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Approximate expressions for inelastic elements of the S matrix are given in terms of integrals
over vibrational functions and 8-matrix electron states. The magnitude and symmetry of these in-

tegrals determine the vibrations that are excited by various resonances, and the present analysis suc-

cessfully predicts the spectra measured for benzene, ethylene, and formaldehyde. The recently ob-

served s-wave component in the rotational excitation of N2 is also explained by the treatment. The
theory shows how vibrational excitation can give information about the symmetries of resonant elec-

tronic states. This can be particularly useful when angular distribution measurements are unavail-

able.

I. INTRODUCTION

Some years ago Wong and Schulz, with a study of ben-
zene, published the first spectra showing vibrational exci-
tation by resonant electron impact in a polyatomic mole-
cule of some complexity. ' They observed that only a few
of the 30 vibrational modes of benzene are excited after
the do:ay of the temporary negative-ion state (also called
a resonance or a compound state) and suggested that a set
of highly restrictive, symmetry selection rules operate for
this phenomenon. The observed modes could be divided
into two types. For one type, the symmetries of the vibra-
tions observed could be attributed to the changed forces
on the nuclei from the formation of the temporary nega-
tive ion in an undistorted geometry. For the other type,
the symmetry of the observed mode was attributed to for-
mation of the negative ion during an "incipient pucker-
ing" of the benzene ring, and the scattering showed an
isotropic angular distribution characteristic of an s wave.
Wong and Schulz go on to say, "This postulate, . . . tan-
tamount to adding an s component to the scattered
wave, allows us to predict additional allowed modes. . . ."

Subsequently, Walker, Stamatovic, and Kong made
similar measurements on the somewhat simpler molecule,
ethylene. z In their analysis they found the same division
of the excited modes into two types, one of which involves
an s wave.

Quite recently Benoit and Abouaf examined the vibra-
tional excitation of the still smaller molecule, formal-
dehyde. They report the excitation of only one vibration-
al mode at resonant impact energies and make no mention
of the s-wave phenomenon. This is in distinct contrast to
the results found in all of the hydrocarbon measurements
mentioned earlier.

In the present article we give an approximate theoreti-
cal description of resonant excitation of vibration and
thereby obtain symmetry selection rules for the modes ex-
cited. The treatment automatically includes the mecha-
msm involving the above-mentioned s wave. To state the
situation more precisely, we will see that, in addition to

the principle partial wave of the resonance, a sequence of
different vibrational excitations is possible involving
s,p, do', . . . waves, with only the s expected to be seen
at low energies. We shall also suggest that the formal-
dehyde results are completely consistent with the theory
and with the hydrocarbon measurements.

At the outset we may motivate the directions taken in
the theoretical treatment by giving a qualitative descrip-
tion of the processes involved. For any experiment in
which vibrational excitation accompanies a change in
electronic state, the particular vibrations excited are the
result of the new forces exerted on the nuclei by the new
electronic state produced. This may be treated quantita-
tively with an application of the Hellmann-Feynman
theorem. In the case of vibrations excited by resonant
electron impact, the new forces arise because of the for-
mation of the temporary negative ion. The development
will show that the mechanisms giving rise to the two
types of vibrations differ only in the particular involve-
ment of the partial waves of the scattered electron. In one
case the principal partial wave of the resonance acts alone
to excite one particular set of vibrations, and in the other
case, the principal partial wave of the resonance interferes
or hybridizes with a low-I value (usually s) nonresonant
wave to excite a generally different set of vibrations.

After the development of the theory we give a detailed
analysis of the benzene, ethylene, and formaldehyde re-
sults referred to above. This will show that the theory ac-
curately predicts the rules operating to select particular vi-
brational modes in these molecules as well as predicting
s-wave angular distributions seen in the rotational excita-
tion of N2. We also predict the expected results for the
complex molecules 1,3-butadiene and 1,4-cyclohexadiene,
for which the vibrational excitations at resonant impact
energies have not yet been determined.

II. APPROXIMATE S MATRIX

The "boomerang" model for describing the vibrational
structure of shape resonances in tnolecules has been
developed by Herzenberg and his co-workers. For our
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purposes, however, a time-independent picture seems

simpler to develop and we use arguments based upon an
R-matrix treatment of the electronic state.

We use the adiabatic Born-Oppenheimer model and
write the asymptotic wave function in the form

(t),„=go(r, q)X,„(q),
where Po is the ground-state electronic wave function, X,„
is the vibrational (nuclear) wave function, r represents the
collection of electronic coordinates, q represents the col-
lection of normal coordinates, and n is the collection of
vibrational quantum numbers. Even if the vibrations are
anharmonic, we may use the harmonic normal coordi-
nates to describe them.

To describe the X+ 1 electron states we use a method
described recently involving basis-set expansion of the R-
matrix states of the system. For this a set of one-electron
functions, complete inside the sphere, r =ro, is used to get

%~ =A(gowz),

(3(rw~)/Br
I „,,=bwp,

where A is the antisymmetrizer and the R-matrix func-
tions, wz are expressed as linear combinations in the com-
plete set

(0)
~p = ~ ~klm~klm;p

k, l, m

Equation (2) represents only an approximate form of
the (l(l + I)-electron R-matrix function„equivalent to the
static exchange approximation. Closed channels giving
electron correlation and polarization effects could be in-

cluded, but these would not change the symmetry of the
functions, nor would they change our qualitative con-
clusions concerning the excitation of vibrations.

Even at low energies, the wave function of the scattered
electron may have components with fairly large l values
inside the molecule acting as a scattering center.
Nevertheless, the low-energy shape resonances for mole-
cules have been successfully interpreted by treating them
as if they arise predominantly from a single partial wave. 9

This is physically reasonable, since, as Fano' has pointed
out, outside the region where the potential acts strongly
only low-l waves interact appreciably with a localized per-
turber, even if it is anisotropic. The implication of this
for our approximation is that the matrix ukt .z associates
essentially only one partial wave with each p. That is, 'Pp

is nearly pure in I and m. %e now consider the zeroth-
order set of w functions

NpI~ = ~ gkI
(0)

k

that would result if only the l —m diagonal blocks of the
matrix

(A(((t „', '
) IH( 1 }

I A((() „",' ))

were diagonalized.
The succeeding argument involves matrix elements that

have a large number of subscripts. In order to simplify
the notation for the reader we collect the quantum num-

bers p, l, m, as the single symbol a. With this notation the
corresponding complete R-matrix functions

give the potentials for the vibrational problem

V =(0")
I
H(elec)

I

q")),
[E+(V —V"')]X „(q)=E'"„' 'X „(q),

(8)

%'p ——4'p +'4j'p

)I((ol y iP(o) V /[E(() E(()]
13'

= X q'trUtrp . (12)

In (12}, Utrp are elements of the matrix, unitary to first
order, that gives the transformation from unperturbed to
perturbed wave functions. We assume there are no degen-
eracies among the Ep' so that no first-order corrections to
the energy occur. %e ignore the second-order corrections.

The standard treatment now gives the R matrix

Ry r(E) ( 2 ) g Wr pWrp/(Ep E) (13)
P

where

(0)
W( m n p(mn

=''g'&Xan'
I
Xp'('nt' I

Xp'('m'n" &

p, 5

X Up ) m n-prmn

and gp ~
~ is the radial part of rm& I' ~ evaluated at r =ra.

This is somewhat more complicated if b&0
Measurements of the energy loss have been made with

the incoming energy of the electrons set at the resonant
value. The flexibility in the R matrix provided by the
possibility of adjusting ro [or the value of b in (3)] allows
one to arrange a pole of 8 to be at the resonant energy.
Under these circumstances the S matrix takes a particu-
larly simple form

Sr r 5( (5~ 5„„er (i '——+'+ '/to )—

(14)

X(Wy )( ()Wy )( ()Itor'co~),

where I(.' is the vibrational kinetic energy operator. In (9),
V'" is the equilibrium (BV/()q=0} value of the potential.
In the succeeding equations we will abbreviate the four
quantum numbers an =plmn as P. With this notation,
the zeroth-order approximation for the energies of the R-
matrix poles with vibration is

(10)

We now proceed to calculate the first-order correction to
the wave function.

The nonzero off-diagonal matrix elements of the Ham-
iltonian are

Vpp
—( &(Pow( ))Xp

I
V

I
&(((tow~ ))Xp),

where V is the potential energy part of the total Hamil-
tonian. These provide a first-order correction to the total
wave function
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~Sr,r ~'=J."
) (X,—„~Xp) ); I'm'=1m; P=llmO,

=E g Vp-i „p(X,„~Xp-i )
P, Pf

(17a)

(17b)

where (17a) refers to the diagonal (Im) blocks, and (17b)
for the off-diagonal blocks. The selection rules for vibra-
tional excitation on electron impact at resonant energies in
channel ImO are embodied in (17). It is seen from the
definition of the V integrals that they will be nonzero only

and

(0)A (Paw~ i ~ )X~ p

(0)
8(Souci )Xii~.

belong to the same symmetry species of the molecule
point group. It is also seen that p (or p') merely labels
different states of the same symmetry and need not be
considered in such arguments. If we are considering exit
channels with I'm' that are not of the correct symmetry to
be one of the shape resonances, the Frank-Condon factors
(X«

~
X~-i ~ „-) will be close to 5„„-and approximately

independent of the other indices. Thus, the V integrals
will govern the selection rules in these cases.

Equation (17) is written in molecule-fixed coordinates
and one may remain in this framework to examine the
symmetries of vibrational excitation. Should one need to
transform to a space-fixed framework, an analysis by
Read" is useful.

The two types of terms in (17) both give rise to nonzero
cross sections for vibrational excitation. The P state in
(17a) corresponds to the molecule with one of its anti-
bonding orbitals represented by an R-matrix function.
An electron occupying this orbital causes forces on the

a)y ——Yy+iJy,
'/

ro ——( —, ) 8' co'co '8'p,
and Jz and II'& are, respectively, the regular and irregular
asymptotic solutions for the channel y. In (15) we have
labeled the pole of the 8 matrix at the resonance as p= 1,
but this is clearly not required. Equation (15) is also writ-
ten for the molecule in its ground vibrational state.

For inelastic scattering events one then has

~Srr ~
=f(E) I Wrp~ ~

8'rp~; P=(llmO),

where f(E) is a slowly varying function of the asymptotic
channel energies. We are particularly interested in situa-
tions where electrons in the incoming channel, y; =1m 0,
are scattered into the channel, yo

——I'm'n'. Collecting all
of the slowly varying factors into a single, approximately
constant proportionality factor we have

nuclei in directions described by the symmetrized square
of the irreducible representation of the state involved. For
degenerate states this symmetry analysis is identical with
the conventional Jahn- Teller' treatment. For nondegen-
erate states the symmetrized square gives only the totally
symmetric representation and only totally symmetric vi-
brations will be excited. The Frank-Condon factors in
(17a) will reflect the affected vibrational modes. The ac-
tivity of these modes has already been noted. '

The terms from the off-diagonal lm blocks correspond
to interactions between vibration and electronic motion in
which different I values mix and the scattered electron ap-
pears asymptotically in a different partial wave from that
for the resonance. An alternative description is the one in
the Introduction: The first-order terms in the wave func-
tions interfere with the zeroth-order terms to give an
unsymrDetrical charge distribution producing an un-
symmetrical set of forces on the nuclei and the excitation
corresponding vibration. The forces depend on the
amount of mixing and this depends upon the sizes of the
corresponding V integrals.

III. APPLICATIONS

A. Benzene E2„resonance (1.1 eV) (Ref. 1)

For the l. l-eV resonance of benzene the important in-

put channel is (lm)=(3, +2) of syinmetry ez„. The sym-
metrized square of ez„ is ais+eis. We therefore expect
the equilibrium positions in the state (plm 0) =(1 3 +2 0)
to be distorted in His and Eis directions from the asymp-
totic positions. The Frank-Condon factors in (17a) will be
approximately 5„„except for the a is and e,g species vi-
brations. This was explained already by %ong and
Schulz, ' and indeed, v2 and v&6 are seen in the energy-loss
spectrum.

As we have seen the excitations of other vibrations can
come through the agency of nonzero V integrals in (17b).
We first consider outgoing s waves (I'm'n') =(00n'). Vi-
brations of symmetry e2„will connect this outgoing chan-
nel with the resonant one. v» and v20 are the two (doubly
degenerate) vibrations of this symmetry, and vzo, the
motion more closely associated with the carbon skeleton
distortion, is seen in the energy-loss spectrum. This is to
be expected since the e2„antibonding orbital contains
only carbon atomic orbitals (AO s) in the linear combina-
tion of AO (LCAO) approximation. A more detailed
analysis of V indicates that the progressions vzo+nv2 and
v20+n v~6 are to be expected. The one based upon v2 is ac-
tually present; the other is presumably too faint to see.

We next consider exit channels of I =1. Since this is
not a resonant channel, one expects the 8-matrix func-
tions to be approximately equal to spherical Bessel func-
tions (that is, they should behave as nearly free electrons).
The low-p" terms in (17b) will predominate, and the most
important V integrals will be those where (p "I'm'n') cor-
responds to energies close to the electron energy. The
(llmO)=(l 3 +2 0) state (e2„) is resonant so we expect
the R-matrix function ui to have larger values in the vi-

cinity of the carbon atoms than a free particle 1=3 func-
tion for the same energy would have. The normalization
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constants for Bessel functions satisfying (3) are all approx-
imately equal. Therefore, for k corresponding to —1 eV
and the carbon distance re =1.4 A, the value of the 1'=1
function should be =-krcl3 smaller than the 1'=0 func-
tion in the vicinity of the carbon atoms. The intensity
proportional to V is 0.06 smaller for p waves than s
waves, and such vibrations are likely to be difficult to see.
A similar analysis for 1 =2 gives an intensity 0.001 lower
than the I'=0 case.

The fact that we expect only s-wave outgoing channels
for this excitation mechanism implies that a vibrational of
the same symmetry us the resonance will be excited.
Wong and Schulz have already noted the needed s-wave
involvement to interpret their results. ' The present argu-
ment suggests why only s waves are seen at low energies.
At higher energies outgoing channels involving p waves

may be observed for ideal situations.
Putting together the two excitation mechanisms, for

benzene we expect vibi'a'tioils of symmetry Giga

eight

and

e2„ to be excited. The one involving greater carbon
motion in each of these cases is seen.

B. Benzene ~8q resonance (4.8 eV)

Following the principles of Sec. IIIA, one expects aig
and bzs vibrations to be excited. Since an 1'=4 partial
wave of low energy should peak so far from the center of
the molecule, C—H rather than C—C deformations ap-
pear more strongly excited, and vi and v7 are seen in the
spectrum. Since there is no clear progression involving
a it, the shift in carbon positions for this resonance must
be minimal.

The vibrational energy-loss spectra leading to 1'=1 exit
channels are expected to be -0.25 less intense than those
leading to 1'=0 channels for the 82& resonance. The
symmetries of the vibrations interacting with outgoing p
waves are b &z, which is not represented, and ez„, which is
represented by vi9 and v20, as we have seen. vi9 is within
50 meV of v7 and, at —, the intensity, may be obscured.
The d-wave intensity is down by a factor of 0.01 and need
not be considered.

C. Ethylene 'Bq~ resonance (1.8 eV) (Ref. 2)

eV show a strong angular dependence indicative of the
"d-wave" resonance.

D. Ethylene, 7.5 eV "resonance" (Ref. 2)

Walker et al. also finds a broad feature at 7.5 eV in vi
energy loss. They attribute this to the unoccupied 4a I o.

orbital, which is predominantly antibonding at the C H
bonds. Such a mechanism is not likely to be well
described by just a few terms of (17).

There is also a peak in the energy-loss spectrum at this
impact energy that Walker et al. attribute to v7 with a
possibly twisted or distorted geometry invoked. In light
of the present treatment, we suggest this is just vs (b2s)
again, excited this time by a reverse s~d-wave process
compared to that occurring at 1.8 eV. Although the out-
going wave for this mechanism is nominally d, the cou-
pling of an s incoming channel with a random average
over molecule orientations will produce an isotropic distri-
bution as shown in Fig. 6 of Ref. 2.

E. Formaldehyde 2B~ resonance {0.65 eU) (Ref. 3)

Benoit and Abouaf have recently determined the elec-
tron energy-loss spectrum of formaldehyde at an impact
energy of 0.8 eV and an observation angle of 90'. They
report the expected presence of the C=O stretch vz,
which is excited because the resonance has b2 symmetry
and is associated with the C~3 antibonding m orbital. '

The theory given here also predicts that v6, a CH2 wag
mode with symmetry b2, should be seen. Benoit and
Abouaf do not report an energy loss in this mode. In neu-
tral CH20 vz has an energy of 216 meV and v6 an energy
of 145 meV. A careful examination of Fig. 1 of Ref. 3
shows two shoulders of the vi peak that are in the correct
place for v6 and 2v6. 3v6 is likely to be completely ob-
scured by 2vi. It is suggested here that these are the
energy-loss peaks associated with v6 predicted by the
present theory.

Benoit and Abouaf attribute one of these shoulders to
CO as an impurity. We feel that this can be ruled out be-
cause of the low probability of vibrational excitation of
CO at an impact energy of 0.8 eV and an observation an-
gle of 90'. ' Similar measurements of HDCO and D2CO
could resolve this question.

For ethylene, ' the present analysis predicts the oc-
currence of a,s and b2g vibrations. All three of the a,s
frequencies, v„vz, and v3 are observed. vz, the mode with
the greatest C—C stretch component, is the strongest.
Walker et aI. attribute another peak to v7, the ir active
out-of-plane CHi wagging mode. The present analysis

suggests this should be vs, the Raman-active mode of the
same type. The two frequencies are 6 cm ' apart, a
difference not detectable in these experiments. In their

CiD4 measurements the difference between v7 and vs is 60
cm ', still very small at 7 meV. The excitations leading
to 1'=1 frequencies are predicted to be -0.02 less in-
tense.

The angular distribution of the peak we attribute to v8

shows a nearly isotropic distribution of an outgoing s-
wave character. The other peaks in the energy loss at 1.8

F. Some other hydrocarbons

Resonances have been observed in the total scattering
cross section of other hydrocarbons, but not the vibra-
tional energy loss at resonant impact energies. Two of
these for which the vibrational frequencies of the neutral
molecules have been assigned are 1,3-butadiene' and 1,4-
cyclohexadiene. ' The resonances for 1,3-butadiene are
given by Burrow and Jordan' and those for 1,4-
cyclohexadience by Jordan, Michejda, and Burrow. ' The
present analysis may be applied to each of these and gives
the following predictions.

The lower resonance for 1,3-butadiene in transoid ( C21, )

conformation is of symmetry A„with a leading 1 value
of 1. We expect an az vibration (probably v4 C=C
stretch) energy loss with p-wave angular distribution and
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an a„vibration (probably v, o or vii CHz wagging) with an
s-wave angular distribution. The upper resonance is 8
with a leading l value of 2. We expect an ae vibration
(probably v4 again) with a d-wave angular distribution

vibration (probably vi5 CHz wagging) with an s-

wave angular distribution.
For 1,4-cyclohexadiene (Dzt, ) the two close resonances

are expected to be of 83g and A„syrnrnetries, with lead-

ing l values of 2 and 3, respectively. The first will give vi-

brational excitations of symmetries tts (probably vs, C=
C stretch) and b3s (probably v& out of plane C= C bend)

symmetries. The second will also give as (vs, ) again and

tz„(probably v~7, out of plane C=C bend) vibrations. In
each case the ag vibration will show the angular distribu-

tion of the electronic resonance and the other will show an

s-wave distribution.

G. Rotationally inelastic colhsions

Equation (17) applies with only a shght modification to
rotational energy-loss processes, also. At normal tempera-
tures rotational superelastic events are also possible. The
analysis is much the same as for vibrations, since rotation-
al motion, may also be classified with respect to the sym-
metry species of the molecule. The results may be modi-
fied by nuclear statistics.

In benzene the symmetries of the resonances ez„and
b2~ are not represented by rotations so that no involve-
ment is expected here. The bze resonance of ethylene is
the species of a rotation, and, therefore, (17b)-type interac-
tions should produce rotational energy loss or gain with
an s-wave distribution.

With respect to the symmetry of rotations, Nz and
ethylene are similar. A recent study of rotational excita-
tion in Nz by Jung et al. shows an s-wave component in

the angular distribution. %e suggest that this is due to
terms of the type (17b) in the cross section. The bz reso-
nance in formaldehyde should also exhibit s-wave com-
ponents in the rotational excitation spectrum.

In 1,3-butadiene the Bz resonance and in 1,4-
cyclohexadiene the 83g resonance should show rotational
s-wave distributions.

IV. SUMMARY

The present article has given a first-order perturbation
treatment of approximate R-matrix functions. The
theory has been used to study vibrational excitation at
resonant electron energies. The excitation of various vi-

brational modes arises from the forces on the nuclei re-
sulting from the formation of the temporary negative ion.
These forces are best understood in terms of the
Hellman-Feynman theorem. At low energies two some-
what different mechanisms for excitation are expected. In
the first, the principal partial wave in which the resonance
occurs acts alone to produce forces on the nuclei and the
excitation of a corresponding set of vibrational modes. In
the second, the principal partial wave in which the reso-
nance occurs interferes or hybridizes with the nonresonant
s wave to produce a, in general, different set of nuclear
forces and corresponding mode excitations.

In the second case the mechanism produces outgoing s
waves and has the possibility of giving information con-
cerning the symmetries of resonances in cases where angu-
lar distributions are unavailable.
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