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Relationships between density matrices and densities or between operators and local potentials are
considered for model problems defined by the introduction of basis sets. Some properties depend
only on the space spanned by the basis while others depend on a particular choice of basis functions.
Linear-dependency conditions play a critical role. In a model problem defined by a basis with all
products linearly independent, the effect of any operator can be reproduced by a local potential, but
any complete basis must have linearly dependent products. A one-electron density matrix or single-
determinant wave function can be determined from the density (or experimental measurements sen-
sitive only to the density) in the model problem defined by a basis with linearly independent prod-
ucts, but not otherwise. A simple example illustrates some of the general results.

I. INTRODUCTION

This paper deals with the role of basis sets in density-
matrix and density-functional theory, and how they affect
the relationship between functions and operators. One of
the most important questions to be addressed is that of
how much information about an atomic, molecular or
solid system is provided by a knowledge of the electronic
density. We are not concerned here with the formal rela-
tionship implied by the Hohenberg-Kohn theorem,! 3 but
rather with functions, functionals, or algorithms that can
be stated in explicit form.

Some previous work that is closely related to the
present investigation is reviewed in Sec. II. This brief re-
view will also serve to define notation and terminology.
We are faced with the unfortunate fact that the word
“kernel” is commonly used in two quite unrelated senses,
both of which are relevant. One of these is the kernel of
an integral operator, which will be called here the integral
kernel. The other refers to the subset of the domain of an
operator consisting of those elements which yield zero
when acted upon by the (nonzero) operator. We will nor-
mally refer to this as the null space of the operator.

All of the results depend on properties of the basis set
used, and a number of basis sets are considered in Sec. III.
Some of these are of simple analytic form, while others
are more complicated but have other desirable features.
While the basis sets actually used in electronic-structure
calculations do not fall completely within either of these
types, an analysis of the simple cases provides the basis
for an understanding of more realistic cases. A semireal-
istic set of well-tempered Gaussian orbitals is also dis-
cussed. Some rigorous, general results are presented in
Sec. IV. Of particular interest are basis sets where all
products are linearly independent. These linearly indepen-
dent product (LIP) basis sets often occur in quantum-
chemical calculations with limited-size basis sets, and in
the model problem defined by such a basis the density
plays a special role. This situation is considered in Sec. V.

Improvements in experimental and data-processing
capabilities make the determination of electron densities
in real physical systems ever more precise.* There has
been some interest in using this data to determine model
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wave functions or one-particle density matrices.> In Sec.
VI the foundations of this approach are examined. The
results of the present paper and the conclusions that can
be drawn from it are summarized in Sec. VII, and some
examples which serve to illustrate the points made are
presented in the Appendix.

II. BACKGROUND

The ideas presented in this paper are closely related to
some of those which have been presented earlier in a series
of papers “Geometry of Density Matrices. (N),” (GDM-
L ...,-VD,5~!! particularly GDM-IV.® Insofar as possi-
ble, the notation and conventions established in those pa-
pers will be used here, but since the present approach is
slightly different, some changes will be necessary. Some
distinctions will be made between different, but isomor-
phic, spaces. These may seem unnecessarily pedantic, but
have been found to be useful in avoiding potential con-
fusion.

The starting point is a Hilbert space % of finite dimen-
sion, h. The set of all linear operators from # to 7 is
also a linear space, and it will be denoted by &. Each
operator GE# canbe uniquely represented by an integral
operator with a kernel that is sesquilinear in the functions
of a basis spanning # [see Eq. (3)]. Such an integral ker-
nel will be denoted by G (7;7’), where 7 represents the set
of variables on which the functions in #° depend. We will
normally be interested in the case where T=rE€R?, the
coordinates of a single particle in three dimensions. It is
also possible to define a space &, with the integral kernels
as elements, but the distinction between & and & L+ will
not be of great significance. Since 2 is finite dimension-
al, £ will be also, and a finite set of linearly independent
operators that spans & can be found. A set of operators
will be considered linearly dependent if there is a linear
combination, with not all coefficients zero, of the corre-
sponding integral kernels which vanishes for all 7 and 7'

An operation which will be called “collapse” defines a
linear map from & (or &) to a space ¥, whose elements
are functions of 7.° It will be denoted by 3 and is defined
by

86 =8G (r;7)=G(m1), (1
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where G is the integral kernel associated with the operator
G. The function 3G is thus just the “diagonal part” of the
integral kernel in the continuous 7 representation. The
space 7, is defined as the function space spanned by the
collapses of a set of operators (integral kernels) that spans
& (&,

It is frequently convenient to introduce a specific basis
set {¢x(7),k=1,2,...,s} for %, and unless otherwise
stated this set will be assumed to be orthonormal with
respect to the usual scalar product:

[ ¢} (Ddi(r)dr=5; . @)
The integral kernels can then be expanded as
G(r;)= 3 Gpo;(r)pi(r), 3)
ik

and for an orthonormal basis (only) the expansion coeffi-
cients are the same as the matrix elements,

Gi= [ ¢}(7)

The matrices G are the elements of a linear space & that
is isomorphic to # and & ., but the relationship of an ele-
ment of & to the corresponding element of é or &, is
basis-set dependent. Previous work has concentrated on
the matrix space.®~!7 It is convenient to introduce the
trace scalar product

(F,G)=tr(F'G), F,Ge#& (5)

[ G(r7)y(r)dr |dr . @)

so that & is a metric space. (Similar definitions apply in
# and &,.) A basis for & can be introduced. It will nor-
mally be assumed to be orthonormal with respect to the
trace scalar product, and consists of a set of matrices.
Such a basis will usually be denoted here by { YX}.

The introduction of the basis functions {¢,(7)} for #
implies the use of a set of functions which span 5. This
set consists of all basis-set products {¢;(T)bk(7),
1<j,k <s} [cf. Egs. (1) and (3)]. It must be noted, how-
ever, that in general these products will be linearly depen-
dent. It is always possible to choose an orthonormal basis
{f«(r)} for F, and to express each of the products
¢;(r)pk(7) as a linear combination of the {f,()}. A
function g () in the space 5, can be represented by a vec-
tor of coefficients g E .#, a linear space of vectors.

If no restrictions other than linearity are placed on the
operators, then & and & are spaces of dimension k2 with
complex coefficients or of dimension 242 with real coeffi-
cients. Note that individual matrices, including basis ma-
trices, in & can have complex elements even when & is a
vector space with real coefficients. The functions in &,
will in general be complex valued and the vectors in &
will in general have complex components, so complex
coefficients are allowed. If the operators are restricted to
be Hermitian, then # and & are spaces of dimension h?

with real coefficients and the function in %, and vectors
]

Yim (0,8)Y}m (8,8)=(—1)"2Y, 1, (6,8)Y; (6,6

in & are real, so real coefficients should be used there as
well. The functions {¢;} and the coefficients in # can
be complex, but if only Hermitian operators are allowed
then only the real functions ¢j¢;+¢k¢} will occur in
their collapses. In what follows we will normally assume
that matrices in & are Hermitian and that functions in &
are real.

III. SOME SPECIFIC BASIS SETS

In order to investigate the nature and role of linear
dependencies among basis-function products, we begin by
examining a few common sets of functions that arise in
connection with simple quantum-mechanical problems.
We will then consider some basis sets in which the linear-
dependency conditions among products are particularly
simple. This section concludes with an examination of a
more realistic basis set having products that are linearly
independent in principle, but not in practice.

Harmonic oscillator functions. One of the simplest sets
of functions to consider consists of the eigenfunctions of
the simple harmonic oscillator Hamiltonian. These func-
tions are of the form

Ynlx)=CoH,(x)e ~*'72 (6)

where C, is a normalization constant and H,(x) is a Her-
mite polynomial. Note that the Hermite polynomials
Hy,H,, ...,H, and the monomials 1,x,...,x" are
linearly equivalent sets. Suppose that the orbital basis set
consists of {¢,,n =0,1,...,N}. The products are of the
form

(0¥ (x)=C;C Hj(x)Hy (x)e ~*" . (7)

The product H;(x)H(x) is a polynomial of degree j + k
in x, but it can also be expressed as a polynomial of de-
gree j + k in £=V"2x and thus as a linear combination of
Hermite polynomials in §, with a corresponding result for
the oscillator functions, so

2N
Y= S, Wi mthm(V2x) . B)
m=0

The maximum value of j + k is 2N, and the upper limit
of the sum has been fixed at this constant value to make
the transformation look more symmetric. All coefficients
Witm with m >j+k will be zero. These functions are
all real, so there are (N +1)N +2)/2 products
YiYx =Yr¥;. According to Eq. (8), however, these prod-
ucts can all be expressed as linear combinations of only
2N +1 independent functions, so there must be linear
dependencies whenever N > 2.

Spherical harmonics. Products of spherical harmonics
have been extensively studied in connection with angular
momentum coupling.!® The expansion relations involve
the Clebsch-Gordan or Wigner coefficients

2L A
=3 3 (=0"mly—my | L11,Au)Y3,(0,6) . 9
A=0 A

p=-
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Here L has been introduced as the maximum value of /
for functions included in the original set and the limits on
the sum have again been extended so as to be independent
of the particular product being expanded. The coeffi-
cients will of course be zero unless |/, —/, | <A<l +1,
and p=m, —m,. In this case the number of products is
h?, where

L
h=3 QI+D)=(L+1), (10)
1=0

while the number of functions involved in the expansion
is

2L
> 2A+1)=4L(L +1), (11)
A=0

which is less than h? for L >1. Again there must be
linear dependencies.

Plane waves. The functions e** are not quadratically
integrable, so they do not fit the general criteria for the
basis sets considered here, but it will be instructive to con-
sider them in the case when k is constrained to be an in-
teger, as for periodic boundary conditions with an
appropriately-scaled x. For the set {¢;,—v<k <v} the
number of distinct products ¢;¢ is (v+1)(2v+1), and

¢j(x)¢l*c(x)___,ei(j—k)x=eimx’ (12)

kx

where m =j —k has the range —2v <m <2v, so there are
only 4v+ 1 independent functions in the product space .% .
The “linear dependency” conditions in this case are par-
ticularly simple: all products ¢ j¢,: with the same value of
Jj — k are equal.

The real trigonometric (or particle-in-a-box) functions
are closely related to the plane waves, but the analysis is
complicated by the boundary conditions. This set is treat-
ed in the examples presented in the Appendix.

Gaussian wave packets. A set of functions which also
has simple linear-dependency conditions but is potentially
more useful for atomic and molecular problems consists
of Gaussian wave packets (coherent states).'>?° It is con-
venient to use the functions defined on the von Neumann
lattice?® which, with a scaled coordinate, can be written

Xu(x)=m"1"*exp[ — 3 (x —kq)*+ilgx] , (13)

where ¢ =(27)'/%. Products of these functions will also

be Gaussian wave packets

XuXir=m"""exp[ — 3 (k —k")’q’]

xexp[ —(x —+K)?+iLgx] , (14)

with K =k +k’ and L =] —1'. These are no longer of
von Neumann form, but it is apparent that all the prod-
ucts with the same values of K and L will be proportional
to one another. (In the limit as an infinite number of
functions are included, there will be additional linear
dependencies, but we will not go into this here.)

Special equidensity orbitals. When the goal is to analyze
the properties of density matrices or wave functions corre-
sponding to some particular fixed and given density then
there is a set of orbitals based on that density that have
very useful properties. These are the special equidensity

orbitals, or SEDQs. 2122

To define the SEDOs for a given density p(r) one must
find a set of functions {f;(r), i =1,2,3} such that the
Jacobian determinant is?

a(fler)f3) 3
3x,7.2) =87 p(r) . (15)

This condition does not uniquely specify a set of f’s, but
at least one solution is known.?? The orbitals are then de-
fined as

d(r)=[p(r)]'?exp[ik-f(r)], kE Z3. (16)

(Half-integer values for the components of k are also pos-
sible?> but offer no particular advantage in this context.)
This set of functions is orthonormal and, in the limit as
all integer indices are included, it is complete if p>0 al-
most everywhere. It is apparent that the square of the
magnitude of any SEDO is the density, and more general-
ly

¢(r)y (r)=p(r) exp[im-f(r)] 17

with m=j—k. All products with the same value of j—k
are thus identical, as in the case of plane waves. Some of
the properties of these functions have been explored else-
where,2' =28 and will not be reviewed here. Two facts are
of particular relevance, however. The first is that al-
though the products pexp[im-f] are neither normalized
nor orthogonal, they do form a complete set (when all
m€E Z * are included). This can be shown by an argument
similar to that used to show the completeness of the
SEDOs themselves.”? The second point is that for any
given m there are an infinite number of ways in which m
can be obtained as j—k, with j,k€ Z 3.

Well-tempered Gaussians. An examination of basis
functions of the types actually used in quantum-chemical
calculations is difficult to do in a systematic way. A
more nearly realistic example than those treated above can
be provided by well-tempered Gaussian orbitals.?’ Only
the simplest case of s orbitals on a single center will be
considered, and further simplifications (scaling) give a set
of orbitals

¢k(r)=Ckexp(—Bkr2), k=1,...,n. (18)

The constants Cj are chosen so that the functions are nor-
malized, but they are not orthogonal. While the set will
be linearly independent, in principle, for almost any B=~1
there will be near linear dependencies if n is large. Simi-
larly, the products of these functions will not be exactly
linearly dependent but will be nearly so for large n. (Ex-
act linear dependency would require a S such that
B +B*=p'+B™ for integer j, k, I, and m in the range
1,...,n being considered.) As a measure of near linear
dependency we take the smallest eigenvalue of the overlap
matrix. Some results are given in Table I for the lowest
eigenvalues of the overlap matrices for the functions and
the products, for various values of n, with f=22/7. It is
apparent that near linear dependency will become a prob-
lem for the products before it does for the functions them-
selves. We can reasonably anticipate that this would con-
tinue to be the case for more general, multicenter sets of
functions.



32 JOHN E. HARRIMAN 34

TABLE I. Smallest eigenvalues of overlap matrices for well-
tempered Gaussians and for their products.

n® S A¢

2 0.208 6.01x 1073

3 0.0786 6.11x10°¢

4 0.0430 1.10x10~°

5 0.0293 2.93x 107"
6 0.0227 10-16d

?n is the number of Gaussian functions in the set. The func-
tional form is defined in the text.

®S is the smallest eigenvalue of the overlap matrix for the nor-
malized functions.

A is the smallest eigenvalue for the overlap matrix for the nor-
malized products of functions.

4These calculations were done using Turbo Pascal on an IBM
PC/XT and round-off errors are becoming significant at this
point.

IV. FORMAL THEORY

Some of the properties exhibited by the particular basis
sets considered in the preceding section are in fact general.
These properties and some others will be presented in this
section as theorems with proofs.

One of the most fundamental questions is that of what
happens to the spaces defined in Sec. II when the basis set
for 2 is subjected to a nonsingular linear transformation.
The answer is contained in the following.

Theorem 1. The spaces &, (or &) and 7 » are deter-
mined by the space 57; they do not depend on a particular
choice of basis for 7.

Proof. The basis independence of & and & , follows im-
mediately from the definitions: They are spaces of linear
operators mapping & to . The basis independence of
F , is also a consequence of its definition as the span of
the collapses of a set of operators spanning &. It
basis independent, then .#, must be also. Q.E.D.

The decomposition of the matrix space & into irreduci-
ble subspaces with respect to the group of unitary
transformations of the basis for 2 has been extensively
studied elsewhere,®~!7 and it has been shown that the
known decomposition is complete.!! In the case of the
one-particle spaces being considered here, it is

E=Zo N, (19)

where £ (also denoted by & ,, etc.) is the space of ma-
trices proportional to the unit matrix and .#” (also denoted
by &,,;, etc.) is the space of trace-zero matrices. This
decomposition is in terms of matrix properties, without
involvement of the particular basis with respect to which
the matrices are defined. In the present context, a fur-
ther decomposition of the operator-kernel space &, is pos-
sible. Let %", be defined as the null space of 3in f,.,

X .={G(r;7)EE,|G(1;7)=0]} (20)

(¥ stands for kernel in the null-space sense) and let .£ .
be the orthogonal complement of ¥, in &, (. refers to
“local” for reasons that will become obvious). With these

definitions we can state the following theorem.

Theorem 2. The orthogonal subspace decomposition
&,=X% .02, is independent of the choice of basis for
#°. (The corresponding decomposition for & cannot be
defined without reference to a basis.)

Proof. The integral kernels G(r;7') are simply given
functions of 7 and 7 which need not be expressed in terms
of any basis set. Q.E.D.

Theorem 3. The collapse map 3 is one to one from .# r
onto ¥ ,.

Proof. Since elements of &, in ¥ collapse to zero and
F ; is defined as the span of collapses of elements of &,
the “onto” property is trivial. The definition of S does
not allow a one-many map. If G, and G, in &, are such
that SG]———SGz, then 5(G1—G2)—-—0 and Gl—Gze.Z/‘ SO
G, and G, cannot both be in the linear subspace .7 ..
This excludes the possibility that 3 7 +—F , could be
many-one. Q.E.D.

The proofs of the theorems above do not depend on the
finiteness of the dimension of %%°. We now proceed to
some results specific to the infinite-dimensional case.

Theorem 4. If 27 is a complete, infinite-dimensional
Hilbert space with a basis consisting of a complete set of
functions {¢,}, then the set of products {¢;dx} is also
complete, so .F , is also an infinite-dimensional space.

Proof:*® Suppose that the set of products is not complete.
Then there is a nonzero function ¥ such that

f V*¢;dx dr=0 for all j,k . @1
This can be rewritten as
f (Ybi)*d;dr=0 for all j 22)

and since the {¢;} are complete (by assumption) it follows
that ¥¢, =0 for any k. This means, however, that

f Yo, dr=0 for all k (23)

and thus, by the completeness of the {¢.}, ¥*=0 so
=0, which contradicts the original supposition. This re-
quires that the set of products be complete, and since any
complete set must be infinite, it also establishes the
infinite dimensionality of .%,. Q.E.D.

Since each function in a complete set can be expanded
in terms of the functions in any other complete set, all
complete sets are equivalent: they span the same space.
This fact, together with the theorems above, allows us to
establish the following theorem.

Theorem 5. If 2 is complete, then the dimensions of
&, ¥, and £, are all infinite, and for each function
g(7)EF , there is an infinite-dimensional subspace of &,
such that every element of that subspace collapses to g (7).

Proof. Since #, is infinite dimensional (Theorem 4) and
8.7 +—F , is one-to-one onto (Theorem 3), the dimension
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of .#, must also be infinite. In the case of a SEDO basis,
it was shown above that there are an infinite number of
products all having the same collapse, and thus there are
an infinite number of elements of the form
[8;+m(TY] (7))~ m(T)Px(7')].  These are nonzero
when j#k, and linearly independent (as elements of & ).
It follows that dim % is infinite with this basis, so it will
be with any basis (Theorem 2), Fmally, note that for any
gEF, there is a unique - lge.#., and for any
Kex, 8(8“1g +K)=g. Since %, is infinite dimen-
sional, the set (6-'g+K |KEX,] is also infinite di-
mensional. Q.E.D.

V. LIP BASES AND THEIR CONSEQUENCES

It is apparent from the theorems above that for any
complete basis there must be linear dependencies among
basis set products, and the well-tempered Gaussian exam-
ple presented in Sec. III suggests that near linear depen-
dencies may become a problem even with limited basis
sets where there are no exact linear dependencies.
Nevertheless, there are many instances of practical calcu-
lations in which the basis-set products remain effectively
independent. The acronym LIP was introduced in Sec. I
to characterize such a basis. The model problem defined
by a LIP basis has some very interesting properties, which
will be explored in this section.

The collapse map 6 is most fundamentally defined from
the integral-kernel space &, to the function space % ,, al-
though the isomorphism of & and &, permits us to think
of it as 8:8 .7 - as well. The relationships between these
spaces and the matrix spaces & and ¥ depend on a choice
of basis, but for fixed bases we can define a matrix repre-
sentation for 6.

We take a set of matrices { YX} which provides a basis
for &. Then any GE & can be expressed as

G=3 GxYX. (24)
K

Suppose that this matrix corresponds to an integral kernel
G(r;7)E#, and that 3G (r;r')=g(1)EF,. We intro-
duce a basis {f,} for ¥, so that

g(r)= ngfx(f) ) (25)

and the expansion coefficients { Gk} and {f,}] are the ele-
ments of vectors in & and %, respectively, and the map
from & to ¥ can be characterized by a matrix M such
that

g=MG . (26)

The matrix elements M,x will be determined by the
choice of the basis sets {YX} and {f,}. We assume these
bases to be orthonormal with respect to the appropriate
scalar products [Egs. (5) and (2), respectively]. Note that
although the space &, determines the space ¥, the
choice of a basis for & does not define a basis for F

Introduce YX(7;7') as the integral kernel in &, corre-
sponding to the basis matrix YXE€ &. Then

g(n)=3 GxdYK(r;r)= 3 Gy YK(r;7) 27
K K

and

&= 2 {ff:(T)/SYK(T;T')dT Gk , (28)
K

so that M is the matrix corresponding to % in the usual
quantum-mechanical sense. For convenience in what fol-
lows, we will assume that the matrices in & are Hermitian
and that the functions in & are real.

In general & and ¥ have different dimensions and M
is rectangular. If the orbital basis is LIP, however, M is
square and has an inverse. The relationship between the
two spaces can be expressed in two ways that are not obvi-
ously equivalent:

1. Given g(7)€.%,, what is GE & such that MG =g,
corresponding to g (7)?

2. Given GE &, what is vE.# such that G is the ma-
trix of the corresponding v (7), considered as a (local) po-

- tential?

Question 1 is directly related to the previous discussion.
From Eq. (26) we have

GKZE(M—I)K,‘gk . (29)

In order to address question 2, we need to be a little
more explicit about the basis sets. Let the orbital basis be
{dr,k=1,...,5}. A possible basis for & consists of the
matrix equivalent of the s? ket-bra combinations
|j){k |.3" Alternatively (with particular utility for the
consideration of Hermitian and real symmetric matrices),
we can use symmetrized combinations.® These alterna-
tives can be combined in such a way that the form of the
equations will be the same with either choice (although
the values of coefficients will be different). The defini-
tions are given in Table II.

The basis {Z*] defined in this way is orthonormal
(trace scalar product) and is one possible choice for { YX].
Other choices of {YX} offer advantages for particular
purposes, however, so we do not assume that YX=Z/* in
all cases. The two sets are certainly related by a unitary
transformation

Yi=F Ug pZ . (30)
jk
The products {¢]d,] are linearly independent (by as-
sumption) and form a basis for .7 . (by definition), but will
not in general be normalized or orthogonal. Clearly there
is a nonsingular matrix W such that

¢j¢l’:= zwjk,xfx » (31)

=3 (W), xd;di - (32)
J.k

TABLE II. Simple bases for & .

z*
Case Unsymmetrized Symmetrized
=k [ k) k| | k) (k | —A*
i<k |7k | (A/V2[ i)k | + | k)| JoB*
i>k [ k)| G/VD )k | — | k)G | J«>CHk
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Note next that the matrix G corresponding to a local po-
tential v (7) has matrix elements

Gu= [ 6] (T (Nd(nd7
= [ [¢]dxIv(nd7
=3 Wi D 0z ff;fxdT
K A

=3 Wi » (33)
K

where v = > v, fi. It follows that if a matrix G is given,
the v (7) that will reproduce it has expansion coefficients

ve= 3 (W™ Gk - (34)
ik
Some illustrative examples are included in the Appendix.
The relationship between M and W will be explored in a
future paper.

The invertibility of the collapse map when a LIP basis
is used might seem innocuous, but it has far-reaching
consequences. It is common, particularly in density-
functional theory, to distinguish between local and nonlo-
cal operators. A local operator is typically an external po-
tential, or the Coulomb operator in self-consistent field
(SCF) theory. The expectation value of such an operator
can be evaluated if the density for the system is known.
For a nonlocal (one-electron) operator such as the kinetic
energy or the SCF exchange operator, on the other hand,
the one-electron density matrix is required for the evalua-
tion of expectation values. In the model problem defined
by a LIP basis, the density determines the density matrix
and the matrix of any operator can be reproduced as the
matrix of a local potential. There can thus be no mean-
ingful distinction between local and nonlocal operators in
such a model problem. Local functions which reproduce
the matrices of the kinetic energy and exchange operators
for a simple LIP model are presented in the Appendix.

V1. DENSITIES AND FITS TO EXPERIMENTAL
DATA

A number of experimental techniques, preeminently x-
ray diffraction, can in principle be used to determine elec-
tron densities. In practice the finite amount of data col-
lected and the finite signal-to-noise ratio limit the pre-
cision that is possible in such a determination. We will
not be concerned here with these limitations, but will con-
tinue to assume a finite-basis expansion chosen so that the
number of free parameters is less than the number of ex-
perimental data.

It will be convenient to define some subspaces of the
function space .7 , defined in Sec. II. The space of accept-
able densities is*?

F o ={f(NEF,|f(r)>0 forall 7}, (35)

with a restriction fixing a particular normalization often
added as well. In the basis-free or complete basis case,
every p(7)€.% , such that fpdr:c < o0 1S n represent-
able.>21:2233 For finite-basis models, however, this is not

always the case.” For some reasonable basis sets there are
some normalized functions in .%# . that cannot be obtained
as the collapse of any n-representable 1-matrix and are
thus unacceptable. We therefore define

FM={f(r)€EF , | f=cdD for some DEZ{"}, (36)

where c is a positive normalization constant included for
flexibility in normalization and Z\" is the set of n-
representable 1-matrices®*

P = De%]D":D,nD:l,Ong%l NEY)

It is possible to further restrict the (renormalized) density
matrix to be idempotent, (nD)?=nD, which will assure
that it corresponds to an SCF-type single-determinant
wave function. We therefore define a final set

Fh={fEF™| f=cdD,DE 2", D*=D} . (38)
It is apparent from these definitions that
FmcFWCcF . CF,. (39)

The appropriateness of strict inclusion, implying a proper
subset, is readily verified in each case as well.

In fitting x-ray or other data to determine an “experi-
mental” density, it is clearly desirable to allow as much
flexibility as possible in order to avoid biasing the result.
This goal must be balanced against the need to obtain a
unique result with a limited set of experimental data, and
the choice of an appropriate basis set may prove to be
quite helpful. Once the basis set is chosen and the space
% thus determined, the most flexible method would be to
restrict the trial density p only to be positive and normal-
ized, i.e., p€.F . Unfortunately, however, a usable char-
acterization of this set is not known. (It is readily shown
to be convex.?)

One obvious way of assuring that the density be posi-
tive is to write it as p= | ¢ | %, where Yy E#°. If the basis
set { ¢y} defining 7 is sufficiently flexible, most p’s could
be well approximated in this way. With a LIP basis, how-
ever, such a p is uniquely associable with a one-electron
density matrix ¥ having a single nonzero eigenvalue. In
the model defined by the basis, such a density matrix is
never n representable for n > 1. A more general density
can be obtained as

p=0A'A, (40)

where A is any matrix in &. The product ATA is neces-
sarily positive, and the collapse of a positive matrix is a
positive function. This matrix will not in general be n
representable, however, and p’s of this form do not span
& , because there are (at least for some bases) densities
which can be obtained only from nonpositive matrices.’
If only the density is of interest, then n representability
within the given basis is not required and either of these
approaches provides a usable, though not completely gen-
eral, parametrization of positive densities which will be n
representable in some (possibly different) basis. If one
seeks a density matrix or wave function as well as a densi-
ty within the given basis, however, then n representability
in that basis is necessary.
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A consistent method can be developed by considering
densities in the subset F". To require pE.Z ) is un-
necessarily restrictive but leads to conditions which are
easier to work with than the more general restriction
pEF ™. The recent work of Massa et al.® is based upon
earlier work® and ultimately on the methods of Clinton
and co-workers published in 1969.3% The fact that any
density is n representable was not known at that time, and
the use of more general n-representable 1-matrices had
not been extensively developed, so idempotent density ma-
trices were introduced as a means of assuring n repre-
sentability. In that series of papers the many-to-one rela-
tionship between density matrices and densities does not
seem to have been discussed. The sample calculations
were done with basis sets that are small enough that they
are probably LIP, so problems did not arise.

In their most recently reported investigation, Massa
et al.’> obtain an approximate wave function for a frag-
ment consisting of a single Be atom in Be metal. The
fragment is considered to be a four-electron closed-shell
system and the wave function is approximated as a single
determinant with a frozen core consisting of a doubly oc-
cupied Huzinaga Be 1s orbital.’” This can be taken to be
the first basis function ¢,. The valence orbital is a linear
combination of two other basis functions. The Huzinaga
2s orbital can be taken as ¢,, and ¢; is a symmetry-
adapted combination of orbitals generated by symmetry
from a single floating 1s-type Gaussian and orthogonal-
ized to the Be orbitals. The variational parameters affect-
ing the wave function thus consist of the location and ex-
ponent of the unique floating Gaussian and the mixing
coefficient for ¢, and ¢; in the valence orbital. With this
model an excellent fit to the x-ray data is obtained, as in-
dicated by a very low R factor.

The overlap matrix for products in this basis has not
been evaluated, but because of the small basis size and the
rather different characters of the orbitals involved, it
seems probable that the products are linearly independent.
There is thus no inconsistency between the apparently
unique result obtained and the general theory developed
here. Attention must be called, however, to a difference
between the results presented in this paper and one of the
claims of Massa et al. They make a strong point of the
fact that “The only property expectation values that can
be obtained from the density alone are those represented
by operators which are purely multiplicative such as vari-
ous powers of the distance r... . But ... the important
point demonstrated numerically is that even such nonmul-
tiplicative properties as the kinetic energy are available
from our method since we obtain a density matrix in an
orbital representation.” It has been shown here that (1) in
a LIP basis the density matrix and thus all one-electron
properties are uniquely determined by the density, even
without the unnecessarily stringent restriction to idempo-
tency, and (2) if a non-LIP basis (including any basis ap-
proaching completeness) is used, then the density matrix
cannot be determined from data such as x-ray scattering
factors, which are sensitive only to the density.

Another problem which would arise in most cases, al-
though it has been avoided in the particular case of Be, is
the indeterminateness of individual orbitals in the single

determinant case. It is well known that only the deter-
minant itself, or the density matrix, is uniquely defined.
Because of the degeneracy of the eigenvalues of the densi-
ty matrix, the orbitals themselves are defined only to the
extent of a division of # into occupied and unoccupied
subspaces. In the usual SCF variational procedure the
canonical orbitals have approximate physical interpreta-
tions based on Koopman’s theorem, etc. There is nothing
in the fitting of x-ray data to uniquely define a particular
choice of the orbitals. In the calculation reported for Be
(Ref. 5) this problem is avoided by the use of the closed-
shell frozen-core approximation which results in only one
orbital being considered explicitly. The space of occupied
orbitals is two dimensional and is required to contain the
1s core orbital, so the only occupied orbital orthogonal to
the core is unique to within a phase.

VII. CONCLUSIONS

This paper has dealt with the relationship between a
density matrix and a density or between an operator and a
local potential, in the model problem defined by an orbital
basis set. A critical role is played by linear-dependency
relationships among basis-function products, and we are
led to consider special LIP bases in which all such prod-
ucts are linearly independent. A complete set can never
be LIP, and the large but finite basis sets used in high-
quality electronic structure calculations are likely to in-
volve effective linear dependencies among products (in a
numerical sense) even when exact linear dependencies are
absent. The rather small basis sets of lesser-quality calcu-
lations may well be LIP, however.

A LIP basis defines a model problem with some very
interesting features. Only the finite matrices correspond-
ing to operators, not the operators themselves, are signifi-
cant for any finite-basis model. For a LIP-basis model
any matrix, and thus the effect of any operator, can be ex-
actly reproduced as the matrix of some function which
can be regarded as a local potential. This is illustrated in
the Appendix for a simple model. In such a model prob-
lem, then, no meaningful distinction can be made between
local and nonlocal operators.

In the model defined by a LIP basis, a local density
functional theory can be exact at the SCF level. In partic-
ular, the kinetic and exchange energies are given exactly
by

Exz= [ t(np(ndr,

(41)
E,= f v (r)p(r)dr
where ¢ (r) is independent of p and v,(r) is given by
v(n= [ X(5r)p(r)dr . (42)

The functions ¢(r) and X(r;r') (or, more precisely, their
expansion coefficients in terms of the % basis {f,}) de-
pend on the orbital basis set defining the model but do not
depend on the particular system under consideration or its
state. The fact that Exg is linear and E, bilinear in the
density is in sharp contrast to usual density-functional
theory expressions.

The apparent simplifications of a LIP-basis model are a
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consequence of the fact that in such a model the spaces &
and % are of the same size. A basis-set density-
functional approach at the SCF level thus seems to offer
no advantage over conventional Roothaan SCF. In addi-
tion, the limitation to a LIP basis is quite restrictive.
Once a basis has been chosen, nonsingular linear transfor-
mations do not affect the essential structure of the spaces
considered here. A novel challenge will be to find basis
sets with energy optimizing or other desirable features
which nevertheless remain LIP. In extending this work it
will clearly be appropriate to examine the basis sets used
in practical electronic structure calculations. In cases
where they are LIP, the functions ¢ and X can be evaluat-
ed and may suggest physically interesting features. It will
also be of interest to attempt to extend this approach to
include correlation effects.

The distinctions developed here clarify the relationship
between density matrices or wave functions and experi-
ments sensitive only to the density. If the density can be
well represented in the function space .# defined by a LIP
basis then a unique, n-representable or idempotent one-
electron density matrix can be determined as that which
best approximates the density. The fact that expectation
values of nonlocal operators can then be evaluated is just a
consequence of the general properties discussed above.
For a non-LIP basis, the best density matrix is not
uniquely determined by the density.

Of course, even if an essentially exact density can be ex-
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TABLE III. Basis sets for . The functions are defined for
—7m/2<x <m/2and C=(2/m)"2

bk
k Set 1 Set 2
Even functions
1 C cosx C cosx
2 C cos(3x) C cos(5x)
Odd functions
3 Csin(2x) Csin(2x)
4 C sin(4x) C sin(6x)

pressed in terms of a given basis set, which might happen
to be LIP, the density matrices and wave function need
not be restricted to being expressed in terms of that basis.
Those uniquely determined within the LIP model are but
representatives from among infinite sets of possible densi-
ty matrices and wave functions. The extent to which they
represent a good choice depends on the judiciousness with
which the basis set has been chosen. If the primary pur-
pose is to fit experimental data to determine a density,
then the use of a well-chosen basis set is likely to help, but
derivability of the density from an idempotent, or even
just n-representable, density matrix in the same basis may
be too restrictive. The question of the best parametriza-
tion of the set of acceptable densities within a given finite
basis remains as an important but unsolved problem.

TABLE IV. Bases for ;. f=C.3,, aumcircnx, where circ=cos for even functions and circ=sin

for odd functions. Any a,, not listed are zero.

Even functions, set 1

K C, a,0 a0 Axs Ao Qs

0 [3(2m)}2]-! 4 1 -1 1 -1

1 (3m)~1/2 0 2 1 — 0

2 172 0 0 1 0

3 (6m)~1/2 0 1 -1 1 3

Odd functions, set 1

K Cx ag a. Ays a,r

4 (3m)-172 2 1 -1 0

5 a1 0 1 1 0

6 (6m)~'/2 1 -1 1 3

Even functions, set 2
K Cy ay a0 [ [ Qs a0 Qg2
0 [3(2m)1/2]! 4 1 -1 0 0 1 -1
1 (3m)~12 0 1 2 0 0 1 0
2 a2 0 1 0 0 0 -1 0
3 (6m)~ 12 0 1 -1 0 0 1 3
4 172 0 0 0 1 1 0 0
5 [3(13m)!/2]! 2 —4 4 9 -9 —4 4
Odd functions, set 2

K Cx ay a3 Ays A7 Ayl

6 a2 1 1 0 0 0

7 (2mr)~172 1 -1 -1 1 0

8 172 0 0 1 0

9 (10m)~ 172 1 -1 1 - 4
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APPENDIX: SOME EXAMPLES

In order to illustrate some of the points made in this
paper we consider here a series of simple examples for a
system of particles in a one-dimensional box of length m,
symmetrically placed about the origin. Two different
basis sets for # are introduced, with four functions in
each, as shown in Table III. Note that since the functions
are ordered so as to place the odd functions together and
the even functions together, the functions corresponding
to the lowest kinetic energy are ¢, and ¢, in each case.
Basis set 1 is the most natural choice for this problem,
and it has linear dependencies among its products. Basis
set 2 has been chosen so that all products are linearly in-
dependent.

In each case a space %, (now writing x in place of 7) is
defined and an orthonormal basis for it can be defined.
These functions are given in Table IV. They have also
been chosen as even or odd functions of x and functions
of like parity are grouped together. Note that the indivi-
dual trigonometric functions appearing in the expansions

of the {f.] do not vanish at /2, but that the linear
combinations appearing all do.

Basis matrices YX for the two & spaces are given in
Table V. They also fall naturally into two subsets for
each space. Those in the first subset are block diagonal
and correspond to operators that preserve the parity of x;
the second subset contains block-off-diagonal matrices.
In each case Y? is in fact proportional to the unit matrix,
and thus provides a basis for the subspace £°. In the case
of orbital basis set 1, &=F%®.Z. Each of these sub-
spaces has both block-diagonal and block-off-diagonal
parts. The basis matrices YX with X =0,1,2,3,6,7,8 span
.Z while those with K =4,5,9 span .%". For orbital basis
set 2 there is no ¥ subspace—.7 is all of &. The col-
lapse maps that exhibit this structure are given in Table
VL

Matrices corresponding to any one-electron operator
can be constructed for either basis set. We will consider
only parity-conserving operators and can thus limit atten-
tion to the block-diagonal subspace of &. Expansions of
the matrices corresponding to the local operator x? and
the nonlocal kinetic energy operator —(d2/dx?) are
given in Table VII in terms of their expansion coefficients
in the {YX} basis. It is apparent that the nonlocal opera-
tor includes a component in %7, as indicated by nonzero
K =4 and 5 coefficients for basis 1. For the local opera-
tor these coefficients vanish. (The fact that the coeffi-

TABLE V. Basis for &. For each K, YX is Cx times the sum of the Z= A or B each multiplied by

the coefficient given under it.

Set 1
K CK Al AZ AB A4 BIZ B34
0 21 1 1 1 1 0 0
1 42-'7 2 -1 -1 0 3x2'72 3x2'7
2 6-172 0 1 -1 0 2172 217
3 (2x3vh)~! 1 1 1 -3 0 0
4 14-172 2x2'7? -2 —2'7 0 -1 -1
5 6—[/2 0 21/2 21/2 0 —1 1
K CK BU B14 B23 B24
6 2-12 1 0 -1 0
7 6-172 1 2 1 0
8 1 0 0 0 1
9 -2 1 -1 1 0

Set 2
K CK A] Az A} A4 Blz BM
0 2! 1 1 1 1 0 0
1 6172 1 1 -2 0 0 0
2 2= 1 -1 0 0 0 0
3 (2% 32%)~! 1 1 1 -3 0 0
4 -2 0 0 0 0 1 -1
5 2-12 0 0 0 0 1 1
K CK B13 BM BZS BZ4
6 1 1 0 0 0
7 1 0 0 1 0
8 1 0 1 0 0
9 1 0 0 0 1
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TABLE VI. Collapses of basis matrices. The sets { YX} and {f,}] are different for the two basis sets,
but results are presented together for convenience. The collapse of the YX of the appropriate set is
given in terms of the f,’s for that set.

Basis set 1 Basis set 2
3Y? 3/2m)\2f, 3(2/m)V2f,
3Y! (172m)V2f, (2/m)V2f,
3y? (3/2m)'%f, (3/m) 2721,
3y? (2m)= 121,y (2/m)V2f,
)'e 0 T172f,
By 0 —3-'2m)~ 2 fo—(6m) ™12,
+203m) =12 f,+(13/m)' 2 /3£ 5
)& (3/m)\%f, (2/m)\ 2 f
8Y7 (3/77)]/2f5 _(27")_‘/2f6+7r_]/2f7+(27T)_—1/2f8
3Y?® (2/73m)' 2 fs+2/(3m)' 2 f (2/m)V2fy
3y° 0 Qm) 2 o+ m 2 2f 1 +(5/m)V2 /21,

TABLE VII. Expansion coefficients for various matrices in terms of the {YX} bases.

K KE x? Coulomb Exchange
Basis 1 0 7.500 1.289 —4.543 2.267
1 —0.849 —0.885 1.770 —0.816
2 1.021 0.085 —-0.170 0.152
3 —4.907 —0.169 0.339 —0.169
4 —-2.079 0.000 0.000 —0.028
5 1.443 0.000 0.000 —0.048
Basis 2 0 10.500 1.315 —4.670 2.335
1 3.674 —0.110 0.220 —0.110
2 —8.485 —0.339 0.679 —0.339
3 —0.866 —-0.174 0.348 —0.174
4 0.000 —0.024 0.049 —0.026
5 0.000 0.163 —0.326 0.160

TABLE VIII. Matrix elements and expansion coefficients for some operators in basis 2.

i,j® KE x? Coulomb Exchange
1,1 0.500 0.332 —1.664 0.832
2,2 12.500 0.802 —2.624 1.312
33 2.000 0.697 —2.414 1.207
44 18.000 0.809 —2.637 1.318
1,2 0.000 0.069 —0.139 0.066
34 0.000 0.094 —0.187 0.093
Coefficients®
Co 13.7886 1.099 —3.902 1.951
C, 9.209 —0.276 0.533 —0.276
C, —21.269 —0.851 1.701 —0.276
C; —28.220 —0.437 0.873 —0.437
C, 0.000 —0.043 0.086 —0.048
Cs —15.731 0.573 —1.481 0.735

*The number opposite i,j for each operator is the i,j matrix element with respect to the {¢;} basis set 2.
®For each operator the potential function 3, C, f.(x) will have the same matrix elements as the opera-
tor.
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cients of Y* and Y® are zero for the kinetic energy in
basis 2 is coincidental. The kinetic energy matrix is diag-
onal in this basis and Y*Y> contribute only to off-
diagonal matrix elements.)

In order to further illustrate this distinction, an SCF
calculation has been done in each basis. It is assumed that
there are four particles of spin 3 in the system, and a re-
stricted model is assumed with each of the two lowest-
energy SCF orbitals doubly occupied. A model particle-
particle interaction potential is taken to be of repulsive
Hook’s-law form. (If the system were not confined to a
box, this interaction would be divergent, but for the con-
fined system it presents no problems.) The magnitude of
the interaction, in the units defined by the effective choice

#i=m =1 implied by the form of the kinetic energy and a
box length of m, is taken to be such that interactions are
significant but not dominant. The SCF energy differs
from the energy of the noninteracting system by about
20%. The (local) Coulomb and (nonlocal) exchange ma-
trices are also given in Table VII.

Table VIII gives matrix elements of some operators for
basis set 2, the LIP basis. Also tabulated there are expan-
sion coefficients, in terms of the {f,} basis, for functions
which will reproduce these matrices when used as local
potentials. Even the nonlocal kinetic energy and exchange
operators can have their matrices reproduced by local po-
tentials in a LIP basis.

IP. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

2M. Levy, Proc. Natl. Acad. Sci. USA 76, 6062 (1979).

3E. Lieb, Int. J. Quantum Chem. 24, 243 (1983).

4(a) Proceedings of the Sth International Congress on Quantum
Chemistry, Montreal, August, 1985 [Int. J. Quantum Chem.
(to be published)]; (b) Proceedings of the Coleman Symposium
on Density Matrices and Density Functionals, Kingston, Au-
gust, 1985 [Density Matrices and Density Functionals, edited
by R. M. Erdahl and V. H. Smith, Jr. (Reidel, Dordrecht, in
press)].

5L. Massa, M. Goldberg, C. Frishberg, R. F. Boehme, and S. J.
LaPlaca, Phys. Rev. Lett. 55, 622 (1985); see also work re-
ported by Frishberg [Ref. 4(a)] and Massa [Ref. 4(b)].

6J. E. Harriman, Phys. Rev. A 17, 1249 (1978) (referred to here-
after as GDM-I).

7). E. Harriman, Phys. Rev. A 17, 1257 (1978) (referred to here-
after as GDM-II).

8J. E. Harriman, Int. J. Quantum Chem. 15, 611 (1979) (referred
to hereafter as GDM-III).

9]. E. Harriman, Phys. Rev. A 27, 632 (1983) (referred to here-
after as GDM-IV).

103, E. Harriman, Phys. Rev. A 30, 19 (1984) (referred to hereaf-
ter as GDM-V).

11M. E. Casida and J. E. Harriman, Int. J. Quantum Chem. (to
be published) (referred to hereafter as GDM-VI).

12], Absar and A. J. Coleman, Int. J. Quantum Chem. Symp. 10,
319 (1978).

131, Absar, Int. J. Quantum Chem. 13, 777 (1978).

14A. J. Coleman and 1. Absar, Int. J. Quantum Chem. 18, 1279
(1980).

I5A. C. Tang and H. Guo, Int. J. Quantum Chem. 23, 217
(1983).

16H. Guo and A. C. Tang, Int. J. Quantum Chem. 23, 319
(1983).

17C. C. Sun, X.-Q. Li, and A. C. Tang, Int. J. Quantum Chem.
25, 653 (1984); 25, 1054 (1984).

18Gee, e.g., A. R. Edmonds, Angular Momentum in Quantum
Mechanics (Princeton University, Princeton, N.J., 1957),
Chap. 3.

19See, e.g., J. E. Harriman, Int. J. Quantum Chem. Symp. 17,
501 (1983), and references therein.

20M. Boon, J. Zack, and L. J. Zucker, J. Math. Phys. 24, 316
(1983).

213, E. Harriman, Phys. Rev. A 24, 680 (1981).

22G. Zumbach and K. Maschke, Phys. Rev. A 28, 544 (1983);
29, 1585(E) (1984).

23§, K. Ghosh and R. G. Parr, J. Chem. Phys. 82, 3307 (1985).

24J. F. Capitani, B. Chang, and J. E. Harriman, J. Chem. Phys.
81, 349 (1984).

25N. H. March, Phys. Rev. A 26, 1845 (1982).

26E. V. Ludena, J. Chem. Phys. 79, 6174 (1983).

27E. V. Ludenia and A. Sierraalta, Phys. Rev. A 32, 19 (1985).

28], E. Harriman, J. Chem. Phys. 83, 6283 (1985).

29See, e.g., M. W. Schmidt and K. Ruedenberg, J. Chem. Phys.
71, 3951 (1979), and references therein.

30The proof of this theorem is due to Mark E. Casida.

31U. Fano, Rev. Mod. Phys. 29, 74 (1957).

32Some restrictions other than positivity are necessary in general
[see, e.g., Ref. 3, also H. English and R. English Physica
112A, 253 (1983)], but if the orbital basis is reasonable these
will be unnecessary.

33T. L. Gilbert, Phys. Rev. B 12, 2111 (1975).

344, J. Coleman, Rev. Mod. Phys. 35, 668 (1963).

35See, e.g., (a) W. L. Clinton and L. Massa, Phys. Rev. Lett. 29,
1363 (1972); (b) W. L. Clinton, C. A. Frishberg, L. J. Massa,
and P. A. Oldfield, Int. J. Quantum Chem. Symp. 7, 505
(1973); (c) C. Frishberg and L. J. Massa, Phys. Rev. B 24,
7018 (1981); (d) W. L. Clinton, C. Frishberg, M. Goldberg, L.
J. Massa, and P. Oldfield, Int. J. Quantum Chem. Symp. 17,
517 (1983).

36(a) W. L. Clinton, J. Nakhleh, and F. Wunderlich, Phys. Rev.
177, 7 (1969); (b) W. L. Clinton, A. J. Galli, and L. J. Massa,
Phys. Rev. 177, 7 (1969); (c) W. L. Clinton, G. A. Henderson
and J. V. Presta, Phys. Rev. 177, 13 (1969); (d) W. L. Clinton
and G. B. Lamers, Phys. Rev. 177, 19 (1969); (e) W. L. Clin-
ton, A. J. Galli, G. A. Henderson, G. B. Lamers, L. J. Massa,
and J. Zarur, Phys. Rev. 177, 7 (1969).

37S. Huzinaga, J. Chem. Phys. 42, 1293 (1965).



