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%e introduce in the context of a simple soluble model for laser-enhanced autoionization a new

representation —the dressed-resonance representation (DRR). The model includes one autoionizing

state, one flat electron continuum, one continuous driving laser of arbitrary strength, and two types
of relaxations, i.e., spontaneous decay of the continuum and autoionizing state back to the initial

state (spontaneous recycling) and phase-jitter noise in the driving laser. The DRR is a natural exten-

sion of the dressed-states representation, employed in strong-field discrete-discrete transitions, to
discrete-continuum transitions. %e focus on t~o observables, i.e., the temporal initial state popula-
tion and the photoelectron spectrum. The emphasis is on strong-field effects. The DRR yields sim-

ple„ transparent, analytical expressions for the above observables in the no-relaxations limit of the
model. These results are complemented by a systematic analysis of the exact solution in all qualita-

tively distinct physical regimes.

I. INTRODUCTION

The study of strong laser excitation of continuum tran-
sitions is rapidly becoming more intensive. New phenom-
ena such as laser embedding of bound states in the elec-
tron continuum, ' multiple-photon absorption above the
ionization threshold, and the production of multiply
charged ions by a single laser pulse have all been report-
ed. These phenomena have also been discussed separately
in a large number of theoretical papers. The theoretical
difficulties posed by the action of strong laser light on
atoms are manifold, and it is obvious that detailed agree-
ment between theory and experiment over a broad front
cannot be expected soon.

In this paper we concentrate on one aspect of these
studies with two goals in mind. We consider the problem
of photoionization in the case of more than one channel
from a bound initial state to the electron continuum. This
is in fact the usual case, and is applicable to every atom
except hydrogen, for which ionization is inevitably a one-
electron process. In every other atom photoionization can
be direct or indirect, with the indirect channel involving
an autoionizing multielectron discrete state embedded in
the continuum above the one-electron ionization thresh-
old. Our goals will be to give as complete a description as
possible of the simplest strong-field autoionization pro-
cess, and at the same time to extend to continuum tran. si-
tions the usefulness of the dressed-state method. As we
will show, this requires the introduction of dressed reso-
nances.

A number of recent theoretical papers' ' have treated
aspects of strong-field photoinduced autoionization. It
has been emphasized that in the strong-field regime one
must be concerned with several effects which are not nor-
mally important. For example, radiative recombination

can occur fully coherently. That is, the recapture of a
positive-energy electron back into a bound state can be in-
duced so quickly that the electron has significant phase
meinory of the field that originally excited it. Novel
features such as strong-field line narrowing of the emitted
photoelectron energy spectrum and population trapping in
the initial state have been predicted. '

Relaxation-assisted transitions have also been studied in
such systems, and new features have been predicted for
two qualitatively different, common, relaxation processes.
These are phase jitter in the driving laser field and spon-
taneous decay of both the continuum and the autoionizing
state back to the initial state (spontaneous recycling). For
very rapid phase-jitter relaxation, the photoelectron emis-
sion spectrum exhibits a "redistribution" of the line shape
which becomes the Fano profile, " ' normally seen only in
absorption. For high spontaneous recycling rates there is
a characteristic line narrowing of the "elastic" electron
peak. 4 s This latter line narrowing is of different physi-
cal origin from the narrowing associated with stimulated
transitions.

The present work focuses on the photoelectron spec-
truin and temporal behavior of the imtial state population
in a model which includes both strongly stimulated transi-
tions and the two relaxation processes mentioned above.
It complements previous work in two respects: (a) We in-

troduce a new representation, in terms of which the cen-
tral equations of motion simplify substantially and the re-
sults in the semiclassical limit of the model' become par-
ticularly transparent. This representation is dubbed the
dressed-resonance representation (DRR) to underscore its
affinity with the dressed-states representation frequently
used in conjunction with strongly stimulated discrete-
discrete transitions. "' (b) We present a unified discus-
sion of all qualitatively different regimes in the parameter
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with explicitly known coefficients [Sec. IV]. The frequen-

cy dependence of ao(aio) and a ~(coo) shows a two-peaked
line shape which reflects the two underlying dressed reso-
nances.

The simplifying feature of the DRR is best demonstrat-
ed by the expressions for the photoelectron spectrum
S(ai) and the population of the initial state Po(t) in the
limit of no relaxations (Sec. IV),

s(~)=
l &0 la& l',

2

Po(t) = l I d equi' 'S(m)
(1.2)

Given expansion (1.1), expressions (1.2) expose the role
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FIG. 1. Schematic representation of the model space and

couplings in (a) the unperturbed representation and (b) the semi-

dressed representation {SDR). The states
~
0),

~

I ) denote the
initial and autoionizing states, respectively, and the hatched area
represents the single-electron continuum. The two-way double

arrow and one-way wavy arrow denote stimulated and
spontaneous-decay transitions, respectively. The relevant detun-

ings A, 5(m), the discrete-continuum couplings 8'0 and Ao, the
discrete-discrete coupling 8'», and the static autoionizing
state-continuum coupling V&„are defined in the text.

space of the model. In so doing previous results and new

results are brought into perspective.
The DRR is introduced in the context of a simple

model [see Fig. 1(a)] containing an initial state
l
0), one

autoionizing state
l
1), and one electron-states continuum

l
u). The system, initially in

l
0), is driven by one con-

tinuous laser of arbitrary strength. The gist of the DRR
is schematically displayed in Fig. 2. In the absence of a
continuum, the stimulated transitions between l0) and

l
1) give rise to the two dressed states

l
do) and

l di )
[Figs. 2(b) and 2(c)]. Due to the coupling of

l do) and

l
d i ) to the continuum both by stimulated transitions and

static coupling, they transform into resonances, i.e., the
dressed resonances [Fig. 2(d)]. This admixing is also re-
ferred to as embedding. We readily recognize [Fig. 2(c)]
that the present embedding is of the same type first stud-
ied by Fano, ' involving, however, two bound states.
Hence it has a simple analytical solution. Thus the new
feature of the DRR is that the stimulated transitions are
completely diagonalized from the outset. The resulting
perturbed continuum states pertaining to frequency coo,

namely the DRR basis states
l
coo) have therefore the ex-

pansion

l
Go) =ao(coo)

l
do ) +a i(ado)

l di ) + f dt's b~(cop)
l
co)
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FIG. 2. Origin of the dressed resonance representation
(DRR). Starting from the unperturbed representation (a), the
equivalent model space in which the continuum threshold is
neglected is depicted in (b). {c) represents the basis after di-

agonalizing the discrete-discrete coupling thereby generating the
dressed states

~
do)„~ d&). The full diagonalization (d) gives

rise to the DRR continuum
~
co). Its dipole strength distribu-

tion manifests a two-hump co dependence reflecting the two
dressed states in the model.

of the dressed resonances in determining the line shapes
(location and width) of S(co) and the oscillatory-decaying
behavior of Po(t). To appreciate these simple expressions
they should be compared to an equivalent treatment in
another representation (the semidressed representation,
see below). Unfortunately no counterparts to (1.2) exist in
the presence of recycling and phase-jitter relaxations ex-

cept in limiting cases (Sec. V). Although the equations of
motion simplify considerably in the DRR, they cannot be
solved in a closed form. We therefore discuss their con-
tent by combining numerical examples and qualitative ar-
guments within the DRR framework.

The paper is organized as follows. The model is de-
fined in the unperturbed representation [Fig. 1(a)] in Sec.
II, and the central equations of motion in the DRR are
derived in Sec. III. Section IV is devoted to establishing
the details of the DRR and examining the semiclassical
limit of the model for which simple expressions exist,
such as those given in Eq (1.2). . Hereafter the term
"semiclassical" implies that we treat the laser field classi-
cally (as a c number) and the atom and all spontaneous
photons quantum mechanically. Two analytic results per-
taining to the full model, i.e., with relaxations, are given
in Sec. V. Section VI is a systematic qualitative analysis
of the various regimes in the physical parameter space of
the model. The discussion is substantiated by representa-
tive examples of exact numerical solutions of the model.
The conclusions are given in Sec. VI. The Appendixes
contain technical details.

II. THE MODEL

The model is introduced in the unperturbed representa-
tion, Fig. 1(a). The model space is comprised of the initial
state

l
0), one autoionizing state

l 1), one flat (constant
dipole strength distribution) continuum of states

l co), and
one laser field of arbitrary strength. The laser field is
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continuous after being turned on abruptly at t =0.
The model Hamiltonian (carets hereafter denote opera-

tors) is of the form

H =Hg +Hg +H;„, . (2.1)

The single-atom Hamiltonian Hz is'

H~=Eo 10&&0I+&( I
1&&1 I+ J d~~l~&&~l

+ I den A'V(„(
i

1 & & co
i + i

ai & & 1
i ), (2.2)

where the continuum states are 5 normalized'.

&co
~

(o'& =5((o—oi'), and the static V(„ interaction is real
and assumed to be ru independent. The quantized free-

radiation Hamiltonian Hii has the standard form'

A)A (2.3)

+ g f dro[fiQi„(co)8 (co)ai+H. c.]

(2.4)

where the transition dipole operator 8(j) is defined by

8V) =10&&j I

and the coupling constant Qi(j) is given by

Qi,V) = (gi. Vo, —

Voj ——
~

e
~

&0~ r
~
j&(raj coo)/he- ,

]/22'
gx= (n, .a, ) .

ri)g V

(2.6)

The form (2.4)—(2.6) is derived from the A p interaction
term. The new symbols in (2.6) are n„a unit vector such
that &0

~

r
~ j &

= &0
~

r
~ j&n„~ e

~

is the electric charge in
Gaussian units, and Ez ——iri(oj, j= l, ai. Hereafter summa-

where A, =[k,a, ], s =1,2 labels the field eigenmodes in a
box of volume V. Each mode is characterized by a
momentum k and a polarization vector e,, which assumes
two orthogonal transverse directions. The associated
creation and annihilation operators are a ~,a~ respectively
and Ng =ck.

The interaction Hamiltonian H;„, in the dipole and
rotating-wave approximation is

H;„,= g [(riQi(1)8 (1)ai+H.c.]

tion or labeling by j refers jointly to the autoionizing state

~

1& and continuum
~

(o& as in (2.4)—(2.6). ~e assume
throughout that the coupling strengths VOJ are constants,
in keeping with a similar assumption made earlier on V& .
These constants are treated as free parameters of the
model. In practice their value depends on the particular
atom and the specific structure of the autoionizing state. '

The model (2.4) has also been considered in a represen-
tation in which the

~

1&-
~

co& coupling of Eq. (2.2) has
been prediagonalized as indicated by Fig. 1(b). ' This
representation is hereafter referred to as the semidressed
representation (SDR) since it implies the embedding of
only one state (the autoionizing state). This should be
compared to the embedding of two states (the initial and
autoionizing states) underlying the DRR (Fig. 2) and the
embedding of no states in the unperturbed representation
as in Fig. 1(a). The equations of motion pertaining to the
model in the SDR are elaborated in several Appendixes.
A central factor in these equations is the Fano profile'
which is the dipole strength distribution [analogue of
Qi(j) in Eq. (2.6)] for transitions between ~0& and the
SDR continuum states. The relation between the physical
parameters in the unperturbed representation, in the
DRR, and the Fano profile are given in Sec. III.

III. THE EQUATIONS OP MOTION IN THE DRR

To solve for the photoelectron spectrum and initial
state population —the atomic observables at the focus of
this work —we need the initial density matrix and the
Heisenberg equation of motion for a general atomic
operator O„(t), which eventually is chosen to be a
member of a convenient complete set of atomic operators.
As is shown below, the model suggests a natural choice
for a complete set Oz(t) and the corresponding represen-
tation, i.e., the DRR.

The starting point is the Heisenberg equation of motion
for a general atomic operator O„(t) in the unperturbed
representation. After eliminating the radiation field de-
grees of freedom using the Markov approximation (Ap-
pendix A and Refs. 5, 14, 16, and 17) the equation of
motion is

i A (0„(t) )0—i' —O——q (t)
dt Bt

+~„(r)+~„.(r),
where the source terms for the stimulated and spontane-
ous transitions are denoted by S„(t),and S,~„(t), respec-
tively, and given by

(fo~(r»H~])H
0

~ (U)(i)

+ y ((iQ~. V)([OA(r).8 V)])H (,(

A, ,J

[
~ (U)(r)]t

+fiQi(j) -(.( t ([O~(i) 8(j)])0
a ~'(r)

(3.2a)
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where a z"'(t) is the "vacuum" radiation field operator de-
fined below, a ~' is the source field operator,

rate of change.
To simplify (3.5) it is transformed to the rotating frame

~i"(t)= t'—~gf)iV)5(~i. ~, )(BV))H (3.2b) H sc(t) =Ro(t)i' scR o(t), (3.6)

and the parenthesis ( )0 indicates the Heisenberg represen-
tation evaluated at time t.

To evaluate the interesting atomic observables it wiB be
required to consider the expectation value of (3.1) with re-
gard to the initial density matrix. As stated in Sec. II, the
atom is initially at the state

I
0). The initial state of the

radiation field
I
a) is assumed to be a coherent state, "

a i{"'(t)
I
a) =5i t ae

I
a), (3.3)

where L denotes the mode (wave vector and polarization)
of the driving laser field, coL its frequency, and P(t) is a
stochastic phase satisfying

(1((t)y(t') ) =2y7.5(t —t'), (3.4)

and ( ) denotes an ensemble average. i' ' '9 The eigen-
value a measures the strength of the driving laser field
and (a

I
E(t)

I a) is the semiclassical expression for the
laser's electric field. In the absence of phase jitter Eq.
(3.3) expresses the standard initial condition representing a
continuous classical laser field by a coherent state

I
a).

In the presence of phase jitter, the parameter yr can be
identified as the laser's half bandwidth. Equation (3.3) is
a simple way to incorporate in the present framework
classical noise pertaining to the driving laser.

To clarify the meaning of (3.1) we examine first the
S„(t)source term, which represents the stimulated tran-
sitions effect. This interpretation of S„(t) is based on
the following consideration. Since only atomic expecta-
tion values of the form (a

I (O„(t))H
I
a) are needed, it

follows from (3.2) and (3.3) that

(a
I AS„(t)

I
a) = (a I ([Og(t),H sc(t)])H

I
a)

Hsc(t)=Ha+ g [i}1QL(j)aB (J')e +H.c] .

(3.5)

Hence S„m(t) is a commutator with the Hamiltonian
which describes the stimulated transitions in the model,
i.e., this term represents the stimulated-transition-induced

where Ro(t), h sc are given in Appendix B. Therefore, for
the choice

= —i(a
I
(Ro(t)[O„,hsc]R o(t))„

I
a)

—i j(t)&a l(Ro(t)[o~ Io&&ol ]R o(t))H la&

(3.8)

In deriving (3.8) we used the explicit form of Ro(t), given
in Eq. (Bl). The full semiclassical Hamiltonian in the ro-

tating fraine hsc is

fihsc fih„+ —gfiWp~[B (j)+B(j)),

A'h„=Hg +PAL I 0) (0
I

—(Eo+fuoL )1

=fib,
I
l)(1

I
+ J dtoR5(to) Ice)(co I,

where

(3.9)

(3.10)

and Eo 0henceforth——. Combining (2.6) with (3.10) it fol-
lows that 8'oj ——(0

I I (a
I
E

I
a).dI I j) /ih where d is the

dipole moment. Notice that the R's have now been placed
so that all important parameters and operators have fre-
quency units.

The last step is to carry out the ensemble average of
(3.8), given the statistical assumptions of (3.4). By virtue
of a well-known theorem which applies to white-noise
multiplicative stochastic processes ' it follows that

Og(t) =Ro(t)O„R o(t)

with O„still unspecified, the equation of motion (3.1) (set

S,~„(t)=0 for the moment) takes the form

—&al(o~(t))H la&

dt
—((

I
(Ro(t)O R o(t))

I ) ) = —(( I
(Ro(t)[O,hs ]R o(t))H

I
) )

—yT « a
I (Ro(t)[[O„,

I
0& &0

I ], I
0) (0

I
]R ot(t))H

I
a & ), (3.11)

where the brackets ( ) indicate an average over the ensemble of laser phase fluctuations.
Equation (3.11) offers a natural starting point to introduce the DRR and exposes the dilemma in choosing a represen-

tation convenient for treating both the stimulated and phase-jitter-assisted transitions. When stimulated transitions are
dominant an obvious choice of representation and complete set of operators Oz is such that the first term in the right-
hand side (RHS) of (3.11) simplifies. This representation is the DRR defined by

hsc I
co) =5(co)

I
co)

and a corresponding convenient complete set of operators is

{3.12)
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Og ——
t ~

co) (co'
~ I, for all co,co' . (3.13}

The representation (3.12},not surprisingly, is not optimal with respect to the yz term in (3.11). The latter term is par-
ticularly simple in the SDR and unperturbed representations (since in both of them the state

~
0) is a member of the

basis), combined with the choice 0„=[ ~

a )(b
~ I where

~

a ),
~

b ) are states of the basis. In this work we pursue the
DRR since the simplification gained in the first RHS term of (3.11) more than compensates for the added complexity of
the yT term. The numerical calculations, however„have been carried out in the SDR.

The S,~„(t) term in (3.1) describes recycling-assisted transitions. This can be inferred from (3.2) since a ~ describes
self-reaction contributions. Using the explicit form of Rp(t) and adding S,~„(t) to (3.11), the full equations of motion
for the amplitudes

C(coo coo't}=« ci
I

&0
I
(Rp(t)

I
coo& &coo I

R o(t})H I
0&

I
cr » (3.14)

C(—cop cop, t) =i '[5(cop) 5(co—o)]C(cop cop ,t)+ ('0
~
coo) (co o ~

0)M(t)

—f d co'[C (coo) co', t )R (co')F'(coo) + F(coo)R '(co') C(co', coo', t) ]

—yT f dco'[C(cop, co', t)r(co')r*(coo)+r(cop)r "{co')C(co',cop, t)]' (3.15)

The new symbols in (3.15) signify the following: M(t)
is a linear combination of the unknown amplitudes (3.14)
not entering the subsequent discussion and therefore not
quoted. It can be explicitly shown that the M(t) term
guarantees unitarity, i.e.,

dco C{co,co;t) =0 .
d

(3.16)

The third term in the RHS of (3.15) corresponds to S,~„(t)
and represents the recycling-assisted transitions. The
"perturbed Fano profile" F(co) is given by

F(coo } FB( c}o+oFc( c}op

F (,)=V„(1~,),
Fc(cop) = Vo f dco(co

~

cop),

and the associated R (co) factors are

(3.17)

R (co}=RB(co}+Rc(co}=Q(coi}F(co}

Q(co)

=eggs'

5(coi c.o) =——z 2

A,
3 c

(3.18)

r(co)=(0
i
co) . (3.19)

Finally, the initial conditions for the amplitudes (3.14) are
obviously

The expression for R&(co} is approximated. The last term
on the RHS of (3.15) obviously represents the phase-
jitter-assisted transitions, and

unperturbed Fano profile Fo(co) [Eq. (3.23)]. In this way
important distortions in the effective dipole strength dis-
tribution due to the stimulated transitions are accounted
for from the outset. (b) The semiclassical limit of the
model, i.e., Q(co)=yT M(t)=——0 is trivially solved [see
Sec. IV]. Consideration of this limit yields explicit ex-
pressions for the DRR basis as well as useful insights. (c)
Note the similar structure of the recycling and yT terms
in (3.15) by Pairing 7'T with Q(coi) and F(coo) with r (cop}.
This analogy is somewhat surprising given the very dif-
ferent physical origin of these two noises. This property
makes it possible to solve (3.15) exactly using the method
employed for solving the equations of motion in the SDR
[Appendixes C and D]. (d) The decomposition of (3.17)
and (3.18) into "bound" and "continuum" contributions
corresponds to the different "physics" at the q =0 and

~ q ~

= ao limits where q is the Fano asymmetry parame-
ter defined below in Eq. (3.23). These two qualitatively
different regimes [see Sec. VI] are naturally separated in
the DRR.

To complete the scheme we now demonstrate the con-
nection between the amplitudes (3.14) and the quantities
of interest. Consider first the initial state population
Pp(t). By definition, with p(t} for the full density matrix,

p, (t)=(tr[p{t) ~o)(o~])
= (tr[R ( t}ppR (t)

~
0) (0

~ ] )

=(trjppR (t}[RO{t}
~

0) (0
~

R o(t}]R(t)] )

c(~p, ~p, t =o)= (o
~
~p& &~p

~

o& . (3.20)

The equations of motion {3.15) are the central result of
this work. They possess several attractive features: (a)
They are substantially simpler than their counterparts in
the SDR (Appendix C). This is mainly due to the oc-
currence of the perturbed Pano profile F(co},Eq. (3.17), in
comparison to the SDR equations which involve only the

(3.21)

where R(t) is the full evolution operator. In deriving

(3.21) we used [Ro(t), ~0&(0~ ]=0, Eq. (Bl), and the
form of the initial density matrix pp ——

~
0)

~
cc)(cc

~

(0 ~.
By the same token the photoelectron spectrum is
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S(co)= lim (trIp(t)
~

co)(co
~ I ) TABLE I. Dimensionality checklist.

t —+ Oo

lliil ( ( cx
~

( 0
~

(Ro( r)
~

co ) ( co
~

R o( r) )H
~

0 )
~

a ) )
t —+ oo

(3.22)

since Ro(t) is a unit operator in the unperturbed continu-
um space. Consequently, by invoking the unitary
transformation between

~
co) and (

~
0),

~
co)), it is possible

to express S(co) and Po(t) in terms of (3.14) (Sec. IV).
Note, however, that for the expectation value of a coher-
ence such as

~
0) (j ~, an extra phase should be added to

(3.21), for example, since Ro(t)
~
0) (j ~

8 o(t)
=e '"' /0)(j /.

To establish a reference with previous work' it is in-
structive to state the relations between the physical pa-
rameters in the different representations. In the SDR the
Fano profile Fu(co) was introduced in the following pa-
rametrization: '

Quantity

[8(1)J

[8(co)]
[g~]
[ Voi]
[Vo l
[Vi l
[&o]
[yil
[ccgi]
[Woil
[ Wo„]
[Q(~)]
[F(co)]
[R (co)][F(co}]
ps

Dimensionality

1

1/2

t 1/2

g 1/2/I I /2

)1/2/t'E1/2t )

I 1/2/(E 1/2t 1/2)

1/t '

1/t
1/t
E1/2/I 1/2

1/t
1/t 1/2

Et /I
( 1/2/E 1/2t 1/2

1

1/t

1 0
1+if N —QPi+lO'

(3.23)

where lrlco& E, Eo,——cr is a—cutoff parameter set to infini-

ty at the end of the calculation, and q and Qo are the Fano
asymmetry and strength parameters, respectively. ' Since
the effective Hamiltonian (3.9) is identical to the Hamil-
tonian used in studies where the SDR is employed, we
identify'

0 =(4ny, )'/ (q+i) W e'~,

combination in the SDR equations of motion used for the
numerical calculations. Another interpretation of ys is as
half the Einstein coefficient of the autoionizing resonance.
To see that, consider the two-level limit (i.e.,
yl 0, ~q ~

ao) of the Pano profile Fo(c0). Thell

d ~o ~ '= ——W'oi '= Voto,g

(3.27)

where we used (3.10). Inserting the expression for Vol
from (2.6) it follows that

P
Wol+ I dc@ Vl„Wo

N~ —N

m 8'g V),

8o) = Ap q
(1+q2)1/2

Qp 1

(4 )
l/2

( 1+ 2) l/2

Inverting (3.24) for real q and Qo gives

8 o)

m 8'g V)„

(3.24)

(3.25)

2 ~lleI'I&0I&11) I'
AC

(3.28)

IV. THE SEMICLASSICAL LIMIT

where A is the Einstein coefficient. ' This result is con-
ducive to adopt the same interpretation of ys for finite yl
and g.

An instructive check of the relations introduced in Secs.
II and III is to examine the relevant dimensionality. A
dimensionality checklist (Table I) is added for this pur-
pose.

2
Qo

ys =Q(col)
2

(3.26)

It can be easily verified that in the q~oo limit, when
only F~(cu)Ra(oo) contribute to (3.15), ys as defined in
(3.26) is a prefactor just like yT. The y~ is also a natural

Combining (3.25), (3.10), and (2.6) establishes the relations
between the parameters in the unperturbed representation,
the DRR and the SDR.

Finally, we make a choice of a parameter which gauges
the recycling frequency. This frequency is obviously re-
lated to the factor Q(co&), Eq. (3.18). A more convenient
choice, however, is the frequency-dimensioned combina-
tion

As has been shown in Sec. III, the DRR arises naturally
in the context of stimulated transitions to a continuum
and yields relatively simple equations of motion. This re-
sult is now complemented by demonstrating the simplicity
of constructing the DRR basis

~
co) and gaining physical

insight from examining the semiclassical pure-state limit
of the model. This limit has been considered before. '
The ease of reproducing the known results underscores the
usefulness of the DRR.

The semiclassical pure-state limit corresponds to treat-
ing the radiation field as a c number and eliminating re-
laxations, i.e., taking yz ——yT ——0. This is equivalent to
starting from the effective Hamiltonian H sc(t), given in

Eq. (3.5), or its counterpart in the rotating frame hsc,
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given in Eq. (3.9). The key remark, graphically depicted

in Fig. 2, is that the diagonalization of hsc is a Fano-type
problem with two bound states and one continuum. '

Hence it is easily solved. To demonstrate this we decom-
pose

=&~ lhsc I
do&

hsc ——ha+bc (4.1)
= —(sii18)

3 1 +(cos8) Wo

he =~
I

1& & 1
I
+ ~oi [ I

o & & 1
I
+

I

1 & & o
I ],

(4.2)
hc—- f d~5(~) I~&&~I+ f devi. [I »&~I

1/2
yl

= (cos8)
yl

' 1/2

=&
I "sc I di &

+(sin8) Wo~ .

(4.8)

+ l~&&ll]+ f d~~o [10&&~I+ l~&&0I].

The first step is the diagonalization of he depicted in

the transition from Fig. 2(b} to Fig. 2(c). The eigenfunc-
tions

I
d; & are

he Id;&=toe Id;&, i =0, 1 (4.3) = [5() —I 0][5(~)—11] (4.9)

The secular equation p(to) which defines the poles (reso-
nances) of a;(co) is given by

p() = [5(to)—toe, +if'o][5(to) a, +—t'T
i ]+}'o}'i

where

I
do & cos8 —sin8

I
0&

d, & sin8 cos8
I

1&

28 01tan28=-

~oe, = p [~—(~'+4~oi)'"l

top, ———,'[b+(b +4@'o))' ] .

(4.4)

(4.5)

Expressions (4.6)—(4.9) give the DRR basis explicitly
(neglecting all shifts in keeping with the assumed coupling
constants) from which the factors in the equation of
motion (3.15) are easily constructed.

To demonstrate how the DRR works consider the pho-
toelectron spectrum and the initial state population. Us-

ing definition (3.22) of the photoelectron spectrum S(to)
the result in the semiclassical limit is

S (too) = lim tr[R (t)poR (t)
I
too & & too

I ]

hsc I
co & =5(co )

I
to & (4.6)

[see (3.12)], where
I
to & has the following expansion:

I
~oo& =ao(coo)

I
do&+ai(too)

I
di &+ f demob„(too)

I
co&,

a;(coo) =
1/2

[5(too) —top, , ]

P (too)
i =0, 1

1
b (coo) =5(too co)+-

OP —COO+ l 'g

(4.7)

The
I d; & are the so-called "dressed states, " introduced in

conjunction with strong-field discrete-discrete stimulated
transitions. "' No reference to "number of photons" is
necessary.

The next step in the diagonalization of hsc is to reex-

press hc, Eq. (4.2), in terms of the dressed states
I

d;&
[Fig. 2(c}] and to embed them into the continuum

I
co&.

At this point the similarity with the Fano problem is ob-
vious: The two bound states to be embedded are the
dressed states. The result [Fig. 2(d)] is the dressed reso-
nances and the associated DRR basis

I
to &,

= lim tr[e ' I0&&0le '
l
too&&tool]

where

= lim
I J„,(t) I1~oo

(4.10)

J (t)= f dtoe '+""&tol0&&coolth&

=e "'
&too l0&+r„(t) . (4.11)

In (4.10), R(t) is the evolution operator pertaining to the

Hamiltonian hsc. In deriving (4.11) we used the ex-

pression for R (t) [Eq. (84)], the fact that

[R (t),
I

too & & coo
I ]=0 and the expression for &Ioo I

ro &

from (4.7). As can be easily shown lim, „r„(t)=0due
—l,.tto factors e ' whenever both roots of the secular equa-

tion (4.9) have a nonvanishing imaginary part. This is the
"nontrapping" case (see below). The same also holds true
when either root of (4.9) is real (the "trapping" ease) due
to a vanishing multiplieative factor. Therefore

S(~o)=
I &~o I

o& I

'
[5(too) —cog, ][5(too) —cog, ]

X 1—
P (too)

~o [5(~o)—~+)'ie]
&0I too&=

P (too)
(4.12)

1 /2
1

=5(too —to)+ + l'Q
a;(coo) .

The new symbols in (4.7) are the widths of the dressed

and for
I q I

~ ao (or fVQ„~O) the numerator in (4.12} is
to be replaced by 8'oi(yi/n. )'

The simplicity of S(coo) is gratifying. The numerator
exposes the Fano zero, as it should. The denominator im-
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plies the interpretation of the two complex roots of the
secular equation (4.9) as the location and width of the
dressed resonances. The widths of the unperturbed
dressed resonances, due to the static V&„mixing, can be
identified with yj [see Eq. (4.8)] and their energies with
fired .

As a second application consider the initial state popu-
lation Po(t), defined in (3.21). The same steps in (4.10)
yield

Po(t) =
f
Jo(t)

f

'

with

Jo(t)= I defoe 's' "f (co f0) f'

= QAJe
J

(4.13)

(4.14)

where we used [R (t},
f
0) (0

f ]=0.
The simple result [(4.13) and (4. 14)] offers a clear

analysis of Rabi oscillations in the context of bound-
continuum transitions: The oscillation frequency of Po(t),
defined as the Rabi frequency Qa, is

Qti(Qo q) =
I
Re(I o

—I i )
f

. (4.15)

By the same token, the long time limit of the Po(t) slope
envelope is

s= —,'min[
f
Im(1, —I ) f, ij =0, 1] . (4.16)

Consequently we can define the "strong" and "weak" field
regimes in the present context as corresponding to 0& g~s
or Q„«s, respectively. A simplified definition of these
two regimes is given in Sec. VI.

A corollary of (4.15) is the condition for population
trapping: As a result of destructive interference be-
tween the

f
0) —

f
1) and

f
0) —

f
co) transitions some

fraction of the population can remain trapped in the ini-
tial state so that lim, „Po(t)&0. For this to happen s
must vanish; i.e., either I o or I

&
or both are purely real.

The secular equation (4.9) implies that this occurs when-
ever

roxi=o (4.17)

Condition (4.17) simply states that for population trap-
ping to occur, at least one of the dressed states has a van-
ishing rvidth. This is a very plausible physical condition.
By inserting in (4.17) expressions (4.8) and (3.25) we find
the following parameter relation for trapping to occur:

are added. While the exact numerical solution of (3.13),
in the general case, is deferred to Sec. VI and Appendixes
C and D, we discuss here two analytic results pertaining
to relaxations in specialized limits. Beyond these results,
the equations must be solved numerically.

Z I p(~}(0
I
~) I

P(co,z =0) (5.1)

where the modified secular equation function P(co,z) is
given by

f
F(to')

f

2 P(5(iso),z}
I +iQ(t'ai) dc@' .

iz +5(too) —to p(iz +5(too) )

(5.2)

and p(coo) is the semiclassical secular function given by
(4.9). The modified secular function P(5(too),z) is quite
complicated. However, by virtue of (3.25) and (3.17) an
approxiinate form in the

f q f
«1 and

f q f
»1 limits,

respectively, is obtained by inserting in (5.2)

f
F(co) f'

f
Fa(io)

f
+2 Re[Fa(~)Fc(to)] for

f q f
)»

f
Fc(co)

f
+2Re[FC(to)Fii(co)] for

f

q'
,
((1 .

A. The photoelectron spectrum in the presence
of recycling with no phase jitter

Consider the yr ——0 limit of the model and only the
photoelectron spectrum S(to). This quantity is expected
to be simpler than Po(t) since it is observable in the t ~ oo

limit. The derivation, given in Appendixes D and E
hinges on the argument that the form of S(co) is known:
As in the semiclassical limit given in Eq. (4.12), the
numerator of S(co) must refiect the Fano zero. This is be-
cause there cannot be decay from that particular energy
level which is inaccessible for excitation due to complete
destructive interference. By the same token, the denomi-
nator in S(to) is expected to have two poles for the two
dressed resonances in the model.

The existence of the new recycling decay channel modi-
fies the width and location of the dressed resonances. In
particular, as the recycling frequency ys [Eq. (3.26)] in-
creases, the elastic and inelastic dressed resonances nar-
rows and broadens, respectively. The physical origin of
this behavior and examples are given in Sec. VI. Here we
quote only the result (Appendix E),

trapping

=4(1+q')(1 —&/yiq) . (4.18)
(5.3)

For more complicated configurations, e.g., for several au-
toionizing states, ' the same physical argument leads to a
trapping condition that equates the product of all the
dressed-state widths to zero.

V. THE FULL PROBLEM: TWO ANALYTIC
RESULTS PERTAINING TO RECYCLING

AND PHASE- JITTER RELAXATION

The simplicity of the solution to the equations of
motion in the semiclassical limit is lost when relaxations

The physical content of the
f q f

))1 and
f q f

«1 limits
is discussed in Sec. VI.

B. The substitution rule in the presence
of phase-jitter relaxation

A quick proof of the substitution rule for including the
yT-term effects into a yT ——0 calculation follows from
(3.11). This equation implies that in the unperturbed rep-
resentation or the SDR, the yT term contributes only for
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0„=
l
0)&j l, or its adjoint, since

(5.4)
WEAK
FIEI 0

~ q++1

For these Oz only the first term on the RHS of (3.11)
contributes I

+WEAK I

FIELD i

STRONG
FIELD

where 6j coj Q)L This simple observation is the con-
tent of the substitution rule: By replacing

+id, ~+ibj —yr, (in t domain)

+ih ~+ilats +yr, (in z domain}
(5.6}

in the equations of motion, the phase-jitter effects are in-

cluded for one time-atomic observables expectation
values. The "z domain" in (5.6) refers to the Laplace-
transformed equations of motion (Appendix D). In the
presence of recycling, the rule (5.6) obviously does not ap-

ply to the i),i factors in the recycling term of (3.15).

VI. THE FULL PROBLEM: NUMERICAL
RESULTS AND DISCUSSION

of (6.1)

Given the lack of analytical solutions to the full prob-
lem including relaxations, we base our discussion on a nu-

merical solution of the model. The model can be solved
exactly. We can therefore analyze systematically the
solution in the various qualitatively different regimes of
the physical-parameter space. Some segments of this pa-
rameter space have been discussed previously. For the
sake of a unified point of view and completeness we ex-
amine here the whole parameter space.

The model depends on six parameters,

+0~'V~yl~ ~( t01 ~L )~ yS&y T,

W0)/ Y)

FIG. 3. Qualitatively different regimes in the unperturbed
representation physical parameters space, see text. The chosen
variables are all dirnensionless.

when the Rabi oscillation frequency is larger than the de-

cay rate of the upper level to the continuum, then Po(t)
exhibits oscillatory behavior, i.e., Rabi oscillations. This
is therefore a "strong-field" regime. On the other hand,
when 8'0, «yi, the population of the

l
1) state decays

faster than the Rabi frequency 8'Oi. Hence the Rabi os-
ciliations are quenched and Po(t) exhibits an exponential-
ly decaying behavior which is a "weak field" characteris-
tic (Fig. 3).

When q =0 the situation is quite different. Now

Woi « Wp [Eq. (3.25)], i.e., the continuum is populated
directly from the initial state l0). However, since the
continuum is flat, electron probability transferred to the
continuum never comes back. Therefore for

l q l
«1 the

initial state population Po(t) experiences only decay, i.e.,
lq l

«1 is always a weak-field regime (Fig. 3). This
weak-field regime, however, is different in nature from its
counterpart when

l q l
» 1. Since the continuum is popu-

lated directly, the ever stronger the laser intensity is, the
ever faster the l0) level is depleted. This is to be con-
trasted with the situation for

l q l
»1, in which the ini-

tial state depletion rate cannot exceed yi irrespective of
the driving-laser strength.

These remarks are borne out in the following widths

and the calculated quantities are the initial state popula-
tion Po(t) and the photoelectron spectrum S(ni). The
first four parameters in (6.1) specify the stimulated transi-
tions. In previous literature the IQo, q, yiI set is used,
vvhile this work implies that the equivalent

I Woi, W'o„,yi I set is more natural. The last two parame-
ters, i.e., yq and yr, specify the relaxation processes. We
first discuss the ys ——yr ——0 subspace and then examine
the effects of superimposing the relaxation processes.

The key observation is that the yq
——y~ ——0 subspace

comprises two physically different regimes specified by

lq l
»1 and lq l

«1, respectively (see Fig. 3). To
demonstrate the point consider the limits lq l

= co and
q=0 separately. When lq l

=ao it follows from (3.25)
that 8'0~ ~&8'0, i.e., the continuum is populated in-
directly via the autoionizing state

l
1) [see Fig. 1(a)].

Since the lifetime of
l
1) is yi, the population rate of the

continuum cannot exceed y&, irrespective of the purnp-
laser strength parameter 8'OI. Consequently, tvvo situa-
tions can arise: When Wo»&y, (and II'oi»&), i.e.,

3.0

q=-4
4=0
3's= )'T= 0

ELECTRON SPECTRUM
I I

0
-6

{&-~L}l+1

FIG. 4. Photo-electron spectrum for a
l q l

&&1 case with no
relaxations in the weak- and strong-field regimes. The SDR pa-
rameters in units of yl are indicated. The Fano zero coF is at
~F ——b, —ylq =4yI. The narrowed assymetric line shape is evi-
dent in the strong-field case.
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0.1

q=-4
h, =o
Xs= YT=0

-2.0 -2.0

FIG. 5. The lo lotg p of the initial state population corre-
l ~ ~

sponding to Fig. 4. The SDR parameters in units of QI are inui-

e strong-field case Ao ——5 shows attenuated Rabi oscil-
ations, while for the weak-field case th

' 't'
1e e initia state population

is depleted exponentially.

FIG. 7. The lo 1g p ot of the initial state population for a
~ ~ ~

q g~1 case. The SDR parameters in unit funi s o yl are indicated.
The two-slope characteristic in the strong-field case is evident

sum rule:

=-y, for q »1
—=m

i

W'p i' for q «1, (6.2)

where (4.8) w. & was used. In the q «~1 regime we distinguish
between two domains (Fig. 3). In the weak-field domain
i.e., Woi «y»b it follows that y i yi»yo. Therefore
as discussed abose above, Rabi oscillations do not occur. On the

ere ore,

other hand, in the strong-field domain %pi »yi, b„ i.e.,
p -1 i

—yi /2. In this domain Rabi oscillations between
the two dressed resonances do occu Th dr. ey are amped,

owever, since the electron has a fin't b b'1'i e pro a i sty to es-

ap. e g ++1cape to the continuum in each
~
0) —

~
I ) la . Th

regime is qualitatively different. Equations (3.25), (4.4)

( 2) imply that 8'p„y » y th 1

dressed resonance decays directly.
Theseese features of the dressed states are reflected in the

e avior of S(co) and Pp(r) [see Eqs. (4.12) and (4.13)].
Figures 4 and 5 show results in the

~ q ~
&& 1 regime in the

strong- and weak-field limits. The weak-field example is

c aracterized by a very narrow 1 t'

co =co —coL -0, of width given by (4.8), or better yet, by
the solution of the secular equation (4.9). The broad in-

y &
is not seen since it iselastic electron peak with width y
'

t
barely populated. The strong-field example shows the two
dressed resonances. The peak near the Fano zero is nar-

rowed and distorted, ' reflecting the effect of destructive
interference of the two pathways which populate the con-
tinuum. The corresponding Po(t) is given in Fig. 5. The
strong-field case shows damped Rabi oscillations, while

the weak field exhibits an exponential decay.
Figures 6 and 7 are examples of the

~ q ~

&&1 regime.

ELECTRON SPECTRUM
(

Qp -—0.1
=2 0- —--

q=-O. I

6=2
Ys = )'T—-0

0.6

ELECTRON SPECTRUM
)

(ui-~ )&'f

FIG. or a
~ q ~

&..&. 1 case withIG. 6. The photoelectron spectrum for a
~ ~

1

no re axations in the weak- and strong-field regimes. The SDR
parameters in units of yl are indicated. The weak-fi

on y e e astic peak. The inelastic peak around 6(co)-2
is too narrow to be reso v

the elas
'

o ved. Increasing 00 broadens and h'ft
stic and inelastic peaks to the point when the latter is

resolved and the former disappears.

0
-4 -3

Itu- uiLI/ )'&

FIG. a q pg case in theG. 8. Photoelectron spectrum for a 1

presence of recycling but no phase-jitter relaxations. The SI3R
q, in uni s o yi, are indicated.parameters and recycling rate y i t f

ote the transition from an Autler- Townes double peak for
y~ —— to an ever-narrower elastic peak at 6{~)=0.
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ELECTRON SPECTR VIVI

I I I I I I

q =-3
Qo 8

&T= 0

I I I 10

ELECTRON SPECTR VIVI

0.01

{w - cu L ) / )'
&

2.0 2.3

{~-tel. )/3'q

FIG. 9. The photoelectron spectrum for a
~ q ~

& l case in the
presence of recycling, with no phase-jitter relaxation. The SDR
parameters and y~ in units of yI are indicated. The Pano zero
is at 5{~)=7. Note that as y~ increases, the assymetric inelastic

peak around 5{m)=6 is broadened, and the emergence of the
ever-narrowed elastic peak around 5{co)=0 is seen.

In this case Eqs. (4.8) and (6.2) imply that the elastic
peak in S(ni) is ever broadened as the laser strength in-
creases. The inelastic peak at 5(co)-

~

b,
~

is, on the con-
trary, very narrow to the point of not bring resolved in the
figures for the small Qo case. A corresponding Po(t)
behavior (Fig. 7) shows an interesting two-slope structure:
The. first slope, which controls the short-time behavior,
increases with the driving-laser strength, while the second,
almost vanishing slope at longer times hardly depends on
the driving-laser strength. In terms of our physical pic-
ture, the first slope is associated with the direct depletion
of 0), while the second slope represents a slow depletion
of 0) via the autoionizing state

~

1).
We turn now to discuss the effect of the relaxations.

The qualitative effect of radiative recycling is the follow-

FIG. 11. Effect of recycling on the photoelectron spectrum
corresponding to the

~ q ~

&&1 case of Fig. 6. (a), (b), (c) probe
three adjacent sections of the spectrum. The narrowing
{broadening) effect of recycling on the elastic (inelastic) peaks,
respectively, is evident.

ing. As the recycling frequency ys increases, the fraction
of time the atom spends in the initial state increases since
recycling arises from decay back to the initial state. Con-
sequent1y an increase in yq suppresses the oscillations in

Po(t), narrows the elastic peak, and broadens the inelastic
peak in S(cu). ' These features occur irrespective of the4, 5

stimulated transitions' parameters. The examples in Figs.
8—12 demonstrate these remarks.

Figure 8 is a particularly simple case where for ys ——0
the spectrum $(ni) shows an Autler-Townes double-hump
line shape. ' This is therefore a strong-field,

~ q ~

&&1
case. When 2ys ——Qo ——4, i.e., when the recycling frequen-
cy is equal to the Rabi frequency, there is a transition to
the single, ever narrower elastic peak at 5=0 characteris-
tic of a weak-field situation. A more typical

~ q ~
&&1 ex-

ample of elastic peak narrowing is given in Fig. 9: The
5(cu) =0 peak is ever narrowed as ys increases, while the
narrow inelastic peak around 5(to) =b, is broadened and
eliminated. The corresponding behavior of Pc(t), shown

INITIAl STATE POPUlATION

l

INITIAL STATE POPULATION

CO

0.5
4

-5--

0
0

FIG. 10 The log plot of the initial state population corre-
sponding to Fig. 8. The SDR parameters and y& in units of yl
are indicated. Starting from the attenuated Rabi oscillations for
yq ——0 the curve becomes linear for large yq, is characteristic of
a weak-field domain.

FIG. 12. Log plot of the initial state population for a
~ q ~

&& 1 case in the presence of recycling. The SDR parame-
ters and yq in units of yI are indicated. Note the dramatic
change from a two-slope structure for yz ——0 to a linear depen-
dence as ys increases.
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in Fig. 10, demonstrates the suppression of the Rabi oscil-
lations.

Figures 11 and 12 are examples for the
~ q ~

&& 1

domain. Figure 11, with the parameters of Fig. 6, shows
the ys effects on the elastic and inelastic peaks. The
former is narrowed, and the latter is broadened irrespec-
tive of 8'0 . The dramatic effect on Po(t) is shown in
Fig. 12: Increase in y& suppresses the two-slope behavior,
yielding a single ever-decreasing slope which indicates a
long lifetime of

~
0) .

The effect of the phase-jitter relaxation has been dis-
cussed elsewhere. This relaxation mechanism endows
the driving laser with an effective band width }r. Conse-
quently, the two dressed resonances in S(co) are broadened
and correspondingly Po(t) is depleted faster. It follows,
therefore, that there is a competition between the yr and

yz relaxations with regard to the elastic peak, i.e., narrow-
ing versus broadening, while both act in concert to
broaden the inelastic peak. This competition has been
demonstrated elsewhere.

In summary, the qualitative features of the observables
discussed, e.g., the photoelectron spectrum, reflect the ex-
istence of the two underlying dressed resonances which
originate from the initial and autoionizing states. The lo-
cations and widths of the resonance are determined by the
interplay between the stimulated and relaxation-assisted
transitions. The DRR is the natural representation for
this class of systems since it incorporates the stimulated
transitions from the outset and the corresponding expres-
sions are simple. The systematic analysis of the exact re-
sults provides a clear understanding of the effects due to
laser stimulation and to the recycling and phase-jitter re-
laxation mechanisms. %e hope the DRR may prove use-
ful in other applications, e.g., to simplify the calculation
of light scattering by an autoionizing state. 's
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APPENDIX A: THE MARKOV-BORN
APPROXIMATION

This approximation' ' underlies the elimination of the
radiation-field operators from the equations of motion for
the atomic operator 0 q(t). The argument for such an el-
imination, in the context of continuum transitions, is
demonstrated by considering a typical term in the equa-

tion of motion for 0 z(t) in the unperturbed representa-
tion,

[0q,H twas]a+ f dcoAQq(co)([0 „(t),8 (co)])Ha i(t)

and

a i.(t)=a g"'(t) i f—drGi„(t r) f—deign„(ei)(8(~))H(r)

(A2)

with"

a„'"'(r)=a„e ' "'

(A3)

By inserting (A2) into (Al) and replacing the A, summa-
tion by an integration one finds the RHS proportional to

(A4)

Now since Qx(ai) [Eq. (2.6)] and the radiation-modes
spectrum are infinitely broad, the coi integration implies

~
t —~

~

-~, —10 ' sec, where ~, is a cutoff set as the
transit time for light across an atom. Next,
define' an envelope dipole operator 8 s by
[8(ai)]H(&)=e' '8g(co, &), where 8s(ai, t) is expected to
vary over typical slow atomic time scales ~z such as the
Rabi frequency. Consequently, as long as ~z ~~7;, it is

allowed to approximate 8 s(ai, r) =8 s(ai, t) under the in-

tegral sign and the Markov approximation follows.
For typical discrete transitions in the optical-frequency

domain this condition is well satisfied. For continuum
transitions, however, the very high and very low transition
frequencies pose a problem. Vixen m is very high, such
that ( ai }—v, ', the Markov approximation obviously
breaks down. For very low frequencies ~, the rotating-
wave approximation' underlying (2.4) may become in-
valid. Thus the basic premises of (3.1) are valid only
within a frequencies band. %hen q «&1, the Fano profile

naturally defines a frequency band around the autoioniz-
ing state. %hen q ~&1, however, the relevant transition
frequency band must be delineated in some other way. In
our approach this is implicitly done in (3.18) by invoking
Q(co)=Q(co~). With these provisos it is permissible in
(A4) to replace 8s(ei, r) by 8s(ei, t) so that

(A5)

This is one form of the Markov approximation, which
leads to (3.1).

APPENDIX 8: TRANSFORMATION
TO THE ROTATING FRAME AND THE DRR

The rotating frame is defined as the frame in which
H sc(t), given in Eq. (3.5), is time independent. Hence, if
we define
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~(p) ~ ~(p)~ tHsc(t) =R o(t)fib scR p(t),
APPENDIX C: THE EQUATIONS OF MOTION

IN THE SDR REPRESENTATION

then simple algebra yields

Rp(t)= ~0)&0~+e [~1)&1~+f d~~cg)&~~].

Note that R o(t) is determined only up to a phase. Corre-
spondingly the Schrodinger equation i kt /dt

~
f(t ) )

=H sc(t)
~
g(t)) is transformed into

A considerable body of literature' as well as the exact
numerical solution of the model were carried out in the
SDR representation [see Sec. I and Fig. 1(b)]. The basis
states of the SDR is comprised of the initial state

~
0) and

the perturbed continuum states
~
bosn) resulting from the

admixture of the autoionizing state
~
1) and the unper-

turbed continuum states ~co). The Fano profile Fo(to)
[Eq. (3.23}]is, correspondingly, the dipole matrix element
between 10& and

I pisn&

i
~
P(t)) =h sc ~

P(t)),

where

(82)
Fp(co) Wpi & 1

~
cosn) + W'p

& pi
~
cpsn) (C 1)

Since in the SDR the states
~

0) and
f
1) are not treat-

ed on an equal footing, a complete set of atomic projec-
tion operators are

~
{{(t) ) =R p(t ) I 1{(t) ),

h sc——h sc iR —p(t )—R p(t )

Po
~

0) &0 ~, Csn(cp, co')=
~
pisn) &tpsn

8 sn(tp) = 10& &bosn I
8 sn(p )=

I bosn& &01
(C2)

and h sc is given by (3.9). From (82) and (83) it follows
that the evolution operator R(t) and density matrixP(t)
pertaining to 0 sc(t) are

O(t)= & trp(t)O), (C3)

Straightforward algebra, with use of the Markov-8orn ap-
proximation, gives the equations of motion for the expec-
tation values,

R (t ) =R o(t }exp( ih sc—t ),

P(t)=R(t)ppR (t) .
(84)

where p(t) is the total density matrix, & ) indicates an en-
semble average, and tr is a trace over the atomic and radi-
ative degrees of freedom. The equations of motion are

—Po(t) = —f dtp[Fp (tp)Bsn(co;t)+Fp(io)Bsn(co;t)]+ f dtpdco'[Fp (co)Rsn(tp')+Fp(co')R sn(p~)]Csn(pi, pi';t),

d—Bsn(too', t) =[ i(too t—pL, ) y—T]Bsn(co—p, t)+Fo (cop)Po(t)

—f dt's Fo (rp )Csn(~p p~o't) —Fo (pio) f dto'Rsn(co')Bsn(tp';t), (C4)

Csn(top, top't) =t (top —pip)Csn(top, too t)+Fo ( ')p8ip(snp,

gati)

+Fp( pip) Bsn( cp',pt)

dt's Fp cop iso 6) CsD 6)p 6);t +Fp ct)p R sD co Cso N, cup,'t

and Rsn(co) =Q(toi)Fp(co), where Q(&pi) is given in (3.18).
A comparison of (C4) with (3.15) underscores the simplifi-
cation introduced by employing the DRR.

APPENDIX D: EXACT SOI.UTIQN
OF THE EQUATIONS OF MOTION

The equations of motion in the SDR, Eq. {C4),or in the
DRR, Eq. (3.15), are linear, first order in time, and with
time-independent coefficients. Hence the Laplace-
transform method is particularly suitable. Define

F(z)= f dte "F(t), F(t)= . f dze*'F(z),
p 2m

where C is a contour parallel to the imaginary axis and lo-
cated to the right of all singularities of F(z) in the z
plane. Then the corresponding equations for Pp(z ),
Bsn(co;z), and Csn(cop, cop, z) or C(cop, cop;z) become alge-
braic. In the case of the SRD, the solution strategy is first
to express Csn (pio, cooz) in terms of 8sn ( p~p', z ) and
Bsn(pip, 'z), to insert the result in the other two equations
and solve for Bsn(cop, z) in terms of Po(z), and finally to
solve the algebraic equation for Po(z). This straightfor-
ward yet tedious procedure storks due to the simple
Lorentzian form of Fp(cu), Eq. (3.23), which leads to a se-

parable equation. We outline the corresponding steps in
conjunction with the DRR. These results are then used in
Appendix E.

In the absence of phase-jitter relaxation (yT ——0), the
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Laplace-transformed equation of motion (3.15) takes the

[z—l(coo —coo)]C(coo& coo&z)= 'D( coo&coo&z)

Ao(cop, cooz) = (0
~ Coo) (co 0 ~

0)[1+M(z)],
R (coo)

Ko(coo, coo',z ) =
z —t (coo—coo)

f(coo,z)= f dcooKQ(coo, coo z)&D(coo co&o', z) .

(D3)

In terms of (D3), the equation of motion (D2) takes the
canonical form,

D(coo, coo,'z ) =Ao(cop coo'z ) —F (coo)f(coo'z )

[z —E (coo co—o }]C(coo,coo,z )

=[1+M(z)](0
i coo)(coI3i 0)

—f d co'[F*( coo)Z( co')C( coo, co';z)

+F(coo)E. '(co')C(co', coo,z)],
where the initial conditions C(coo, coo, t =0}[see Eq. (3.20)]
have been incorporated and M(z ) is the Laplace
transform of M(t ). We now introduce the definitions

we added to the inverted function a "cosine window, "
i.e., f(i)=0.51(i)I1—cos[2n(i —1)!X]I,where l(i) are
the unsmoothed values of the function and N (even) is the
number of grid values and 1 (i (N+ 1.

APPENDIX E: THE SECULAR EQUATION
FOR THE PHGTOEI. ECTRON SPECTRUM

IN THE PRESENCE OF RECYCI.ING

We derive Eq. (5.1) by means of a combination of alge-
braic steps and an argument that hinges on the known
structure of the expression of the photoelectron spectrum,
namely, the presence of the Fano zero in the numerator
(through a (0

~
co) factor) and two poles in the denomina-

tor. This form follows from the physical arguments dis-
cussed in the text. We therefore seek to identify such fac-
tors in the exact solution. The notation of Appendix D is
used throughout. Only the infinite-time solution is need-
ed, hence we set z=0.

Consider first the q = oo case. Equation (3.17) gives

F(cop) = %pi ( 1
~

co Q)
' 1/2

—F(~0)f'(~o,z) . (D4)

Equation (D4) can be "solved" for D(coo, coo,'z) since it
has a separable structure: Applying cu'

p coo&6)o,z to
(D4) gives, after some manipulations,

(1
i coo) = 1

p(coo)

&& @coo)+II'oi ~o
Vl

(El)

f(cooz)=A3(COQ z)+ f dcoo'Ki(cop, coo';z)f(coo, z),
(D5)

and denote [see (D6)]

P(~o,z)
1+8i (cop,z ) = (iz+ coo I o}(iz—+coo I

&
)— (E2)

A3(~o,z) =A2(~o.z)

—82(coo&z) f dcopKQ(cop, coo,z)A2 (coo','z),

Ki(cop&coo&z) =~2(cop&z) f dcopKQ(cop&coo &z)Bz (coo,z)''

where P(cop, z) is a polynomial of second order in coo.

Lengthy algebra following Appendix D leads to the fol-
lowing forms:

P4(coo, z )
f(cop,z) =

D6 coo&z

A ((coo,z)
Ap(coo, z) =

1+8i (coo,z

XKQ (coo,coo';z),
P5 5 (coo&coo'&z )

D(cop&coo', z ) =
D6(coo,z)D6 (coo,z)

D6(coo,z) =p(coo»)(&z+ coo —I"0)

(E3)

82(coo,z) =

Ai(coo, z) =

Bi(coo,z) =

F(~0)

1+Bi(coo,z)

f dcopKQ(cop&coo'&z)AQ(copcop&z},

AP 0 6)O, NO,'z F 6)o

Provided the kernal Ki(cop, coo',z) in (D5) is separable, we
can solve for f(coo,z). This is the case when F(co) is
comprised of one pole, as in the Fano profile Fo(co}, or a
product of poles, as in the DRR. Finally, M(z) is deter-
niined self-consistently.

The inversion (Dl) to the time domain is done numeri-
cally, by converting the Laplace transform to a Fourier
transform and evaluating the latter with the fast-Fourier-
transform algorithm. To supress ripples from edge effects

X(hz+~0 —r, )P(~„z),
where P4,P5 5 are polynomials of orders 4 and 5 (in

coo, coo), respectively. The important point in (E3) is the
denominator D6. Since only P(coo,z) depends on the recy-
chng frequency y„ the other four factors in D6(coo,z)
must cancel factors in the numerator of D(cop, cop,z)
Since the numerator is of order 5 in coo, coo, the cancella-
tion leaves linear factors in coo, coo in the numerator which
must express the Fano zero. Therefore

[@~0) ~+a ie]'
S(~0)aa(~„~p,z =0)=lil, . (E4)

I
P(coo,z=0}

~

'

Consider now the q =0 limit when [recall Eq. (3.17)]
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[@~0)—~d, )[@~0)—~d, )
F(coo) = Wg

p(too)

Using the same steps as in the q = ac case me realize that

D(too, too', z) is again a rational function, with a denomina-
tor given by a product Ds (too, z)D6(too, z), as in Eq. (E3).
Hence the form (E4) must follow. Finally, since the F(to)
factor for a general q is a sum of (E5) and (El), [Eq.
(3.17)], the forms (E4) and (E2) are always valid.
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