |           | 5.193 | 0.37  |               |  |  |  |
| 6   | $(2p_{3/2}, 2p_{3/2})_2 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 4d_{3/2})_3$ | 5.210 | 1         | 5.217 | 0.24  |               |  |  |  |
| 7   | $(2p_{1/2}, 2p_{3/2})_1 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 4d_{5/2})_2$ | 5.250 | 1         | 5.247 | 0.19  | 5.251         |  |  |  |
| 8   | $(2p_{1/2}, 2p_{3/2})_2 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 4d_{5/2})_3$ | 5.278 | 1         | 5.275 | 0.31  |               |  |  |  |
| 9   | $(2p_{3/2}, 2p_{3/2})_2 - (2p_{3/2}, 2p_{3/2}, 2p_{3/2}, 4d_{5/2})_3$ | 5.299 | 1         | 5.302 | 3.37  | 5.292         |  |  |  |
| 10  | $(2p_{1/2}, 2p_{1/2})_0 - (2p_{1/2}, 2p_{1/2}, 2p_{1/2}, 4d_{5/2})_1$ |       |           | 5.305 | 0.51  |               |  |  |  |
| 11  | $(2p_{3/2}, 2p_{3/2})_2 - (2p_{3/2}, 2p_{3/2}, 2p_{3/2}, 4d_{5/2})_2$ |       |           |       |       |               |  |  |  |
| 12  | $(2p_{1/2}, 2p_{3/2})_1 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 4d_{5/2})_2$ |       |           | 5.311 | 0.48  |               |  |  |  |
| 13  | $(2p_{1/2}, 2p_{3/2})_2 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 4d_{5/2})_3$ | 5.307 | 4         | 5.311 | 0.75  | 5.305         |  |  |  |
| 14  | $(2p_{1/2}, 2p_{3/2})_2 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 4d_{5/2})_2$ | 5.318 | 1         | 5.312 | 0.47  | 5.325         |  |  |  |
| 15  | $(2p_{3/2}, 2p_{3/2})_0 - (2p_{3/2}, 2p_{3/2}, 2p_{3/2}, 4d_{5/2})_1$ | 5.401 | 2         | 5.347 | 0.24  | 5.400         |  |  |  |
| 16  | $(2p_{1/2}, 2p_{3/2})_2 - (2s_{1/2}, 2p_{1/2}, 2p_{3/2}, 3p_{3/2})_3$ | 6.331 | 1         | 6.332 | 0.23  |               |  |  |  |
| 17  | $(2p_{1/2}, 2p_{3/2})_2 - (2s_{1/2}, 2p_{1/2}, 2p_{3/2}, 3p_{1/2})_2$ | 6.374 | с         | 6.374 | 0.12  |               |  |  |  |
| 18  | $(2p_{1/2}, 2p_{1/2})_0 - (2s_{1/2}, 2p_{1/2}, 2p_{1/2}, 3p_{1/2})_1$ | 6.382 | 1         | 6.386 | 0.31  |               |  |  |  |
| 19  | $(2p_{3/2}, 2p_{3/2})_2 - (2s_{1/2}, 2p_{3/2}, 2p_{3/2}, 3p_{3/2})_3$ | 6.408 | 3         | 6.410 | 0.27  |               |  |  |  |

=

TABLE VI. (Continued).

|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pres      | . Meas.   |         |       |                |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|---------|-------|----------------|
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | Relative  | Pres.   | Calc. | Prev. Meas     |
| Key | Transition <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | λ         | Intensity | λ       | gf    | λ <sup>b</sup> |
| 20  | $(2n_1 - 2n_2 - 1) = (2s_1 - 2n_1 - 2n_2 - 3n_2 - 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |           | 6 4 1 1 | 0.27  |                |
| 21  | $(2p_{1/2}, 2p_{3/2})_{2} = (2s_{1/2}, 2p_{1/2}, 2p_{3/2}, 5p_{3/2})_{1}$<br>$(2p_{1/2}, 2p_{3/2})_{2} = (2s_{1/2}, 2p_{1/2}, 2p_{3/2}, 3p_{3/2})_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.423     | 1         | 6.422   | 0.25  |                |
| 22  | $(2p_1/2, 2p_3/2)_2 = (2s_1/2, 2p_1/2, 2p_3/2, 3p_3/2)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6 429     | 1         | 6 4 2 7 | 0.44  |                |
| 23  | $(2p_1/2,2p_3/2)_2 = (2s_1/2,2p_1/2,2p_3/2,5p_3/2)_2$<br>$(2p_1/2,2p_3/2,5p_3/2)_2 = (2s_1/2,2p_1/2,2p_3/2,5p_3/2)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.427     | 1         | 6 4 3 5 | 0.11  |                |
| 23  | $(2p_1/2, 2p_3/2)_2 = (2s_1/2, 2p_1/2, 2p_3/2, 5p_1/2)_2$<br>$(2p_2 - 2p_3/2)_2 = (2s_1 - 2p_2 - 2p_3/2, 5p_1/2)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6 440     | 1         | 6 4 4 0 | 0.11  |                |
| 27  | $(2p_{3/2}, 2p_{3/2})_2 = (2s_{1/2}, 2p_{3/2}, 2p_{3/2}, 5p_{1/2})_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.440     | 1         | 6.440   | 0.33  |                |
| 25  | $(2p_{3/2}, 2p_{3/2})_0 - (2s_{1/2}, 2p_{1/2}, 2p_{3/2}, 5p_{3/2})_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ( 110     |           | 0.440   | 0.11  |                |
| 20  | $(2p_{3/2}, 2p_{3/2})_2 - (2s_{1/2}, 2p_{3/2}, 2p_{3/2}, 3p_{1/2})_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.449     | 1         | 6.449   | 0.21  |                |
| 27  | $(2p_{3/2}, 2p_{3/2})_0 - (2s_{1/2}, 2p_{3/2}, 2p_{3/2}, 3p_{3/2})_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |           | 6.455   | 0.21  |                |
| 28  | $(2p_{3/2}, 2p_{3/2})_2 - (2s_{1/2}, 2p_{3/2}, 2p_{3/2}, 3p_{3/2})_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.461     | 1         | 6.463   | 0.23  |                |
| 29  | $(2p_{1/2}, 2p_{3/2})_2 - (2s_{1/2}, 2p_{1/2}, 2p_{3/2}, 3p_{1/2})_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.475     | 2         | 6.473   | 0.43  |                |
| 30  | $(2p_{1/2}, 2p_{3/2})_1 - (2s_{1/2}, 2p_{1/2}, 2p_{3/2}, 3p_{1/2})_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |           | 6.473   | 0.15  |                |
| 31  | $(2p_{3/2}, 2p_{3/2})_2 - (2s_{1/2}, 2p_{3/2}, 2p_{3/2}, 3p_{3/2})_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.489     | 1         | 6.491   | 0.13  |                |
| 32  | $(2p_{3/2}, 2p_{3/2})_2 - (2s_{1/2}, 2p_{3/2}, 2p_{3/2}, 3p_{3/2})_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.502     | 2         | 6.505   | 0.37  |                |
| 33  | $(2p_{1/2}, 2p_{3/2})_1 - (2s_{1/2}, 2p_{3/2}, 2p_{3/2}, 3p_{3/2})_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.542     | с         | 6.539   | 0.20  |                |
| 34  | $(2p_{1/2}, 2p_{3/2})_1 - (2p_{1/2}, 2p_{1/2}, 2p_{3/2}, 3d_{5/2})_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.589     | 2         | 6.584   | 0.13  |                |
| 35  | $(2p_{3/2}, 2p_{3/2})_2 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 3d_{5/2})_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.622     | 2         | 6.615   | 0.13  |                |
| 36  | $(2p_{1/2}, 2p_{3/2})_1 - (2p_{1/2}, 2p_{1/2}, 2p_{3/2}, 3d_{3/2})_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.635     | с         | 6.631   | 0.90  | 6.624          |
| 37  | $(2p_{3/2}, 2p_{3/2})_2 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 3d_{5/2})_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |           | 6.650   | 0.38  |                |
| 38  | $(2n_1, 2n_2, 2n_3) = (2n_1, 2n_2, 2n_3, 2n_2, 2n_3, $    | 6 656     | 1         | 6 658   | 0.79  |                |
| 39  | $(2p_1/2, 2p_3/2)_1 = (2p_1/2, 2p_1/2, 2p_3/2, 3d_2/2)_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6 663     | 2         | 6 665   | 0.66  |                |
| 40  | $(2p_3/2, 2p_3/2)_2 = (2p_1/2, 2p_3/2, 2p_3/2, 3d_{3/2})_1$<br>$(2p_1 p_2/2, 2p_3/2)_2 = (2p_1 p_2/2, 2p_3/2, 3d_{3/2})_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6 668     | 2         | 6 666   | 0.00  |                |
| 40  | $(2p_1/2, 2p_3/2)_1 = (2p_1/2, 2p_1/2, 2p_3/2, 5u_3/2)_0$<br>$(2p_2 - 2p_3 - 2p_2 - 2p_1 - 2p_1 - 2p_2 - 3d_1 - 2p_1 - 2p_2 - 3d_1 - 2p_1 - 2p_1$ | 6 675     | 2         | 6.674   | 1.40  |                |
| 41  | $(2p_{3/2}, 2p_{3/2})_0 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 5a_{3/2})_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.075     | 2         | 0.074   | 1.40  |                |
| 42  | $(2p_{1/2}, 2p_{3/2})_2 - (2p_{1/2}, 2p_{1/2}, 2p_{3/2}, 3a_{3/2})_2$<br>$(2p_{1/2}, 2p_{1/2}, 2p_{1/2}, 2p_{1/2}, 3a_{3/2})_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ( (70     | 2         | 0.070   | 1.11  | ( (75          |
| 45  | $(2p_{3/2}, 2p_{3/2})_2 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 3a_{3/2})_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.079     | 3         | 6.681   | 1.50  | 0.0/3          |
| 44  | $(2p_{3/2}, 2p_{3/2})_2 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 3d_{3/2})_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |           | 6.681   | 0.52  |                |
| 45  | $(2p_{1/2}, 2p_{3/2})_2 - (2p_{1/2}, 2p_{1/2}, 2p_{3/2}, 3d_{3/2})_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | _         | 6.681   | 2.38  |                |
| 46  | $(2p_{1/2}, 2p_{3/2})_2 - (2p_{1/2}, 2p_{1/2}, 2p_{3/2}, 3d_{5/2})_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.684     | 2         | 6.684   | 1.28  |                |
| 47  | $(2p_{3/2}, 2p_{3/2})_2 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 3d_{3/2})_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.690     | 5         | 6.692   | 3.37  |                |
| 48  | $(2s_{1/2}, 2p_{3/2})_1 - (2s_{1/2}, 2p_{1/2}, 2p_{3/2}, 3d_{5/2})_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.692     | c         | 6.692   | 1.30  |                |
| 49  | $(2p_{1/2}, 2p_{3/2})_2 - (2p_{1/2}, 2p_{1/2}, 2p_{3/2}, 3d_{3/2})_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.702     | 2         | 6.703   | 0.11  |                |
| 50  | $(2p_{3/2}, 2p_{3/2})_2 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 3d_{5/2})_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.706     | 2         | 6.707   | 0.72  |                |
| 51  | $(2p_{3/2}, 2p_{3/2})_2 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 3d_{5/2})_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.711     | 1         | 6.714   | 0.16  |                |
| 52  | $(2s_{1/2}, 2p_{3/2})_2 - (2s_{1/2}, 2p_{1/2}, 2p_{3/2}, 3d_{5/2})_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.720     | с         | 6.725   | 1.74  |                |
| 53  | $(2s_{1/2}, 2p_{3/2})_2 - (2s_{1/2}, 2p_{1/2}, 2p_{3/2}, 3d_{3/2})_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.720     | с         | 6.725   | 0.89  |                |
| 54  | $(2s_{1/2}, 2p_{3/2})_2 - (2s_{1/2}, 2p_{1/2}, 2p_{3/2}, 3d_{3/2})_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.720     | с         | 6.726   | 2.02  |                |
| 55  | $(2s_{1/2}, 2p_{3/2})_1 - (2s_{1/2}, 2p_{1/2}, 2p_{1/2}, 3d_{3/2})_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |           | 6.733   | 2.16  |                |
| 56  | $(2p_{3/2}, 2p_{3/2})_2 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 3d_{3/2})_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.739     | 3         | 6.743   | 0.35  |                |
| 57  | $(2p_2, p_2, 2p_3, p_2) = (2p_1, p_2, 2p_3, p_3, 2p_3, 2p_3$    | 6.749     | 2         | 6 752   | 0.30  |                |
| 58  | $(2p_2, p_2, p_3, p_2, p_3, p_2, p_3, p_2, p_3, p_3, p_3, p_3, p_3, p_3, p_3, p_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 753     | 2         | 6 757   | 0.30  |                |
| 59  | $(2p_3/2, 2p_3/2)_2 = (2p_1/2, 2p_3/2, 2p_3/2, 3d_3/2)_2$<br>$(2p_1 + p_2)_2 = (2p_1 + p_3/2, 2p_3/2, 2d_3/2)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6 760     | 2         | 6 763   | 0.32  |                |
| 60  | $(2p_1/2, 2p_3/2)_1 = (2p_1/2, 2p_3/2, 2p_3/2, 3d_3/2)_1$<br>$(2p_1 - (2p_1 - (2$ | 6776      | 1         | 6 780   | 1.25  |                |
| 61  | $(2p_{1/2}, 2p_{3/2})_1 = (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 3u_{5/2})_2$<br>$(2p_1 + 2p_{3/2})_1 = (2p_1 + 2p_2 + 2p_3 + 2p_3 + 3d_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.770     | C         | 6 977   | 1.55  | 6 021          |
| 62  | $(2p_{1/2}, 2p_{3/2})_2 = (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 3u_{5/2})_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 976     | _         | 0.827   | 0.58  | 0.034          |
| 62  | $(2p_{1/2}, 2p_{3/2})_2 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 3a_{5/2})_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.820     | С         | 0.827   | 1.50  |                |
| 03  | $(2p_{1/2}, 2p_{3/2})_1 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 3a_{5/2})_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |           | 6.833   | 0.28  |                |
| 04  | $(2p_{1/2}, 2p_{3/2})_1 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 3d_{5/2})_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ( <b></b> |           | 6.833   | 0.16  |                |
| 65  | $(2p_{1/2}, 2p_{1/2})_0 - (2p_{1/2}, 2p_{1/2}, 2p_{3/2}, 3d_{5/2})_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.835     | 4         | 6.840   | 2.26  |                |
| 66  | $(2p_{1/2}, 2p_{3/2})_2 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 3d_{3/2})_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.843     | 1         | 6.844   | 0.75  |                |
| 67  | $(2p_{1/2}, 2p_{3/2})_1 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 3d_{3/2})_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.850     | 2         | 6.849   | 0.62  |                |
| 68  | $(2p_{1/2}, 2p_{3/2})_1 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 3d_{3/2})_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |           | 6.850   | 0.55  |                |
| 69  | $(2p_{3/2}, 2p_{3/2})_2 - (2p_{3/2}, 2p_{3/2}, 2p_{3/2}, 3d_{5/2})_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.853     | 5         | 6.852   | 2.50  |                |
| 70  | $(2p_{1/2}, 2p_{3/2})_1 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 3d_{5/2})_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |           | 6.856   | 0.21  |                |
| 71  | $(2p_{1/2}, 2p_{3/2})_2 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 3d_{5/2})_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.864     | 3         | 6.865   | 2.12  | 6.866          |
| 72  | $(2p_{1/2}, 2p_{3/2})_1 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 3d_{5/2})_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.876     | 4         | 6.877   | 1.04  | 6.877          |
| 73  | $(2p_{1/2}, 2p_{3/2})_2 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 3d_{5/2})_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.881     | 2         | 6.881   | 0.83  |                |
| 74  | $(2p_{1/2}, 2p_{3/2})_2 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 3d_{5/2})_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |           | 6.881   | 0.64  |                |
| 75  | $(2p_{1/2}, 2p_{3/2})_1 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 3d_{5/2})_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |           | 6.884   | 0.29  |                |
| 76  | $(2p_{3/2}, 2p_{3/2})_2 - (2p_{3/2}, 2p_{3/2}, 2p_{3/2}, 3d_{5/2})_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.886     | 5         | 6.887   | 0.69  |                |
| 77  | $(2p_{1/2}, 2p_{3/2})_2 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 3d_{3/2})_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |           | 6.898   | 0.12  |                |
| 78  | $(2p_{3/2}, 2p_{3/2})_2 - (2p_{3/2}, 2p_{3/2}, 2p_{3/2}, 3d_{3/2})_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.909     | 1         | 6.911   | 0.12  |                |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |           |         |       |                |

|     |                                                                       | Pres  | s. Meas.  |       |       |                |
|-----|-----------------------------------------------------------------------|-------|-----------|-------|-------|----------------|
|     |                                                                       |       | Relative  | Pres. | Calc. | Prev. Meas.    |
| Key | Transition <sup>a</sup>                                               | λ     | Intensity | λ     | gf    | λ <sup>b</sup> |
| 79  | $(2p_{3/2}, 2p_{3/2})_0 - (2p_{3/2}, 2p_{3/2}, 2p_{3/2}, 3d_{5/2})_1$ | 6.928 | 2         | 6.928 | 0.77  |                |
| 80  | $(2p_{1/2}, 2p_{3/2})_1 - (2p_{1/2}, 2p_{1/2}, 2p_{3/2}, 3s_{1/2})_2$ | 7.078 | с         | 7.079 | 0.11  |                |
| 81  | $(2p_{1/2}, 2p_{3/2})_2 - (2p_{1/2}, 2p_{1/2}, 2p_{3/2}, 3s_{1/2})_2$ | 7.125 | 1         | 7.131 | 0.10  | 7.123          |
| 82  | $(2p_{3/2}, 2p_{3/2})_2 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 3s_{1/2})_3$ | 7.132 | с         | 7.132 | 0.20  |                |
| 83  | $(2p_{3/2}, 2p_{3/2})_2 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 3s_{1/2})_2$ | 7.181 | 2         | 7.181 | 0.10  |                |
| 84  | $(2p_{3/2}, 2p_{3/2})_2 - (2p_{3/2}, 2p_{3/2}, 2p_{3/2}, 3s_{1/2})_1$ | 7.336 | 1         | 7.334 | 0.17  |                |
| 85  | $(2p_{1/2}, 2p_{3/2})_1 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 3s_{1/2})_1$ |       |           | 7.362 | 0.14  |                |
| 86  | $(2p_{1/2}, 2p_{1/2})_0 - (2p_{1/2}, 2p_{1/2}, 2p_{3/2}, 3s_{1/2})_1$ |       |           | 7.363 | 0.11  |                |
| 87  | $(2p_{1/2}, 2p_{3/2})_2 - (2p_{1/2}, 2p_{3/2}, 2p_{3/2}, 3s_{1/2})_2$ | 7.368 | 3         | 7.365 | 0.27  | 7.370          |

TABLE VI. (Continued).

<sup>a</sup>The designation is (lower level, upper level: hole state, excited state) J, where hole state is the list of the missing n=2 electrons, excited state is the excited n=3 or n=4 electron, and J is the total angular momentum.

<sup>b</sup>Gordon, Hobby, and Peacock (Ref. 8).

<sup>c</sup>Blended with Br XXVII or Br XXVI transitions.

our measured wavelengths agree with the calculated wavelengths to within several mÅ.

The O-like transitions are somewhat weaker than the F-like and Ne-like transitions in the high-irradiation spectrum, and several of the O-like transitions are blended with stronger F-like or Ne-like transitions. In addition, there are a number of cases in which strong O-like transitions have nearly the same wavelength and overlap in the spectrum. The large number of overlaps results from the relatively large number of levels (five) within the ground configuration of the O-like ion. In contrast, the ground configuration of the F-like and Ne-like ions have only two levels and one level, respectively, and chance overlaps are less likely to occur.

## V. CONCLUSIONS

The spectra of Br XXIV-XXVIII were produced using the microdot technique. Spatially resolved, single-shot spectra were recorded for laser irradiation intensities from  $3 \times 10^{13}$  to  $4 \times 10^{14}$  W/cm<sup>2</sup>. Based on the variation of the spectral line intensities with the laser irradiation intensity and with the distance from the target, it was possible to distinguish the Mg-like and Na-like satellite transitions from the transitions in more highly charged ions. The spectral resolution obtained using the microdot technique is a significant improvement over previous work, and the present work greatly expands the number of identified transitions in Br XXIV, XXV, XXVII, and XXVIII.

# ACKNOWLEDGMENTS

The authors wish to express their thanks to K. Reed for his contribution to the *ab initio* calculations and to A. Hazi and R. Fortner for useful discussions. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

- \*Permanent address: E. O. Hulburt Center for Space Research, Naval Research Laboratory, Washington, D.C., 20375
- <sup>1</sup>D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, M. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, and T. A. Weaver, Phys. Rev. Lett. 54, 110 (1985).
- <sup>2</sup>M. D. Rosen, P. L. Hagelstein, D. L. Matthews, E. M. Campbell, A. U. Hazi, B. L. Whitten, B. MacGowan, R. E. Turner, R. W. Lee, G. Charatis, Gar. E. Busch, C. L. Shepard, P. D. Rockett, and R. R. Johnson, Phys. Rev. Lett. 54, 106 (1985).
- <sup>3</sup>J. P. Apruzese, J. Davis, M. Blaha, P. C. Kepple, and V. L. Jacobs, Phys. Rev. Lett. **55**, 1877 (1985).
- <sup>4</sup>B. L. Whitten, A. U. Hazi, M. H. Chen, and P. L. Hagelstein, Phys. Rev. A **33**, 2171 (1986).
- <sup>5</sup>P. G. Burkhalter, D. J. Nagel, and R. D. Cowan, Phys. Rev. A 11, 782 (1975).

- <sup>6</sup>V. A. Boiko, A. Ya. Faenov, and S. A. Pikuz, J. Quant. Spectrosc. Radiat. Transfer 19, 11 (1978).
- <sup>7</sup>R. J. Hutcheon, L. Cooke, M. H. Key, C. L. S. Lewis, and G. E. Bromage, Phys. Scr. 21, 89 (1980).
- <sup>8</sup>H. Gordon, M. G. Hobby, and N. J. Peacock, J. Phys. B 13, 1985 (1980).
- <sup>9</sup>H. Gordon, M. G. Hobby, N. J. Peacock, and R. D. Cowan, J. Phys. B **12**, 881 (1979).
- <sup>10</sup>J. Bailey, R. E. Stewart, J. D. Kilkenny, R. S. Walling, T. Phillips, R. J. Fortner, and R. W. Lee, J. Phys. B (to be published).
- <sup>11</sup>M. J. Herbst, P. G. Burkhalter, J. Grun, R. R. Whitlock, and M. Fink, Rev. Sci. Instrum. 53, 1418 (1982).
- <sup>12</sup>P. G. Burkhalter, M. J. Herbst, D. Duston, J. Gardner, M. Emery, R. R. Whitlock, J. Grun, J. P. Apruzese, and J. Davis, Phys. Fluids 26, 3650 (1983).
- <sup>13</sup>U. I. Safronova, Phys. Scr. 23, 241 (1981).
- <sup>14</sup>J. Scofield (unpublished).