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Potential calculation for alkaline-earth-metal-ion —rare-gas-atom pairs
and its application to line-core analysis
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Department ofElectronics, Kyoto Institute of Technology, Matsugasaki, Kyoto 606, Japan
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The psuedopotential model of Baylis has been applied to alkaline-earth-metal {singly
ionized) —rare-gas-atom pairs to calculate adiabatic potentials for some low-lying states. Using the
calculated potentials, broadening and shift rates of resonance lines of Sr+, Ca+, and Mg+ perturbed
by Ar and He have been calculated and compared pvith experiments. The overall agreement is good.

I. INTRODUCTION

Although ionic alkaline-earth-metal spectral lines show
important features in solar and stellar spectra, data of
their collision broadening by rare gases are scarce com-
pared with, e.g., neutral-alkali-metal —rare-gas pairs. ' In
addition, the agro:ment between existing line-core data
and theoretical calculations is not necessarily good. '

This is mainly due to the lack of reliable interaction po-
tentials between the colliding pairs. In this work we cal-
culate adiabatic potentials for some low molecular states
for the pairs; then to discuss their validity, we evaluate the
broadening and shift rates of some resonance lines of the
alkaline-earth-metal ion (hereafter abbreviated as AE ion)
perturbed by rare gases (abbreviated as RG) to compare
with published data 6 or with our latest experiment. ~ In
this work we consider Sr+, Ca+, and Mg+ for the AE
ion, and Ar and He for RG.

Since singly ionized AE elements have the isoelectronic
structure of neutral alkali inetals, we can conveniently
employ the pseudopotential model of Baylis ' originally
applied to alkali-metal —RG pairs with a slight modifica-
tion. The point is to replace the net charge of the alkali-
metal core (+e) by that of the AE ion core (+2e). In his
model the colliding system consists of three bodies: the
valence electron of the alkali metal, the alkali-metal core,
and the RG atom. The collisional interaction is separated
into two parts: an electrostatic interaction acting on these
three bodies and a repulsive interaction described by the
Gombas-type statistical pseudopotential. ' The latter
part, acting on the electron —RG-atom and alkali-metal-
core—RG-atom pairs, replaces the antisymmetrization
procedure of the total wave functions of the system and
simulates the "Pauli repulsion" at short-range internuclear
distance.

His calculation has been refined by many authors for
alkali-metal —RG pairs, " ' extended to more complicat-
ed systems with two valence electrons, ' and is now recog-
nized' as a convenient method, when correctly applied, to
replace accurate yet usually very costly ab initio calcula-
tions. However, as an exceptional case, it is worth not-
ing here that in alkali-metal —He pairs the Baylis model
has been recognized to fail in correctly describing short-

range interactions. ' ' Valiron et al. ' have shown that
the repulsive interaction between valence electrons and
light RG atoms should include an I-dependent (or nonlo-
cal) term to ensure the orthogonality condition between
the valence-electron's wave function and RG orbitals.
Pascale' has greatly improved his previous calculation
for alkali-metal —He pairs" by applying the l-dependent
pseudopotential interaction. Since the original model of
Baylis is used in this work, we may find a similar defect
for AE-ion —He pairs. This point will be further dis-
cussed in our analysis.

Previous theoretical work on broadening for AE-ion
resonance lines could be reviewed as follows. Hammond
and Bowman and Lewis considered Ca+ lines perturbed
by He and Ar by a classical method based on the van der
4'aals interaction and compared them with their experi-
ments. The observed values are about 1.3 to 2 times
larger than their calculations. Giusti-Suzor and Roueff
considered Ca+ and Sr+ perturbed by He by a semiclassi-
cal method. Their potential model is called the exchange
interaction, where a Fermi-type repulsive interaction be-
tween the valence electron and RG atom is considered.
They also report that Hammond's data are larger than
their prediction by a factor of 1.4. Bottcher et al. ' made
a quantum-mechanical calculation of the Mg+-He in-
teraction. They used a model potential method, where the
colliding system is treated as three bodies as in the Baylis
model. However, the interactions for these three bodies
are described by complicated model functions involving
several empirical parameters. More importantly, the wave
functions are prepared in antisymmetrized form, so that
we do not need terms such as Gombas-type pseudopoten-
tial to simulate the Pauli repulsion. Unfortunately their
calculations ' have not yet been compared with experi-
ments. Therefore we will do that later.

Conventionally the Ca+ resonance lines corresponding
to transitions I'l/2- Sl/2 nd ~3/2 ~1/2 are referred to
as the H and K lines, respectively, by the Fraunhofer
nomenclature. Therefore, in this paper we shall for con-
venience use this nomenclature for the analogous lines of
Mg+ and Sr+. In Sec. II the potential calculation is
described, and in Sec. I the line-core broadenings are
calculated and compared with experimental data.
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II. POTSN TIAI. CAI.CUI.ATION

The details of the pseudopotential model are described
in the original paper of Baylis, and the outline was re-

peatedly described by many authors such as Pascale and
Vandeplanque. " Therefore in this section we give only
the key points emphasizing the modification for the
present colliding pairs from alkali-metal —RG pairs.

%'e assume both the AE-ion core and RG atom are
represented by undisturbed electronic wave functions dur-
ing collisions, i.e., they are "frozen. " This seems to be a
reasonable assumption in usual thermal collisions. Then
the problem reduces to finding the eigenvalues of the
Hamiltonian

H(r, R)=H&(r)+ V(r, R) .

Here r and R are the position vectors of the valence elec-
tron and of the RG atom, respectively, relative to the
AE-ion core. V(r, R} describes the collisional interaction.
When R is infinity it vanishes and H(r, R} reduces to
H~ (r}, the Hamiltonian of the free ion.

V(r, R) consists of three parts

V(r, R)=E(r,R)+G(r, R)+ W(R),

where G(r, R) and IV(R) are the Gombas-type pseudopo-
tential' which represents the Pauli repulsion between the
valence electron and RG atom, and ion core and RG
atom, respectively. F(r,R) is the electrostatic interaction
for the three bodies written as

'2
a 2eR er'

g3 &3

Here a is the electric dipole polarizability of the RG, e is
the elementary charge, and r' =r —R. In alkali-
metal —RG collisions the net charge of the alkali-metal
core is +e instead of +2e, thus the term 2eR/R is re-

placed by eR/R . As done by Baylis we define an effec-
tive radius ro for the RG atom, and if r' &ro (3) can be
replaced by

these terms by the same approximation as described by
8aylls.

As the basis set used to diagonalize H(r, R) in (1),
Baylis employed the eight lowest states of the alkali-metal
atom which form the lowest S&/z, P, /i, and P3/i levels.
Such a limitation of the basis set is one of the important
assumptions in his method. This seems reasonable when
only low molecular states are concerned. " In the present
case, Sr+ and Ca+ have the first D3/Q 5/p levels lying be-
tween the ground S&/i and the first P&/i 3/i levels, and
there is a large energy defect between the first P levels
and the next upper level (the second S level). In Mg+
both the first D and the second S levels are much higher
than the first P, /q q/q levels. Therefore, for Ca+ and Sr+
we considered ten states belonging to D3~2 q~2 in addition
to the above eight states. The radial part of the wave
functions for these states are given by the Bates-
Darngaard type as was done by Baylis.

8. Results

0.2
Sr'-Ar

I I I

5r- He

In addition to ro, we need the following parameters in
computation: the energy levels of AE ions and dipole po-
larizabilities of the RG. They were taken respectively
from Moore and Dalgarno and Kingston. In the fol-
lowing we will give first the general characteristics of the
calculated potential shape, then compare with other calcu-
lations and potentials for alkali-metal —RG pairs with
isoelectronic configurations, and finally discuss the sensi-
tivity of potential shape to po.

Figures j,—3 show the calculated adiabatic potentials.
As the internuclear separation 8 increases, the potential
curves approach the corresponding atomic limits. These
asymptotes are marked on the right-hand side of each fig-
ure. Each potential curve is specified by
0( =

~ m/ ~
) =—,', . . . , where mj is the projection of total

angular momentum of the valence electron along the in-

When r' & ro (3) must be directly calculated. Baylis deter-
inined ro by fitting the well depth of the calculated
ground-state potential to that obtained from scattering ex-

periments. Unfortunately for AE-ion —RG-atom pairs we
have no such data. Therefore, in this work we employ the
values of Baylis for alkali-metal —RG pairs which have
the same electronic configurations. For example, for the
Sr+-Ar pair we write ro ——1.063 a.u. as assumed for Rb-
Ar (1 a.u. =0.53 A). We will check later how sensitive the
calculated potentials are to the magnitude of ro.

To calculate G(r, R) and 8'(8) we must know the
charge distributions of the outermost shells of the RG,
pii(r), and of AE-ion core p„(r). They were taken from
Gombis' and Gombis and Szondy, respectively. The
exact calculation of G(r, R) and 8 (R) is very time con-
suming on the computer. Therefore we have evaluated
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FIG. 1. Adiabatic potentials for Sr+ rare-gas pairs with

ro ——1.063 for Ar and 0.685 a.u. for He. 1 a.u. =2.19~105
cm
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FIG. 2. Adiabatic potentials for Ca+ rare-gas pairs with

ro ——1.091 for Ar and 0.704 a.u. for He.
FIG. 3. Adiabatic potentials for Mg rare-gas pairs with

ro ——1.210 for Ar and 0.866 a.u. for He { ). Calculation of
Bottcher et al. (Ref. 21) is shown for comparison ( ———).

ternuclear axis. For a given AE ion, the potential wells in
various states become pronounced for the heavier RG, Ar,
than the lighter one, He. This can be explained by the
difference of dipole polarizabilities of RG as calculated
for alkali-metal —RG pairs. " The depth e and position
R of each potential well are determined by the balance
of the long-range attractive interaction F(r, R) and the
short-range repulsive terms G(r, R) and 8'(R). The at-
tractive term is proportional to the polarizabilities a as
shown in (3), while the repulsive terms do not show such a
drastic change with the RG species in the present R re-
gion. The well positions related to S and I' asymptotes
are summarized in Table I. Here the molecular states are
labeled as X X~/2, A II, /z3/2 and 8 X&/z following
Herzberg notation. Since we are mainly concerned with
P-S optical transitions, molecular states related to D
asymptotes are not discussed in the following. For a
given RG the wells become deeper as one goes from
heavier to light AE ions. This may be understood by the
difference of the above repulsive interaction. The term
G(r, R) which describes the Pauli repulsion between the
valence electron and the RG is sensitive to the spread of
valence-electron clouds. As an example we compare

charge distributions of valence electrons of Sr+ and Mg+
in s and p orbitals in Fig. 4. We find that the clouds of
Sr+ spread outward more than in Mg+. Therefore, as R
decreases the term G(r, R) begins to act at larger values
of R for Sr+ than for Mg+.

Next we compare our system with alkali-metal —RG
pairs having the same electronic configurations. Since we
observe a similar tendency, we discuss the Sr+-Ar pair
again to compare with Rb-Ar. The well parameters for
the Rb-Ar pair determined by Baylis are shown in the
last row of Table I. We see the Sr+-Ar pair has much
(about 5 to 13 times) deeper wells at shorter internuclear
distance than the Rb-Ar pair. This may be explained as
follows. First, Rb has valence-electron clouds which
spread outward much more than Sr+ as are clearly seen in

Fig. 4. Thus the term G(r, R) begins to act at very large
values of R for Rb compared with Sr+. Second, in the
Sr -Ar pair the long-range attractive interaction is dom-
inated by the strong polarization force written as
—e R /2, which acts between a point charge of e and
an induced dipole. In the Rb-Ar pair, however, the dom-
inant term is the weak van der Waals attraction with R

TABLE I. %ell positions (R,e) related to Sly, I'&&2, and I'3/2 states. They are given in a.u. for
R and cm ' for e.

X X lay

Mg+-He
Mg+-Ar
Ca+-He
Ca+-Ar
Sr+-He
Sr+-Ar
Rb-Ar'

'Reference 8.

(6.2,96)
(4.1,2310)
(7.2,58)
(5.5,836)
(7.6,48)
(6.6,575)
(9.9,43.5)

(3.6, 1152)
(4.0,6555)
(4.8,371)
(5.2,2718)
{9.0,24)
(6.0, 1283)
(6.8,238)

{3.6, 1182)
(4.0,6585)
(4.8,443)
(5.2,2794)
(5.8,217)
(5.9,1560)
(6.8,315)

(8.7,28)
(8.4,269)
(9.7,20)
(9.4, 192)

(10.3,16)
(9.8, 163)

(15.6,11.9 )
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FIG. 5. Long-range potentials for Sr+-Ar pair. At 8 &20
a.u. they are well described by the polarization force. Other
states ( H3/2 X]/2) behave similarly.
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FIC1. 4. Charge distributions of valence electron. Charge
density is defined by the square of Bates-Damgaard-type wave
functions.

dependence between two induced dipoles. As shown in
the Appendix, we can easily show by expanding F(r, R) in
infinite power series of rIR that F(r,R) for the AE-
ion —RG pair is actually dominated by the above polariza-
tion force at large R. This is graphically shown in Fig. 5.

As described in the Introduction, only limited calcula-
tions are reported for the AE-ion —RG pair potentials.
Among them, we believe, the result of Bottcher et al. '

for the Mg -He pair is most sophisticated. Since their re-
sult is shown only graphically, we will replot them in Fig.
3 by dashed curves to compare with ours We fin. d both
results have similar behavior, e.g., the uppermost state
~ith 0= —,

'
gradually increases repulsive character as 8

decreases, while the other potentials steeply rise at R & 3
a.u. However, there are some distinct differences: (i) po-
tentials of Bottcher et al. are all less repulsive at small R
( & 3 a.u. ) values, and (ii) the lower excited states
(0=—,', —', ) of 3P asymptotes have wells of depth —1000
cm ' at R =3.6 a.u. in our calculation (Table I), while in
the result of Bottcher et al. the potentials are almost flat
at R ) 3 a.u. As for (i), Bottcher et al. reports similar
discrepancy from Baylis potential for alkali-metal (Li,Na)
—RG (He, Ne) pairs. In the present Baylis model calcula-
tion the core-core repulsion term W(R) plays the most
important role in such a small-R region. As discussed by
Valiron et aI. ,""this difference may be attributed to the
lack of a corresponding term in the model Hamiltonian of
Bottcher et al. [Eq. (5) of Ref. 21].

Finally, we discuss how the potential shape is inAu-

enced by the magnitude of ro. It gives a measure of the
spread of charge distribution of the RG. Thus one may
expect that the assumption of ro may severely affect the
terms G(r, R) and F(r, R) in the relatively small-R region.
In changing ro, however, we have at present no definite
base to estimate a "reasonable" range of ro. Obviously ro
should increase with the mass of the RG. As a test case
we increased ro for the Sr+-Ar pair from 1.063 to 1.186.
This latter value was used by Baylis for the Rb-Kr pair.
Thus it may be looked at as a rough estimate of the upper
limit for the Sr+-Ar pair. The comparison is shown in
Fig. 6. The X states are more repulsive for the larger rQ,
while the II states show no discernible effect. This is ex-

O.l2—

5P

(6.6, 573)

5 7 9 1) 13

INTERNUCLEAR DISTANCE (a.u. )

FIG. 6. ro dependence for Sr+-Ar pair (, ro ——1.063;
———,ro ——1.186 a.u. ). Respective well parameters (E. ,e)
are shown with 8 in a.u. and e in cm . H states are not
shown because they show no discernible change on this scale.
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plained by the charge distribution of the valence electron.
In the B 2~~2 state it spreads along the internuclear axis,
therefore the repulsive character is enhanced for the larger
ro. In the A H&~ 3&2 states, however, it spreads vertical-

ly against the internuclear axis, thus the effect is negligi-
ble. For the X X, /2 state the effect is somewhat weaker
than for the 8 Xi/2 state. As one changes ro from 1.063
by 10%, the well depth of X states changes by about 20%%uo.

When the perturber is He, the effect is somewhat larger.

III. BROADENING CALCULATION

A. Method

In this section we consider the line-core broadening and
shift of AE-ion resonance lines in a semiclassical treat-
ment of the impact approximation. We will mainly dis-
cuss H lines, since they can be treated somewhat more
easily than E lines.

If the perturber density is low and collisions have short
durations, the spectral line shape takes the I.orentzian
orm

I(tu) cc I/[(coo —co+P) +y ] .

The width y and shift p are given by

y+ip=2irn f f(u)udu f [1—II(p, u)]pdp, (6)

where n is the perturber density, u is the relative velocity,

f (u) is its distribution function, and p is the impact pa-
rameter. In our calculation the averaging over velocity in

(6) was replaced by taking its mean value u. The resulting
error should be negligible. In our case, perturbers (RG)
remain in the ground S state during collisions, therefore
11(p,u) is described as

2

e;,mf .
M

X (jfmf ~

S '
~jfmf ) .

He«
~ jf,mf ) and

~j;,m; ) denote the ground and excited
states of the AE ion, respectively. S is the scattering ma
trix defined by the wave functions in the interaction repre-
sentation before and after a collision by

We will write the interaction Hamiltonian of the sys-
tem in a matrix form taking eight atomic basis
sets

I Si/2 +
z )

I P3/2 +
2 ) I P3/2 +

2

~
P, /2, + —,

' },with the quantization axis along R (rotating
frame). Then g is expressed in a 1 X 8 column vector

~
a)

of coupling coefficients (closed-coupled treatment). If we
assume there is no coupling between the ground and excit-
ed states, the Hamiltonian is decoupled to a 2/2 matrix
for the ground state, and a 6&6 matrix for the excited
states. The explicit form for the latter is given, e.g., by
Allard and Kielkopf. ' If the coupling term between

~
P3/2, + —, ) and

~
P»2, + —, ) states (i.e., fine-structure

mixing) is ignored, then this matrix is further decoupled
to a 2&2 matrix corresponding to I'&&2, and a 4&4 ma-
trix corresponding to P3/2 states. The former one could
be written as

V( II i/2)

—i' (9)

Here V(IIi/2) is the molecular perturbation for the IIi/2
state. Since we choose a rotating frame, rotational cou-
pling Va appears in the nondiagonal term. If such sim-
plifications are unacceptable, we must solve the problem
rigorously. In the present calculation we employed the
formalism of Roueff et al. This is because we want
to compare our results with their calculations for Ca+
and Sr+ following the same procedure. Strictly speaking,
there is a slight difference from that of the Baylis model
in the treatment of spin-orbit interaction in the Hamil-
tonian. But it would not cause a serious problem in the
present calculation as confirmed previously for Rb-RG
pairs. In the actual calculation of the time evolution of
the column vector from t= —ao to + ao we assign, in-
stead of infinity, t,„=R,„/u as the maximum of time,
where R,„=40a.u. for Ar and 30 a.u. for He. Differen-
tial equations of coupling coefficients were solved numeri-
cally by a Runge-Kutta algorithm along the following
perturber trajectories. If the interaction Hamiltonian re-
lated to the P~~2 state is decoupled to a 2&(2 matrix such
as (9), we have only to consider the II&/2 potential to cal-
culate the broadening of H line. Thus the trajectory is
uniquely determined by the classical law of energy conser-
vation as

dR/dt =+u I 1 p /R —V[II, /2(R—)]/E j
'/2, (10)

where E is the initial kinetic energy, and the term
—V[IIi/2(R)]/E describes the trajectory deflection. If
the Hamiltonian is not decoupled, the trajectory is not
uniquely determined. In this case we assume straight tra-
jectories. From (10) we see this is valid when E is large
compared with the collisional perturbation (high-energy
limit). Therefore slow and close collisions are not accu-
rately treated in this method. We will hereafter call the
former method the "simple treatment" and the latter the
"rigorous treatment. "

B. Results

In Table II calculated results are shown and compared
with experiments. For the H line in the Mg+-He pair we
have no experimental data, thus the E line is compared
instead. In our calculations suitable treatment, simple or
rigorous, was used depending on the fine-structure separa-
tion h~ between nearby molecular states and temperature
T. At low temperature with large b~ the simple treat-
ment is suitable, because the adiabatic criterion
A/r, && b,ro is satisfied (r, is the collision duration). Then
we can ignore the fine-structure mixing. Let us compare
the Sr+-Ar pair with Mg+-Ar, for example. In both cases
A/~, is roughly 4&10 a.u. at T=700 K, if we estimate
it as r, =p/u with p=10 a.u. Thus for the Sr+-Ar pair
(b,co-3X10 a.u. ) this criterion is satisfied, but not for
the Mg+-Ar pair (bco-4X 10 a.u.).
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First we confirmed that there was no systematic error
in our computation. Giusti-Suzor and Roueff calculate
broadening of Ca+ and Sr+ resonance hnes perturbed by
He at 4500 K by what they call the "complete treatment, "
which is equivalent to our rigorous one. Their basic
model potential is an exponential repulsion called the ex-
change interactions (abbreviated as EI) between the
valence electron in the X states and RG atom. The EI
have rather simple analytic forms and are given in the pa-
per. By putting them into our computer code of rigorous
treatment we have precisely reproduced their value.

By looking at Table II we find the overall agreement is
reasonably good, though there are some exceptions such
as 2y/n for the Ca+ Ar-pair at 875 K. We would like to
emphasize that previous large discrepancies between
theory and experiment, especially at high temperatures,
are greatly improved by our calculation. I.et us discuss
2y/n for the Ca+-He pair at 5200 K, for example. Previ-
ously, Bowman and Lewis calculated it classically by the
conventional van der Waals approximation. i'

(2y/n =1.99 in the unit of 10 cm '/cm . This unit
will be used below for broadening and shift rates. ) They
also extrapolated the values of Giusti-Suzor and Roueff

to 5200 K (2y/n = 1.74). Calculating accurately with the
EI model we get the value of 1.81. All these values are
too small compared with the experimental result of Ham-
mond (2y/n =2.56). But when the model potential is re-
placed by ours we obtain fairly good agreement
(2y/n =2.43). In Fig 7(a) we can see clearly why the EI
model yields such a small value. Here the real part of
[1—II(p, u)]p, the integrand appearing in (6), is compared
with our potential and the EI model. Obviously these two
curves behave in a quite different manner at 5 &p & 7 a.u.
This difference could be well understood if we look at Fig.
8 where the EI model is compared with our potential.
The EI model well simulates the X X&/2 state at R ) 5
a.u. , but for the excited states our potentials behave more
drastically than the EI model at 8 &7 a.u. If we discuss
the classical phase-shift theory, such a drastic change in-
creases the phase change in each collision yielding a large
broadening rate In. the imaginary part shown in Fig. 7(b)
the difference at 5 &p & 8 a.u. is striking again. In our po-
tential the large negative contribution gives negative shift
(P/n= —0.22), while in the EI model it is positive
(P/n =0.20). If we refer to the observed shift rate at 655
K (P/n = —0.19), the negative sign would be realistic.

TABLE II. Broadening and shift rates for the H-line ( P&/& —'S&/q) perturbed by Ar and He (10
cm '/cm ). Fine-structure separation her of P state for isolated ion is given in cm ' and a.u.

Calculation
2y/n 13/n 2y/n

Experiment
P/n

Temperature
(K)

Sr+-Ar
801 cm
(3.7X 10-')

Ca+-Ar
223 cm-'
{1.0y 10-')

Mg+-Ar
92 cm
(4.2 ~ 10-4}

Sr+-He

Ca+-He

Mg+-He

1.60'
1.51'

1.55'
1.11'
1.90'
1.99
2.64'
2.20'

1.62'

0 77'

0.89

1.81'
1.99'

0.79'
1.05'

—0.44'
—0.35'

—0.30'

—0.90'

—0.46

—0.11
—0.22
+ 0.20'

—0.15
—0.12"

1.87g0. 25b

1.44+0. 12'

1.57+0.04'

1.24+0.08'

2.79+0.67I

1.14+0.13'

1.09%0.09'

1.11%0.06'
2.56+0.77"

1.90+0.02'

—0.20%0.05'

—0.26JO.05'

—0.32+0. 17'

+ 0.34+0.04'

—0.19+0.06'

—0.39+0.05'

690
608

765
765
875
875

7466
7466

754

573

655
5200
5200
5200

556
556

'Present calculation (simple treatment with our potential).
Reference 7.

'Reference 3.
dReference 6.
'Classical van der Waals approximation of Bowman and Lewis (Ref. 6). Their value for Ca+-Ar pair at
7466 K (=1.21) is probably incorrect. It should be 2.20 if T temperature dependence is assumed.
~Present calculation (rigorous treatment with our potential).
~Reference 5.
"Reference 4.
Present calculation (rigorous treatment with exchange interaction given in Ref. 2).

'Present calculation (rigorous treatment with our potential for E line).
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Therefore, to assess the shift rate correctly, one must add
some long-range attractive interaction to EI as suggested
by Giusti-Suzor and Roueff.

I.et us discuss finally the large discrepancy observed in
Table II. For 2y/n of the Ca+-Ar pair at 875 K, our cal-
culations based on simple and rigorous treatments are
both greater than the experiment by about 50%%uo. This is
quite puzzling, because fairly good agreement is obtained
at different temperatures. For Ca+-He, Sr+-He, and
Mg+-He pairs, serious discrepancy appears in the shift
rates. In alkali-metal —He pairs I"0 is not uniquely deter-

t i i i s i

3 5 7 9 1]

IMPACT PARAMETER (a.u. )

FIG. 7. (a) Real and (b) imaginary part of the integrand 1n

Eq. (6) calculated with our potential ( ) and exchange in-
teraction of Ref. 2 ( ———). %hen rapid oscillations appear
(p (3.5 a.u. ), the mean values ( ~ ~ ~ ) are computed. They have
slope of 1 for (a) and 0 for (b),

mined, but a certain range of estimation is given. We
could not obtain good agreement for the shift rate only by
adjusting ro within this range. %e can obtain better
agreement if pp greatly exceeds this range, but the value
has little physical meaning. In the Mg+-He pair the
discrepancy for the broadening rate is also apparent. This
situation does not change even if we recall the calculation
of Bottcher et al. ' From their figure showing the tem-
perature dependence of broadening rate we can read
2y/n & I X10 cm '/cm at 556 K. This indicates
that the employed potentials should be greatly modified.
In our case, we probably have to reconsider various pa-
rameters used in the potential calculation such as the
selection of the basis set, or core charge distributions.
More essentially, we have to check carefully the validity
of the potential model itself at relatively small internu-
clear distance where broadening and shift rates are greatly
affected as in the case of the Mg+-He pair. It is worth
comparing the colliding pair with the isoelectronic sys-
tem, Na-He. As described in the Introduction, short-
range repulsive interaction between the valence electron
and the RG atom (especially the lightest ones) is not accu-
rately calculated by l-independent (or local) pseudopoten-
tial interaction as used in the Baylis model. For the Na-
He pair Hanssen et al. ' and Pascale' have shown by so-
phisticated calculations along this line that previous po-
tential shapes" should be greatly modified; e.g. , the well

position of the first II state (R,e)=(6.2 a.u. , 32
cm ')" should be replaced by (4.35 a.u. , 511 cm '). '

Line-core data are generally not so sensitive to very
short-range interactions as far-wing spectra as demon-
strated by these authors, however, such a drastic change
of potential shapes may severely affect also the core data.
Although we did not try such sophisticated calculations in
the present work, the same attempt is obviously a future
direction to improve the accuracy of potentials for AE-
ion —He pairs.
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FIG. 8. Comparison of Ca+-He potential between our result
( ———) and exchange interaction ( ). In the latter model,
the H3&2 state gets no perturbation (see Fig. 2 of Ref. 2).

IV. CONCLUSIONS

By applying the Baylis model potential to alkaline-
earth-metal (singly ionized) —rare-gas-atom pairs, we cal-
culated interaction potentials for some low molecular
states. Although they have certain uncertainty coming
from some unknown parameters, we can reasonably ex-
plain most of the observed broadening data of resonance
lines of alkaline-earth-metal ions using these potentials.
As a future subject the improvement of potentials for
light rare gases should be studied. To extend broadening
experiments from the line core to the wing region is also a
very interesting topic, from which we can discuss relative-
ly short-range interactions precisely. The latter subject is
now in progress in our laboratory, and the first report for
the Sr+-Ar pair would appear shortly.
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APPENDIX

In this section we consider the long-range behavior of
F(r,R). We first follow Baylis's formulas for alkali-
metal —rare-gas pairs. In his case the electrostatic interac-
tion

(Al)

is expanded by Legendre polynomials PL (cos8), where 8
is the angle determined by r and R. The long-range
behavior of F(r,R) is determined by its expansion coeffi-
cients [see Eq. (A12a) of Baylis ]

We can omit the contribution of F"'(r,R) term, since

( nlm
~

F"'(r,R)Pi(cos8)
~

nlm )

= (nl
i

F' "(r,R )
i
nl ) ( lm

i
cos8

i
Im ) =0,

where
~

nlm ) corresponds to the alkali metal's wave func-
tions. Baylis expanded (A3) and (A4) in a power series of
r/R [see Eq. (A14) of Baylis ]. Similarly, in our case of
alkaline-earth-metal(ion) —RG pairs, we can put a=2 to
get

2m

F (r,R)= — tt 4+ z zz
2 5L, o tzr (x)

R (R r)— Ae rF' '(r R)=— (A6)

3 bL. (» R+r
22ln4 g2r2 8 —r

2(1. +1) r
g

4

1 x —2a

(R —rz) R
F' '(r, R)=—

where 5L, o ——1 only for 1.=0, x =(R +r )/2Rr, and the
functions aL (x) and bL (x) are tabulated (Table AI of
Baylis ). For I.=0 and 2, ao(x)=1, az(x)=5(3x —2),
bo(x) =0, and bz(x) =5x, so that

(A3)
2

(m +1)(m +2)(m +3)
(2m +3)(2m +5)

Therefore F(r, R) can be written as

F(r,R) =F' (r,R)Po+F' '(r, R)Pz(cos8)+

ae ne r
[1—2Pz(cos8)]

2R R
2 4

[—, +—", Pz(cos8)]— (A8)

ae 5(3x —2) 15 x
1

R +r
(R2 r2)2 4 R2r2

6r—K (A4)

Thus starting from the monopole-dipole interaction term
(so called the "polarization force'*) which behaves as R
higher-order terms with R, R, . . . follow in the r/R
expansion of F(r,R).
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