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%e describe the application of the collective vector method to the evaluation of the moments of
atomic transition arrays. %'e use these moments with the Lanczos algorithm to obtain a Stieltjes 5-

function representation of the array. As an example the procedure is applied to a test array contain-

ing over 5000 lines in the exact spectrum and is seen to give a good representation of the array with

only moderate computational requirements. In comparison the more familiar Gram-Charlier expan-
sion leads to uninterpretable negative excursions making it unusable except for completely un-

resolved transition arrays.

I. INTRODUCTION

Atomic transition arrays can exhibit large numbers of
lines. Those originating from the M shell or above can
contain sufficiently large numbers of lines so that detailed
microscopic accounting of the lines becomes infeasible.
For example, in pure LS coupling the array corresponding
to the "source" and "generated" configurations, respec-
tively, 3p 3d -3p 3d 4f, contains over 5500 lines and this
number increases severalfold in intermediate coupling.
(We will use the symbols S and G for the source and gen-
erated configurations. Section II gives a fuller discussion
as to how these configurations are defined. ) Frequently it
is unnecessary to account for all these lines since quite
often physical broadening mechanisms merge the lines
into a continuous strength function, leaving behind a
semiresolved structure. If this strength function is totally
structureless, as in, e.g., a Gaussian shape, the array is
generally termed an unresolved transition array (UTA).
Then it suffices to fix only the total strength of the array,
its mean frequency, and its width. The UTA concept has
been studied by Bauche et al. ,

' who have given explicit
formulas for the mean frequency and width for a variety
of different types of source-generated configuration com-
binations.

In many other cases, however, although the effective
strength function is continuous, the spectrum still shows
semiresolved structure (see Fig. 1 in Sec. III). Such a
spectrum contains more information than simply the first
two moments of the array. In this report, we describe a
computational procedure which can be used to describe
such semiresolved transition arrays. This procedure is
based on the Lanczos algorithm and has been used exten-
sively in treating complex nuclear spectra. ' In the nu-
clear case one usually considers the transitions as all ori-
ginating from a single source state, while here one must
consider the transitions from a manifold of' source states,
i.e., those of the source configuration. It is the thrust of
this paper to illustrate that the procedure can be profit-
ably applied to this more complex problem, and that one
can then obtain with moderate computational efforts de-
tailed information about the semiresolved structure of the
transition array.

The prescription has within it two main steps (although
in practice the algorithm does not make this separation).
For each state in the source manifold one finds a set of
moments of the transition array, p„,n =0, 1, . . . , N, with

N chosen as desired. The program then effects a Stieltjes
imaging to produce a sharp line spectrum which matches
exactly this set of moments. The procedure also produces
a width to be associated with each line. The full
transition-array strength function is then the sum of the
strength functions so produced from each source state.

In Sec. II we outline the details of this procedure and
its implementation, and in Sec. III we give results for the
test case of the 3d 4f trans-ition mentioned above. We
also show in Sec. III some of the difficulties which arise
from the use of the Gram-Charlier expansion to generate
the strength function from a finite set of moments of the
array.

II. COMPUTATIONAL PROCEDURE

In general the source configuration of the transition ar-
ray will contain a manifold of states denoted as I ~

S;)I.
We consider a prototype state

~
S) with quantum num-

bers Js (total angular momentum), MJ and any other
quantum numbers required to specify the source states.
We define the collective vector

~

CE 1;S) as follows:

)
CE1;S)=(E 1) ) S),

(E 1)=(E1) i+(E 1)0+(E1)i,

(la)

(lb)

where
~

CE 1;S) will be represented on the G-
configuration space, and (El) is the one-body electric di-
pole operator summed over all possible projections
( —1,0,1), as shown in Eq. (lb). The use of this summa-
tion plus the %'igner-Eckhart theorem leads to the result
that all moments are scalars, i.e., independent of spin pro-
jection. The configuration space (i.e., the G space) gen-
erated by the El operator, as shown in Eqs. (la) and (lb),
is by convention chosen to be the larger (dimensionally) of
the two, since we can, of course, go from either one to the
other via the same El operator. The collective vector has
norm Ag, with
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Ns ——(CE1:S
i
CE1:S),

and, in fact Xs is the total strength of the array. Note
that this whole procedure could be used for the array gen-
erated by any multipolar transition by defining the ap-
propriate collective vector. However, here we are con-
cerned only with E1 transitions.

While the source state
~
S) is an eigenstate of the

atomic Hamiltonian, the collective state
~
CE1:S) is not,

and this is manifested in the nonvanishing of the cen-
troidal moments p,„defined by cubi

——g (2'+ l)cubi(S),
S

(6a)

straightforward multiplication using the standard vector
functions of computers such as the CDC7600 or the
CRAY series.

In the second part of this procedure we use the mo-
ments calculated as described above to explicitly construct
a synthesis of the transition-array strength function S(co).
Since each source state

~
S) with angular momentum Js

is (2Js+ 1)-fold degenerate, the mean frequency and the
centroidal moments of the entire array are

p,„(S)= (CE1;S
~
[H —Qi(S)]"

~

CE1;S)1 V. = Q(2Js+ I)S.(S) .
S

(6b)

n =2, 3 4, . . . (3)

Q, (S)= (CE1;S itH i
CE1;S) . (4)

where Q, (S) is the expectation value of the Hamiltonian
in the collective vector state,

One widely used method of using these moments to
synthesize the strength function is as an expansion in Her-
mite polynomials, via the Gram-Charlier expansion, i.e.,

S(~)=—g cnexp[ —(~—~i) ~2@2]~n[(~—~i)~~V2l .=2 2

7T

These p„(S)are the centroidal moments of that part of
the transition array originating from the source state

~
S). One also requires the average transition frequency

for transitions from that source state, and this is

coi(S)=Qi(S)—(S
i
H

i
S) .

It can be shown that Eqs. (3)—(5) are independent of spin
projection, as required for scalarity. Evaluation of the ar-
ray moments can be effo:ted directly from Eqs. (2)—(5).
%e do this by using the VLADIMIR code. This code is
based on the Hausman approach to the Lanczos method
and its associated techniques. The alternative approach is
described in Ref. 4 where the underlying principles com-
mon to both are described, and a review of applications to
nuclear reactions is given in Ref. 6. Angular momentum
coefficients are not required in the representation of the
state vectors in either approach because of the use of
Fock-space representation, i.e., occupation number repre-
sentation, in conjunction with the second-quantized repre-
sentation for the operators. All symmetries, and hence all
angular momentum coupling information, are contained
in the coefficients of the operators. i' In the Hausman
approach, in contrast to the alternative, the method of
second quantization is used at all stages, so that, for ex-
ample, the operation in Eqs. (la} and (lb) is accomplished
by actual computer operation of the sum of three opera-
tors on the source vector

~
S) to yield a new state vector

~
CE1). In particular, the state vectors are represented

by hnear combinations of Slater determinants (or basis
vectors) with associated amplitudes. Each Slater deter-
minant, in turn, is represented by a binary word with (0,1)
in each bit designating (unoccupied, occupied} orbitals in
m-space. The second-quantized operators are stored in
multidimensional arrays, two dimensional for one-body
operators, four dimensional for two-body operators, etc.
These entities, i.e., the operators and the state vectors, can
be used in any arbitrary combination or sequence to pro-
duce new state vectors. Similarly, scalar products of arbi-
trary state vectors as in Eq. (3) can be generated by

This expansion, exact if carried to infinite order, as a
practical matter is truncated at n=E, with the coeffi-
cients co,ci, . . . , cN chosen so as to ensure that S(co)
correctly gives the first E+ 1 centroidal moments
(@0=1,p, =0). Keeping only the terms through %=2
gives a Gaussian strength function, that used in Ref. 1.
We show in Sec. III, however, that extension of the expan-
sion to X beyond 2 presents serious difficulties, to wit
that the manifestly positive definite S(co) is simulated by a
function which can and indeed does exhibit negative
values and that these physically unacceptable negative ex-
cursions can be significant.

A second possible route, and the one we use, is the
Stieltjes imaging or 5-function expansion, implemented
through the Lanczos algorithm. For each source state

~
S), one constructs from the collective vector

~

CE1:S)
a set of N vectors g„by

g„=H" '
~

CE1 S), n =1,2, . . . , N,
and in this X-dimensional space one then diagonalizes the
Hamiltonian H to obtain the X eigenvectors X„andasso-
ciated eigenvalues i)„.To each of these eigenvectors there
then corresponds a sharp line in the transition array at
frequency i)„with relative intensity

A,„=
J (X„f

CE1:S)
f

It can be shown that the N sharp lines generated by this
procedure gives a 5-function representation of the
strength function whose first 2X—1 centroidal inoments
exactly match those of the true strength function. Itera-
tion of the procedure to %=6 gives correctly the first 11
moments for that source state. The full transition-array
strength function is, of course, synthesized by following
this recipe for all source states to give a set of XXX+ (N~
is the number of source states) sharp lines in toto. As will
be seen in Sec. III, six iterations per source state generates
a quite accurate mimic of the full transition array, and
even only one iteration per source state gives a good pic-
ture of the strength function.
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In order to display these results it proves necessary to
provide each of these hnes with a width and with a profile
function of some form. It should be noted that ascribing,
for example, a Gaussian shape with fmite width to each
line alters the moments. But as will be seen the change is
not significant so long as the individual line widths are
small compared to the width of the main structural
features within the array. It is also possible to assign a
width to each line on the basis of the computation itself.
Since the state vectors X„arenot eigenvectors of H in the
6 space, but only in the restricted X-dimensional space
(N being the number of iterations}, these approximate
eigenvectors have a variance in their energy,

I g„——(X„i

H'
/
I„)—(X„/H / X„) (9)

We note that I L„is entirely a mathematical artifact of
the Lanczos algorithm, in that it represents the spread in
the state vector g over the true state vectors of the G mul-
tiplet. VA'th increasing N, I L„decreases, and at X equal
to the total number of states in the G multiplet this com-
putational width vanishes„ i.e., one achieves a full diago-
nalization of the 6 manifold. Note that these widths, just
as in the case of an arbitrary width discussed above, alter
the moments. Nonetheless, the rendering of the shape of
the spectrum is, in general, significantly improved by us-

ing this "computational" width, as will be shown.

III. APPLICATION TO A TEST CASE

We have applied this procedure to the transition array
corresponding to

3p'3d' —3p'3d'4f .

Without spin-orbit interaction, this array contains 5523
distinct transition lines. The Hamiltonian H is taken as
the set of one-body terms arising from the single-particle
energies including the perturbation correction due to the
interaction with the core, and a set of two-body terms re-
sulting from the repulsion between valence electrons,
given in terms of standard Slater integrals. These are all
taken in the one-electron basis states

~
n, lj,mj). The

Hamiltonian matrix elements are taken from a Hartree-
Slater calculation for Fe v1, and have been used for both
an exact microscopic transition array and for the methods
outlined above. (The only other datum required for the
array is the one-electron dipole integral, which provides
an overall scale factor for the array. )

'In Fig. 1 we show the microscopic transition array, gen-
erated from an intermediate coupling code. ' (This code
can include spin-orbit interaction, although none was uti-
lized here. ) In these figures we have, as described above,
endowed each sharp line with a Gaussian profile of width
I with I

„

taken as indicated. Tab1e I shows the mean
frequency and the centroidal moments about this mean up
to n =24.

We have used Eqs. (1)—(6} through six iterations to gen-
erate six moments per source state and thereby the first
six moments of the full array (beyond the overall strength
which can be scaled out). The first of these is the mean
frequency coi, and then finally p2 through p6. These
values are listed in Table I and agree, as they should, quite

well with the microscopically calculated moments.
If we use these six correct moments to generate S(co) via

the Gram-Charlier expansion via Eq. (7), truncated at
%=6, we can then compute a set of moments beyond the
sixth and these are listed also in Table I in Column II.
Beyond the sixth moment these values differ from the
true moments with errors of approxiinately 10%%uo up to the
12th, where the errors become larger, of order 100%. The
use of the Gram-Charlier expansion as a representation of
the array, however, is misleading as can be seen from the
plot of $(co) in Fig. 2 showing negative excursion of the
strength function so that the tails of the strength function
are without physical meaning. In addition to this rather
undesirable feature, such an expansion with this few mo-
ments cannot give any details of any structure in the tran-
sition array, even that in Fig. 1(b) which is overlaid in Fig.
2. In order to obtain such structure via this expansion
would require X approximately 25, and this was establish-

N]=
195.45

2 3.70[1]

3

5

6
7
8
9

10
11
12

2.66[2]
8.27[3)
1.37[5]
3.72[6]
7.79[7]
2.15[9]
5.01[10]
1.43[12]
3.59f13]
1.06[15]

13
14
15
16
17
18
19
20
21
22
23
24

2.82[16)
8.64[17]
2.43[19]
7.74[20]
2.29[22]
7.53[23]
2.33[25)
7.89[26]
2.53[28]
8.75[29]
2.89[31]
1.01[33]

Ct)] =
195.44

3.70[1]

2.67[2]
8.27[3]
1.37[5]
3.72[6]
6.79[7]
2.07[9]
3.68[10]
1.29[12]
2.22[13]
0.88[15)

1.48[16]
6.61[17]
1.11[19]
5.37[20]
0.91[22]
4.71[23]
0.82[25]
4.42f26]
0.81[28]
4.43[29]
0.87[31]
0.47[33]

195.45

3.70[1]

2.67[2]
8.29[3]
1.37[5]
3.74[6]
7.81[7]
2.16[9]
5.04[10]
1.44[12]
3.60[13]
1.07[1S]

2.83[16]
8.70[17]
2.44[19]
7.77[20]
2.29[22]
7.53[23]
2.32[25]
7.84[26]
2.51[28]
8.64[29]
2.84[31]
0.99[33]

N)=
195.48

3.70[1]

1.69[2]
6.56[3]
0.77[5]
2.56[6]
4.51[7]
1.55[9]
3.46[10]
1.2S[12]
3.30[13]
1.24[15]

TABLE I. Computed centroidal moments p„oftransition ar-

ray. (The numbers in square brackets give the power of ten by
which the numbers are to be multiplied. ) Column I gives the
centroidal moments p„,n =2—24 for the exact microscopic ar-

ray, Column II those computed from the Gram-Charlier expan-
sion with six iterations per source state, Columns III and IV
those computed from the delta expansion with six iterations and
with one iteration per source state, respectively. co] in each
column is the centroidal energy. In Columns IE, III, and IV the
moments above the asterisks should agree with the microscopic
moments, while those below are then extrapolated from the
correct moments according to the methods described in the text.

Column I Column II Column III Column IV
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ed only a posteriori. For %~25 the expansion exhibits
extremely large negative excursions. The Lanczos pro-
cedure, carried to six iterations, produces a sharp line
strength function S(co) with correct moments up to the
12th. This can be used to generate higher moments and
the results up to the 24th moment are listed in the last
column of Table I. These additional computed moments
are quite accurate and even the worst of these )M&4 has an
error of only 2%.

The array from this six-iteration 5 expansion is shown
in Fig, 3, with each 1ine given an equal width I =0.25 eV
as indicated. Figure 3(b) shows the overlay of these re-
sults with the microscopic array of the same width, that
in Fig. 1(a). Overall, the general structure of the micro-
scopic array is reproduced by this six-iteration calculation,
as was evidenced by the good agreement in the moments
1n Table I.

In Fig. 4 we show the same results, except that here
each line is given a width equal to the greater of the two,
that from Eq. (9) or 0.2S eV. We also show in Fig. 4 the
overlap of this with the broadened microscopic array.

0.10

p)

I

J

0.2—

160
I

180
I

200

Transition frequency (eV)

I

220 240

FIG. 2. Overlay of the microscopic spectrum with I „=1eV
and the GC (Gram-Charher) expansion with six moments. The
GC spectrum is negative in the tails of the distribution, giving
an unphysical spectrum. Furthermore, the double-humped
structure at the center does not appear at all in the GC result.
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220 240)180

FIG. 3. (a) Lanezos 5-expansion for six iterations per source
state. Each sharp line has been assigned a width of 0.25 eV.
Since the source configuration has 180 states in toto, this
represents the microscopic spectrum (5523 lines) by 1080 lines.
(See Sec. II.) (b) Overlay of the microscopic spectrum [Fig. 1(a)]
and the above Lanczos spectrum [Fig. 3(a)].

160 180 200 240 )

Transition frequency (eV)

FIG. l. (a) Microscopic spectrum for 3p'3d 3p 3d 4farray-
A Gaussian line shape of width I „=0.25 eV has been assigned
to each of the 5523 lines of this spectrum, averaging out much
of the structure. The remaining structure is termed
semiresolved. (b) Same as (a) except with I „=1eV. The highly
smoothed spectrum still reveals semiresolved structure in the
non-Gaussian tails and also in the double peak in the middle of
the spectrum.
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0.

'tot-

all

0,08—
3
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0.04—

Use of this computational width essentially washes out
some but not all of the intermediate structure features.

Finally, we note that the simplest Lanczos procedure
with only one iteration per source state produces an array
with the correct first two moments. One can expect that
here use of the computational width would produce effec-
tively an unresolved array and indeed that is the case, as
shown in Fig. 5. It is apparent, however, that the result is
not a pure Gaussian strength function, but also possesses
a skewness matching that of the true array. In fact, up to
the 12th moment the average deviation from the exact
values is only about 25% (see Table I).

0
0.18 IV. DISCUSSION AND CONCLUSIONS

IO

0,08—
3

CO

0
'f80 200

Transition frequency {eV)
240

FIG. 4. (a) Lanczos 5-expansion with six iterations per source
state. The widths are taken as the greater of 0.25 eV or the in-
trinsic computational width (Sec. II). (b) Overlay of Fig. 3(a)
and the microscopic spectrum vrith 0.25 eV width.

0.20

0.)2—

3
CO

O.QS—

II/

i

160

I+

180
l

200
Transition frequency (ev)

FIG. 5. Overlay of the Lanczos 6-expansion with one itera-
tion per source state and with computational width and the mi-
croscopic spectrum of Fig. I(b).

We have shown here that the construction of a collec-
tive El state vector from each of the parent states of a
transition array provides a compact basis for obtaining,
via the Lanczos 5 expansion, an excellent approximation
to the strength function of that array. There are no re-
strictions in this approach such as the requirement of I.S
coupling, etc. In lowest order the method leads to one line
per source state vector, which in our example results in
180 lines representing the 5523 lines in the true array. In
this case the first two moments are rigorously correct but
the succeeding moments up to the 12th differ from the
correct values on the average by only 25%. In the highest
approximation studied here, i.e., six iterations per source
state, the semiresolved structure of the microscopic spec-
trum, which shows up at a resolution of 0.25 eV for each
line, is quite well reproduced. Here we use 1080 lines to
represent the full number in the microscopic array, and
we find that the moments accurately reproduce the
correct values up to the 24th, although only the first 12
are rigorously correct. Hence this procedure can approxi-
mately represent complex spectra with semiresolved struc-
ture with a line structure only a fraction of the full size of
the array.

The Gram-Charlier (GC) expansion, expressed as Her-
rnite polynomials with a Gaussian weighting, requires, as
noted earlier, in the range of 25 moments to reproduce
any of this semiresolved structure. The negative excur-
sions inherent in this method, however, make a physical
interpretation of the results impossible. (In fact, we have
found that this difficulty is already present with only
three moments of information. ) The conclusion then is
that this GC method is appropriate only when no more
than the centroid and width are required, i.e., the case of a
totally unresolved array (UTA).

We summarize here the advantages of the collective-
vector —Lanczos approach to studying transition-strength
distributions.

(1) As noted in Ref. 4, the Lanczos method leads to a
very compact, essentially one-dimensional, representation
for the system Hamiltonian.

(2) The collective state vector contains all necessary in-
formation about the transition array. The Hamiltonian
decomposition of the collective vector via the Lanczos al-
gorithm leads to a synthesis of the transition array, re-
placing it with another much smaller array, 2—20% of
the original, but which retains rigorously the correct mo-
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ments for the full array up to the 2nth moment, where n

is the number of Lanczos iterations. Even moments
beyond this are reproduced with high accuracy.

(3) The inclusion of configuration mixing requires noth-
ing more than the specification of the Hamiltonian matrix
elements between the single particle states of the different
configurations. The program would then require neither
more computer memory nor time.

(4) Transition arrays for higher multipoles, e.g., E2, are
no more difficult than the E 1 array studied here .The
only practical limitation results from the computer
memory required for the generated configuration or 6
space. The model calculation illustrated here used only
10% of the available memory.

(5) Perhaps the most important advantage is that transi-
tion arrays with the same source configuration but with
much more complex generated configurations require
essentially no further computational effort, so that one
could also deal with transition arrays with many more
states in the generated configuration and correspondingly
many more in the array. In such cases, microscopic spec-
tra would be beyond the ca'pabilities of available comput-
er s.

Where semiresolved structure is of interest and where a
full treatment of the complete microscopic array is im-
practical or even uninterestin, the I,anczos 6-expansion
method is a reliable scheme for obtaining the essential
features with a representative set of lines whose number is
a relatively small fraction of the total, typically 3—20%.
This scheme itself becomes impractical when the number
of source states is large (e.g. , approximately 1000) and
other methods are required. %e are pursuing a Monte
Carlo scheme for representing the source manifold and
then applying the Lanczos 5 procedure as described here.
This approach could cut down the size of the required
source manifold by an order of magnitude or more.
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