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Continuum emission during ion-atom collisions at high projectile energies
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A general formalism to treat radiative emission of a colliding three-particle system is developed in

the semiclassical approximation. The matrix element of the matter-radiation interaction is separat-
ed into three terms representing the center of mass, the intersystem bremsstrahlung, and the electron
bremsstrahlung. At each step we impose the off-shell orthogonality property of the mechanical
wave functions. Instead of internuclear bremsstrahlung, used so far, a more general concept of in-

tersystem bremsstrahlung is introduced. The electron bremsstrahlung is calculated using eikonal
distorted wave functions, and good agreement is found with experiment. Radiative electron excita-
tion and deexcitation have also been calculated. The former is found to be very small, while the
spectrum associated with the latter produces the continuous emission around the characteristic line,

induced by the passing projectile.

I. INTRODUCTION

During ion-atom (or ion-ion) collisions continuous radi-
ation is emitted. Several kinds of processes have been dis-
tinguished, mainly in the x-ray region. They have been
generally denoted according to the model used to describe
the radiative emission in a particular photon or projectile
energy range. Here, we propose a simpler classification.
Let us consider a single collision of a projectile P (of mass
Mp and charge Zp) with a hydrogenic atom composed of
a nucleus T (Mr and Zr), and an active electron e
(M, =1 and Z, = —1). In accordance with the mechani-
cal or nonradiative case, we define four radiative process-
es: radiative electron capture (REC), radiative ionization
(RI), radiative excitation or deexcitation (REX), and radi-
ative elastic scattering (REL). Therefore, the radiative
emission process is classified in accordance with the final
state of the active electron. As far as the three-particle
system is concerned, any kind of radiation can be ascribed
to one of these.

REC is the emission of radiation during a charge-
exchange process. At high and intermediate projectile en-
ergies, REC is characterized by the presence of a peak in
the x-ray region. ' Its profile refiects the momentum
distribution of the initial bound state. REC is quite well
understood, and the theories predict photon spectra and
total cross sections with an acceptable degree of agree-
ment with experiment. REC can be seen, in the simplest
form, as a binary e Pradiative recom-bination.

RI is a process in which the ionization of the electron is
accompanied by radiative emission. Jakubassa and
Kleber have calculated this process with a three-particle
approach, only considering the e-I' continuum interaction
on both the entrance and exit channels. In particular, ra-
diative electron capture to the continuum can be con-
sidered as a part of the RI. On the other hand, Anholt
and Saylor have estimated the RI by using the binary-

encounter approximation.
This work deals mainly with REX and REL, i.e., with

radiative direct processes.
In REL, the projectile transfers a part of its kinetic en-

ergy to the radiation field, while the electron ends in the
same orbital. This process is here called "elastic" from
the electron point of view in the sense that it ends in the
same state as the initial one. But the total process is really
inelastic since the projectile loses energy to the photon.
This mechanism of photon emission is closely related to
the so-called atomic bremsstrahlung, studied by Amusia
and recently developed by Ishii and Morita. ' '"

In REX, the excitation of the electron is accompanied
by the emission of light. To our knowledge, no REX
cross section have ever been reported. We also calculate
radiative deexcitation, which is widely known as collision-
al broadening, i.e., the radiative decay in the presence of a
moving projectile. We show that REX can be considered
as the analytical continuation to negative photon energy
of the collisional broadening for the inverse process. We
find that REL is orders of magnitude larger than REX at
the high and intermediate projectile energies considered
here.

Certainly the process is determined by the initial and fi-
nal states of the electron. Such a process can be some-
times interpreted in accordance with the basis used. At
low impact energy, it is convenient to use a molecular
basis giving rise to a parallel classification, the so-called
molecular x ray. ' In the present work we use distorted-
wave formulas to describe the mechanical wave functions,
which is valid at high impact energies.

The work is organized as follows. In Sec. II we formu-
late a nonrelativistic semiclassical approximation for a
colliding three-particle system with the continuum emis-
sion of radiation. We find that the relevant matrix ele-
ment is separated into three terms with definite physical
meanings, and they are calculated in Sec. III. The first
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term is the radiation of the center of mass and can be re-
moved (within the dipole approximation) following the
procedure of Shakeshaft and Spruch, as presented in Sec.
IIIA. In Sec. III 8 we find that the second matrix ele-
ment represents an intersystern bremsstrahlung. In partic-
ular, when internuclear coordinates are used, it is the so-
called internuclear bremsstrahlung. ' ' The third
element —by far the dominant —is due to the radiative
emission of the electron in a combined field of both nu-
clei. This term has been calculated by using second-order
Born wave functions by Amusia and Ishii and Morita, '

and it is called atomic bremsstrahlung. In Sec. III C, we
calculate this matrix element using eikonal distorted-wave
functions to describe the initial and final electronic states.
In mechanical or nonradiative ion-atom excitations the
use of these distorted-wave functions produces the so-
called symmetric eikonal approximation which has proved
to be a good method to deal with direct processes for high
and intermediate impinging energies. ' In Sec. IV, we
present numerical results of REL and REX, and we com-
pare them with the available experiments. Further, in the
Appendix we derive from the general Eqs. (2.11)—(2.14)
the expressions of REC and RI commonly found in the
literature. Atomic units are used.

II. GENERAL THEORY

In the semiclassical approximation the total Hamiltoni-
an H can be written as H =H +H, +H~„where H is
the mechanical Hamiltonian, i.e., the kinetic energy of the
three particles plus the potentials, H„ is the radiation
Hamiltonian, and H, is the matter-radiation interaction,
whose expression for spontaneous emission is given by

H, = ( 1k i
H, i Ok )

=iA, R& g (Z /M )exp( —ik x„)V„, (2.1)
N =T,p, e

N

FIG. 1. Coordinate systems.
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(2.5)

(2.6)

(2.7)

where Ao=(2n/to)'~, At is the polarization vector ver-

sor, k is the photon momentum, and ro=kc is the photon
energy. The coordinate x„ is the position of the particle n

(n = T, P, or e) with respect to some inertial frame.
It is more convenient to introduce the relative coordi-

nate sets which diagonalize the kinetic energy, i.e.,
IX,RJ, rJ I with j= T, P, or N (see Fig. I). After lengthy

algebra, we find that Hi can be written as

Ht iAoki ex——p( ik, X. )(PVx+BJV—R bJVr )~ (2 2).— .

for internuclear coordinates, i.e., j=N
Equation (2.2) provides all the possible radiation that

the three-particle system can spontaneously emit within
the semiclassical approximation, including retardation ef-
fects contained in the factors E„. If these effects are to be
considered, then these factors must be taken into account
in the corresponding integrations. In this case, it is con-
venient to transform the term (x„—X) in Eq. (2.4) to the
chosen coordinate system, i.e.,

x„—X= F„~RJ.+y„Jrj. , (2.&)

where X is the position of the center of mass and j= T,
P, or N represents any of the relative coordinate sets P, .
which is common to any set, is given by

where as usual n =T, I', or e indicates the particle and

j = T, I', or X denotes the coordinate system. In particu-
lar we find

ZTET+ZpEp —E,
MT+Mp+ 1

E„=exp[—ik (x„—X)t .

We find the factors of Eq. (2.2) are given by

(2.3)
Y,T ——YTT —— Mp/(MT+Mp+ 1—),
ypT ——0, y,r MT /(MT+ 1), ——

yTT
———1/(MT + 1),

YpT (MT+ 1)/(MT+Mp——+1),

(2.9)
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and the remaining ones can be calculated with the usual
transformation of coordinate systems.

Note that these equations are also valid for impact of
light particles such as electrons or positrons.

where the plane waves represent the movement of the
center of mass, U;f are the initial and final tata/ momen-

ta of the three particles, and Vr+ and 4f are the exact
solution of the mechanical Hamiltonian H without the
kinetic energy of the center of mass. After simple algebra
we find that the matrix element can be separated into
three terms with definite physical mearungs:

& HI )f; =5(U; —Uf k)(Ht —+Htj +Htj ), (2.11)

where

HICM'=Ao~, PoU, &q;
~

q+&,

HIf~ =iApkrBfo&qlf ,
~
VR

~

4;+),

HIJ'=rAo~r b o&+f ~~, Iq,+& .

(2.12)

(2.13)

(2.14)

The 5 function carries on the information of the rnomen-
tum conservation and can be removed in the wave-packet
formulation, therefore we shall omit it. Equation (2.11) is
a simple extension of Shakeshaft and Spruch's Eq. (4)
(Ref. 3) to a three- article system. As we shall see in the
next section, Ht represents the radiation of the center
of mass, HI' is the intersystem bremsstrahlung (ISB),
and Hr represents the electron bremsstrahlung (EB} in
the field of both nuclei.

Finally, the fivefold differential cross section is given
by5

2

, , g ~
&Hi)f; ~',

(2') c
(2.15)

where vz is the (T+e) I' reduced mass—, and dQ„and
dQ are the differential sohd angles of the photon and pro-
jectile, respectively.

A. The dipole approximation

Hereafter we shall use the dipole approximation which
consists of considering that k (x„—X) && 1, i.e., the limit
as k~0. In this case, the factors pj~pjp, BJ~Bfo, and

bj~bjp, which can be obtained from Eqs. (2.3)—(2.7) by
simply replacing E„by unity. Further, for ion-atom col-
lisions, where MT ~ ~~1, bjo are unity.

In first perturbative order, the matrix element reads

&Hr)f; ——(2rt) &exp(iUf'X)% f ~Hj ~exp(l'O' X)%' )

(2.10)

of-mass frame. When approximate wave functions are
used, the Galilean invariance may be invalidated due to
spurious radiation of the center of mass. In the present
work, we invoke the correct orthogonality property.

%hen the dipole approximation is no longer valid, re-
tardation effects should be taken into consideration.
Thus, Hr may account for the change-of-system emis-CMB

sion found by Spindler et a/. ,
' while 5(U; —Uf —k)

would produce the Doppler effect. '

B. Intersystem bremsstrahlung

In this section we prove that the second term H~J
given by Eq. (2.13), is in a certain way related to the so-
called internuclear bremsstrahlung. Since we shall treat
direct processes, it is more convenient to work with direct
coordinates.

First of all, we remove the free movement of the projec-
tile by setting

0',+ =exp(iK; RT)p,+, 0'f exp(i K——f RT)pf (3.1)

wlier e K fare the ini'tial and final momenta of the pro-
jectile and p,

+ and pf are the exact three-particle wave
functions excluding the projectile kinetic. Replacing Eq.
(3.1) in Eq. (2.13), we find

D+ (Z, v, K;r)=—exp(art/2)1 (1+ia)

Ht ~T= Aror 'B T[/oK '& qf ~

%~; )

+ & yf ~
exp(i P R }p'„~y~+ ) ]

=iAokt BTo&pf '( exp(iP Rr)VR
) p~+), (3.2)

where, once again, we have used the off-shell orthogonali-
ty of the wave functions, and P =K; —Kf is the momen-
tum transfer vector. BTp is of the order of MT p, and the
matrix element essentially involves electronic quantities
and so cannot be very lar e. Therefore, HrT is negligible.

The calculation of Ht'T requires the exact three-particle
wave functions which are unknown. In order to estimate
Ht', , we resort to first-order Born wave functions with
the correct Coulomb behavior at large internuclear dis-
tances (sometimes this approximation is called the
Coulomb-Born approximation). The wave functions are
given by

4;+ =exp(iK; RT)D+(Zz, vT, K;;Rz)y;(rz),
(3.3)

0 f =-exp(i Kf RT )D (Zz, vT, Kf ', RT )off ( rT )

where y;f (rT) are the initial and final electronic states,

III. CALCULATION )& iFi(+ia, 1, +iICr iK r), — (3.4)

A. Removal of the spurious radiation
of the center of mass

The exact wave functions are off-shell orthogonal, i.e.,
& %f

~

ql,+. ) =0, and this property cancels the term Ht
Therefore, Galilean invariance holds, as indicated by
Shakeshaft and Spruch. When the proper orthogonality
condition is used, there is no need to work in the center-

a =vz/K =Z/U, where v=K/v is the ion velocity, and
Zz is the product of Coulomb charges of the colliding
systems, i.e., Z~ ——Zp(ZT —1).'

This approximation has two advantages: first, the wave
functions are off-shell orthogonal —as the exact ones
are—and second, the movement of the projectile is decou-
pled from the electron excitation. Using the wave func-
tions given by Eq. (3.3) the matrix element Hr'T reads
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X f dRexp(ip R)D '(Zz, vT, Kf,'R)

X VRD+(Z~, vT, K;;R) . (3.5)

ZK 1
ln

Pv
(3.6)

where 8„ is the angle of the emitted photon with respect
to the projectile incident direction. The integration on the
photon angular distribution gives the single differential
cross section:

ISB
O'T

dc@

16Z+BTO 2j:;
ln

3c vN Pp
(3.7)

Some points should be remarked upon in relation to Eq.
(3.7). First, ISB cross sections are of the order Mr p, and
so very small in comparison with EB to be calculated in
the next section. As noted by Amusia there is a term
MT p coming from the interference between ISB and EB
amplitudes. At very high photon energy, say in the very
hard x-ray region, the EB cross section falls out faster
than the ISH, and then the latter becomes dominant. ' '5
In this photon energy the dipole approximation is no
longer valid.

Equation (3.7) is similar, but not equal, to the internu-
clear bremsstrahlung of Alder et al. ,

' later considered by
Folkmann. ' ' The difference lies in the fact that the fac-
tor BTO contains (ZT —1) instead of ZT. This is so be-
cause we have used the set of coordinates IRT, rrI as
given by Eq. (2.5). We are of course allowed to use the
reactive coordinates, i.e., j=P, or the internucleus ones,
i.e., j=X, where the corresponding factors are given by
Eqs. (2.6) and (2.7), respectively. In those cases, we obtain
expressions similar to Eq. (3.7) with Bpo or 8&0 instead of
BTO. The factor 8~0 is (ZT/Mr Zp/Mp) whic—h is the
multiplying factor of the Alder's equation.

Then the ISB term depends on the coordinates used, but
the EB term, i.e., the gradient on the electronic coordi-
nate, must also depend on the coordinates accordingly, so
that the sum is independent of the coordinate system used.
The EB term is to be calculated with bjoV, (j = T,P,N)
depending on the coordinates chosen. Since the ISB is
very small, the gradient on any of the electronic coordi-

The overlap between the initial and final atomic orbitals
clearly indicates that Hiz is different from zero in the
elastic channel. So, ISB will contribute to REL but not to
REX. In other words, the projectile radiates in the pres-
ence of the atom target as a whole, while the electron is a
frozen observer.

The integral in Eq. (3.5) is a Nordsieck's integral.
Closed forms for this kind of integral can be obtained in
terms of the hypergeometric function 2Ei. Simpler forms
were developed by Bethe ' retaining the first order in
Z~. Following the Bethe's technique, and integrating
on the projectile angular distribution, the triple differen-
tial cross section, given by HP alone, is found to be

j.sB 2 2d+T ZN~TO
sin~8„+ ( 1+cos 8„)

c Ucom

nates should be the same (to order MT p).
When approximate nonorthogonal wave functions are

used, the EB does depend on the electronic coordinate
chosen. To illustrate one example: Briggs and Dettmann
were the first to note that the REC matrix element calcu-
lated with bToV, is different than the one calculated with

bpoV . This is a consequence of the absence of off-shell

orthogonality of the first-order Born wave functions used
in that work, as later indicated by Shakeshaft and
Spruch.

It can be easily shown that ISB is small also for REC.
Nonorthogonal —and so incorrect —wave functions allow
for nonreal radiation emission. The magnitude of this
spurious radiation is comparable with EB because the fac-
tor E;BTO in Eq. (3.2) is of the order of unity. Further, if
this term were incorrectly kept the result would strongly
depend on the target nuclear mass, giving rise to a false
isotopic effect.

HiT =(2ir) 5(K —Kf)

iAoki —I draff(I )Vglp (r)' (3.8)

This expression presents two independent features. The
5(K; —Kf ) means that the projectile passes through
without interacting, i.e., a simple observer, while the elec-
tron interacts with the radiation field in the presence only
of the target nucleus. Light is not emitted for an initial
ground state, and an excited state decays, emitting the
characteristic line, according to the selection rules.

Therefore, the first order is of no help to describe the
continuum radiation for REL or REX. This is so because
for direct processes the nondistorted wave functions have
no information about the projectile potential. We have to
recall that in REC, the first Born approximation describes
the continuum radiation emitted, and it can be used not
only to calculate total cross sections but also photon and
angular distributions. The difference lies in the fact that
in electron capture the nondistorted wave functions impli-
citly contain the information of both potentials in the ini-
tial and final bound states.

From the previous discussion, it becomes clear that the
electronic states should include the distortion of the elec-
tron by the projectile. Ishii and Morita, ' following Amu-
sia, have used the second-order Born approximation.
Here we shall use a distorted-wave method recently ap-
plied in atomic collision theory, the so-called symmetric
eikonal method. It makes use of the following distorted-
wave functions:

4,+ =-exp(iK; Rz. )p;(rT)E+(Zp, —v;rp),

+f -=exp(iKf. RT)pf(rT)E (Zp, —v;rp),
(3.9)

C. Electron bremsstrahlung

Here we calculate the third term HiT of Eq. (2.11)
which is by far the more relevant. To begin with we shall

apply, once more, the first Born approximation. Using
the wave functions given by Eq. (3.3), the matrix element
H reads
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E-+(Z, u;r) =exp[+i(Z/u)ln(ur+v r)]

which can be relatm1 to the D +fa-ctor as

(3.10)

E+(Z-, u;r) = lim exp[+i(Z/u)lnm ]D +(Z-, m, v;r) .

(3.11)

Qp ——I dray/(rr)exp(iP rr)q;(rr)

X rpexp —iP rp Z-' Zp, —v;rI,

In a recent work it has been shown that the symmetri-
cal eikonal is one of the best methods to describe the non-

radiative or mechanical excitation. '

Using Eq. (3.9) and neglecting terms of order Mr p, the
EB is given by

Hir = iA—OAi (Qp+Qr), (3.12)

for hydrogenic orbitals. A numerical code has been
worked out to obtain an explicit expression of the
Nordsieck's integrals using the hypergeometric function
iFi. Afterwards, Qp was projected on the photon polari-
zation vectors to obtain the fivefold differential cross sec-
tion, as indicated in Eq. (2.15).

If the magnetic numbers of the initial and (or) final
bound states are nonzero, then a numerical integration on
the azimuth of the projectile has to be performed. Other-
wise, it has a closed form. Two integrals on dQ can be
performed in closed forms, and finally the remaining
ones, on the photon energy des and on the projectile
scattering angle d 0, have to be numerically calculated. A
total cross section for REX, say ls~2s, takes about 10
min on our minicomputer (PDP 11/44) considering 100
projectile angles and 50 photon energies. The computer
time is mainly spent in evaluating the hypergeometric
fuilctlolls iFi.

)& V, E+(Zp, —v;rp)

Qr= I dray~(rr)exp(iP rr)V, y;(rr)

rpexp —1P'rp E Zp, —v;rp

(3.13) A. Radiative elastic scattering

Figure 2 shows the theoretical photon spectrum, emit-
ted at 90' to the beam, produced by 1-MeV protons on
aluminum. All the 13 electrons of the target may produce

&& E+(Zp, —v;rp), (3.14) fs 1s

The integrals over rr are the form factor or related, while

the integrals on rp are of the Nordsiek type. i

The EB is composed of two terms, Qr and Qp, with

different physical meanings. Qp represents the brems-

strahlung emission of the electron in the field of the pro-

jectile, while the nucleus target stays as an observer. Oth-

erwise, Qr indicates that the projectile passes through,
provides the energy and momentum transfer, while the
electron produces bremsstrahlung in the field of the tar-

get. We have found that Qr tends to zero as m~ no in

Eq. (3.11).
The wave functions in Eqs. (3.9) describe collisions

where both the initial and final electron states are bound

to the target. Therefore Eqs. (3.12)—(3.14) represent a ra-

diative direct process. %e obtain REL by setting y; =p~
and REX (or deexcitation) if q; &yy

The EB terms for REC and RI are derivatixi in the Ap-

pendix.

10

10

IV. CALCULATION AND COMPARISON
%'ITH EXPERIMENTS

As we have seen in Sec. III A, there is no radiation of
the center of mass in the dipole approximation, when the
off-shell orthogonality property is enforced. The ISB
term is very small and can be neglected in the soft x-ray
region, as indicated in Sec. III 8. Therefore, the remain-

ing term, the EB, is the dominant effect in heavy-
ion —atom collisions. %'e have calculated REL and REX
cross sections using the distorted-wave functions as indi-

cated in the last section.
The procedure can be summarized as follows: closed

forms were found for form factors and related integrals

10
2 3 4 5

PHOTON ENERGY (gev)

FIG. 2. X-ray continuous emission at 90' to the beam for 1-

MeV protons colliding with an aluminum target as a function of
the photon energy. Solid lines denote present calculations: radi-

ative elastic scattering coming from three orbitals of the alumi-

num atom (1s, 2s, and 2po), and ISB is the intersystem brems-

strahlung as given by Eq. {3.6). Dashed lines represent theoreti-

cal results as reported by Ishii and Morita (Ref. 10): SEB, RI,
and AB denote secondary electron bremsstrahlung, radiative

ionization, and atomic bremsstrahlung, respectively. The points

are the experimental data on an aluminum sohd target {Ref. 10).
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REL radiation. However, the is-is transition is by far
the dominant. As shown in the figure, it is about 6 orders
of magnitude larger than 2s-2s and 2po-2po, in the range
considered here. Calculations were carried out using hy-
drogenic orbitals with single effective charges, given by

Zi, ——12.7, Z2, ——3.13, and Z2p ——2.51. %'e also plot

the experiments,
' ' which correspond to the x-ray pro-

duction of an Al solid target. The agreement with the ex-
periments is good. The dashed line shows the results of
Ishii and Morita' calculated with the second Born ap-
proximation, which also gives a good description of the
experiments. Since the Al target is a solid foil, another
kind of process takes place: the so-called secondary elec-
tron bremsstrahlung (SEB). This process takes over the
REL at higher projectile energies in the photon range con-
sidered here. RI, as reported by Ishii and Morita, ' are
also displayed. Both SEB and RI are important in the
soft-photon region, and should be added to EB to account
for the experiments. The ISB production calculated with

Eq. (3.6) is also shown in the figure; its magnitude is very
small, and can be neglected here. The REC process
presents the main contribution around co =U /2 =0.5 keV,
which is placed at a softer photon-energy region, not
shown in the figure. As the photon energy tends to zero,
the cross section diverges. This is a well-known property
and is due to the long-range nature of the Coulomb poten-
tial.

Figure 3 displays the angular distribution of continuum
x rays and compares it with the experiments. Our results

are almost equal to those of Ishii and Morita'0 and repro-
duce the experiments satisfactorily. The light discrepancy
at small angles may be due to the retardation effects, not
considered in the present work.

A very important point is the dependence of the photon
emission on the projectile charge. This subject has been
first explored by Schnopper et al. 6 who measured contin-
uum x rays produced by H+ and 0 + on H2 targets,
These authors have suggested that the photon yield, for a
fixed projectile velocity, should increase as Zq. Further,
the second Born approximation, used by Ishii and Mori-

ta, ' also predicts a Zf dependence. We have calculated
the triple differential cross section do/dcodQ„ for REL
produced by multiply charged bare ions on hydrogen
atoms when the emitted photon energy is 1, i.e., 27.2 eV
(these results can be easily scaled with ZT if needed). Fig-
ure 4 shows the theoretical results for four different im-

pinging velocities as a function of the projectile charge.
We can observe two features: first, the larger the projec-
tile velocity is, the larger the range where the Zz depen-
dence holds. And second, at large projectile charge, say
larger than the projectile velocity, the Zp dependence is
abandoned and a sort of saturation is found. Similar ef-
fects have been found in nonradiative direct excita-
tion. ' Experiments would be welcome to study this ef-
fect, since they would provide important data for the cal-
culation of shielding.

B. Radiative excitation and collisional broadening

Figures 5 and 6 show the photon spectrum for deexcita-
tion and excitation of hydrogen by 100-keV protons,

respectively.
Deexcitation spectra show pronounced peaks when the

photon energy is equal to the difference of binding ener-

gies, and this is the so-called collisional broadening. We
have to recall that our formalism, as shown in Sec. IIIC,
includes the characteristic line of the radiative decay,
when permitted. Therefore, if the projectile passed
through without interacting, the electron would decay and
the spectrum would be the characteristic line with a width
given by the inverse of the time decay, i.e., a very sharp
peak. Peaks seen in Fig. 5 are those characteristic lines
now broadened by the interaction with the projectile mix-
ing the electronic states during the collision. Note that
forbidden transitions for an isolated atom, such as 2s-is,
now show a well-defined enhancement with a yield as
relevant as the permitted ones. Profiles diverge due to the
long range of the Coulomb potential.

REX values, as shown in Fig. 6, are very small and no
enhancement occurs. As co~0, REX (as well as collision-
al broadening) tends to zero as co'. REX is related to the
absorption range of the corresponding collisional broaden-
ing. Here it is convenient to define the magnitude

6fO'

dcilco
f
Ao t

(4.1)

which is shown in Fig. 7 as a function of co for excitation
of hydrogen by 100-keV protons. The term co de is an

angular-integrated element of volume in the photon ener-

gy space, and
~

&o
~

is the strength of the spontaneous
radiation. When the system is in the presence of an exter-

nal field
~

Ao
~

is replaced by the intensity. The magni-
tude defined in Eq. (4.1) represents emission for positive co

and absorption in the negative range. In other words,
downward and upward transitions„respectively. REX is
then restrained to the emission range, i.e., ~ g 0.

Results shown in Fig. 7 have another interesting inter-
pretation. If the process is reversed, i.e., from i~f to
f~i, and so co to —~, instead of nonobserved upward ex-

citation, we have observed radiative deexcitation, and this
is collisionally broadening. Therefore, in the same figure
we have REX for i ~f on the right, and collisional
broadening for f~i on the left. With this interpretation
REX contains the information of the corresponding col-
lisional broadening in the analytical continuation, and vice
versa. Then, the typical divergence at zero photon energy
of the REL 1s-1s, i.e., bremsstrahlung, may be seen as the
half of the collisional broadening profile in the emission

range, as displayed in Fig. 7.
Figure 8 displays total cross sections for excitation of

hydrogen to 2s, 2@0, 2@+i, and 3s by impact of protons as
a function of the projectile energy. Total cross sections
are very small, that is, six orders of magnitude smaller
than the nonradiative mechanism or mechanical one. The
high-energy behavior is fitted to be U ln(U), so it will

never take over the mechanical or nonradiative one, which
has the same behavior. By contrast, we should remember
that REC becomes the dominant mechanism at very high
projectile velocities when compared with the nonradiative
electron capture.
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FIG. ?. Single differential cross section normalized to
co

I
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I
as a function of positive and negative photon energy

for radiative excitation of hydrogen atoms by impact of 100-keV

protons.

FIG. 8. Total cross section for radiative excitation of H(ls)
atoms as a function of the proton incident energy.

By using the set [Ri,ri I the ISB term reads
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APPENDIX

= —AOBpok, i Kfip;(WT)

rpgf' rp exp —i' rp

)&D+(Zr, —Wp, 1;ri ), (A4)

y D+(Zp, g v, , 1;rp—) (A2)

is the continuum e-I' wave function.

1. Radiative electron capture

The final wave function is supposed to be—as in the
nonradiative impulse approximation —given by the first-
order Born wave function:

gf =exp(iKf Ri, )q&f(ri, ), (A3)

where now Kf is the momentum of the final atom with
respect to the residual nucleus target, and the iaaf(ri ) is the
final bound state of the electron to the projectile.

Those wave functions satisfy the vital requirement of
being orthogonal, i.e., (gf I

g", )=0, as the exact ones do.
So the center of mass does not radiate, i.e., Hi 0. ——

Although this work mainly deals with direct radiative
processes, i.e., REL and REX, we consider it illustrative
to include here how the relevant matrix elements for REC
and RI are derivated from Eqs. (2.11)—(2.14). Here we
assume no internuclear interaction (just to simplify the
problem) and the dipole approximation.

The initial state is supposed to be described by the exact
impulse approximation (IA) wave function given by

=(2m) J dgip;(g)exp[i(yrK;+g). Rp]

x'Ii+(zp, g —v; I ri ), (A 1)
where ip;(g) is the Fourier transform of the initial electron
state in the target and

4'+(Zp, g —v; I
rp) =exp[i(g v;) ri ]—

where Wr ——Kf pz.K; and—Wp ——K; —pi Kf =v; —Wr.
Equation (A4) involves the integral of the product contin-
uum bound wave functions and so Hi'r =0.

Therefore Eq. (2.11) is finally reduced to just the EB
term

ip i~pe, i bpo(kf I V,, I 0,

=iAobpyp;(WT)Ai. drpipf'(rp)V,

X'll+(Zp, —Wp
I
rp), (A5)

Results with this approximation for proton-hydrogen is-
1s electron capture have been recently reported.

The first Born approximation consists of replacing
ili+(z~, —wi

I
ri ) by the plane wave exp( —iwp rp), so

the HI reads

EB — —vHip I ao =Aobpo~ki Wpip;(WT)ipf(Wp),

%vlllch has been Used to calculate photon spectra.

2. Radiative ionization

By replacing iaaf(rz) in Eq. (A5) by the continuum state
around the projectile ~p (Zz, kf I r~), where now kf is the
momentum of the electron with respect to the projectile,
the RI expression of Jakubassa et al. is obtained. This
expression represents only radiative emission due to elec-
tron capture to the continuum. It is interesting to investi-
gate the additional influence of the Coulomb distortion of*
the residual target.
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