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Iterative solutions of the Lippmann-Schwinger —type equations

M. Znojil
Institute ofNuclear Physics, Czechoslouak Academy ofSciences, 250 68 Rez, Czechoslouakia

I,'Received 26 June 1985)

The remainder RI, I of the Born series &u Iu&+&u Ilt. Iu&+ ' +&" II&' 'I u&+lit, , is given

an analytic continued-fractional form. The resulting formula is tested on a few schematic examples

and recommended as a combined perturbative and algebraic method applicable to various scattering

problems.

I. INTRODUCTION

In atomic and molecular physics, the description of
scattering is often based on the one- or quasi-one-body
I.ippmann-Schwinger equation

I
P&= Iu&+It

I P& .

For example, from the Hamiltonian H =Ho+ U (Ho is
the Hamiltonian for free motion), the reaction-matrix def-
inition of phase shifts

an&t=&u lk& lu&=U (1.2)

I!&=Iu&+ . +I(' 'Iu&+&'I4& (1.3)

may be used to convert the kernel into a well-defined
operator, ' In this context, it is natural to complement
also the standard solution methods by the iterative ones.

Usually, the interative methods' of solving (1.1)

proceed in one of the following two ways:
(a) The t~ao limit of (1.3) is accepted as a suitable

formal (Born or von Neumann) power-series solution of
(1.1),

(b) The t =0 form of (1.3)

IP&=(1—K) 'Iu&

is treated by an algebraic inversion. In the present paper,
we intend to combine both these techniques.

We shall start from (1.2) and (1.3),

&u IP&=&tt Iu&+&u I& Iu&+

and notice that our ability to compute the moments

&u IE" Iu&, n&M&ao

(1.5)

suffices for a numerical determination of the observable
quantities. Thus, in a purely mathematical setting, we

may consider simply the infmite power series (1.5) re-

placed by its various algebraic, " continued-
fractional, and Pade' equivalents. Here, we shall pay

may be derived. ' With the stationary wave
I

u& and ker-
nel K =GU [G =P/(F. —Ho)], Eq. (1.1) has a variety of
available methods of solution. '

In a more complex (few-body, multiparticle) context,
the scattering equations (e.g., of Faddejev type) still
preserve their form (1.1). Its iterative modifications

attention to the continued-fractional formulas only.
Our main idea is based on the algebraic identity

t &0 . (1.7)

Preserving the perturbative tth Born approximation un-

changed, we shall invert the remainder term algebraically.
The algorithm will be tested on a few schematic models.
In comparison with the t =0 techniques, we shall see
that an optimal choice of t&0 may exist, and analyze
how it may lead to a significant improvement of approxi-
mations generated, e.g., from a finite number M & ao of
moments (1.6).

Our considerations start in Sec. II. A thorough discus-
sion of the taboo convergence and an algorithmic refor-
mulation of the exact t & ao termination condition (1.7)
are presented there. In Sec. III, this is followed by an
analysis of the resulting continued-fractional resumma-
tions of (1.5) and by a few comments on their extension to
the coupled channels. The numerical tests and illustra-
tions are given in Sec. IV. Finally, the properties and
merits of the whole method are summarized in Sec. V.

II. REMAINDER IN THE BORN SERIES

A. Convergence

In atomic physics as well as in the further applications
of (1.1), a slow t~ ao convergence or even divergence of
(1.5) may be encountered. For the realistic kernels, the
algebraic straightforward inversion of the operator 1 —E
improves the results significantly. " Its applicability is of
course limited only by the capacity of the available com-
puters.

Alternatively, we may achieve also a better convergence
of (1.5) in a less formal, physically motivated way, by the
so-called distorted-wave transformation: %hen we re-
place K by a smaller" operator El ——K —Eo in such way
that the subtracted auxiliary kernel Ko remains sufficient-
ly simple, we may define T =(1—Ko) '~ and reinterpret
(1.1)—(1.7) with IP'&=T 'IP&,

I

u'&=T Iu&, and
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E'= TE, T as equations valid for the new, primed quanti-
ties. The definition (u'

~

= (u
~

T is to be added for the
sake of completeness.

From the purely formal point of view, we may often ex-
pect that the kernel E is compact, i.e., '

K= g ~X„)a„(X„~,a„0, n

Then, in a slightly changed notation with

@+1 r+ "]

E=K~r"= g ~m)E m + g n i)„(n ~,
t'ai =2 fE =2

~
( 1,

~
ri„

~

) 1, p ( Oe, r ( oo (2 1)

let us denote the tilded sum by the symbol Kq and notice
that the above-mentioned distortion operator Ko must be
a sum of E~ with an arbitrary (or zero) part of
K —Kq E, . O——nly this may guarantee the convergence of
the primed Born series.

An exact knowledge of all the tilded vectors
~

n ) and
divergence-causing coefficients ri„ is not always available.
Then, whenever we compute, in the spirit of (1.2), the ma-
trix elements of the type

R =(u
i

E'/(1 —K)
i
u),

a necessary and sufficient condition of convergence R ~0
for taboo is merely a disappearance of the overlaps
(n

~

u ). &ice versa, whenever (n
~

u)&0, say, due to the
numerical errors, we cannot identify R with its conver-
gent part R, =(u ~E,'/(1 K, )

~

u) an—d get
=Rg=(u ~Ed/(1 Eg)

~
u& fo—r a large number t of

iterations.
In Table I, the interplay between our choice of r ~~1

and the magnitude of errors (n
~

u)&0 (i.e., a quality of
distorsion) is studied numerica11~. We employ the three
schematic operators E =E ~' with the orthogonal
(biorthogonal) eigenvectors and typical spectra of the type
(2.1),

=1/m, il„=n, i =1,
e =1/m, g„=n, i =2,
E =1/v m, g„=v n, i =3.

Besides a reasonable degeneracy of the
~

E
~
( 1 levels,

(m ~u)=m, i =1,3,
(m ~u)=m', i =2,

we shall simulate here also an approximate distorted-wave
elimination of the large components from E, which is less
and more precise, respectively,

(n
)
u) =1/n, i =1,3,

(n
~

u)=1/n', i =2.
For (n j u):—0 we would get R =R, and the remainder
would converge to zero with increasing t An in. clusion of
errors causes the divergence at large t, 8 -R~. An "op-
timal" choice of t =t* (such that

~
R,

~

—
~
&~

~
) is seen

to depend on the quality of distortion ( t ' =3 for E, ,t'=5 for Kz) as well as on the spectrum of E (t'=5 for
E3 ). Thus, we may expect that it will be difficult to
determine the best number of iterations t* a priori. In the
practical computations, a reliable suppression or estimate
of the remainder seems to be indispensable.

B. Rearrangements

In Eq. (1.3), let us denote
~

u) =
~

0) and define the
auxiliary new vectors as arbitrary linear combinations of
the old Born components of

~ P),

~1)= (E ~0& —~0) —~0&A, ),
80

~2)= (E ~1)—~0)C, —~1)A, ), . . . .
1

TABLE I. Convergent and divergent components of Born remainder R =(u ~E'/(1 E)
~

u)—
=R, +Rq for E=E ' ', i =1—3 and t =1—5 (notation 4.3[3]=4.3)&10, ete.).

R, +Rg

65,8
11.8
2.8
0.90
0.35

—0.8
—2.1

—6.1

—20. 1

—74.1

4.3[3]
144.3
45.0

404. 1

5.5[3]

—82.3
—5.7
—0.5
—0.04
—0.005

3.4[3]
449.8

65.8
11.8
2.8

—0.15
—0.34
—0.80
—2.1

—6.1

1.2[7]
2.0[5]
4.3[3]

144.2
45.0

—2.3[4]
—1.3[3]

—82.3
—5.7
—0.46

234.5
92.9-

38.9
17.4
8.4

—1.3
—2.1

—3.4
—5.6
—9.6

5.5[4]
8.6[3]
1.5[3]

333.9
162.4

—178.5
—44.8
—11.6
—3.1

—0.87
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In the simplest nontrivial case with the three groups

i, Bk i and Ck, (Co ——0) of the arbitrary parame-
ters, we shall have

i

k }=(E
i
k —1)—

i
k —1)A/, /

—
i
k —2)C/, $)/B/,

k = 1,2, . . . . (2.2)

The assumption

(u it+j)=0, j=1,2, . . . (2.6)

will guarantee vanishing of all the remaining overlaps.
Without any loss of generality, we may also choose

imposed on the rearranged infinite Born series. Obvious-

ly, this formula will be exact if and only if the incomplete
orthogonality conditions

I0&= I0&Fo+ I
1&F/BoFo+ '1

1 —E C) ——C2 —— —C, —0,
(2.7)

1 =1—Ak —Ck+~Fk+i8k k =0 1
k

(2.4)

may be then made formally, with an unspecified initial
choice of Fo&0 and with the recurrent definition of the
remaining coefficients

and obtain Fo F, =—— =F,
~

——1 and the following.
Theorem. The conditions (2.6) and (2.7) fix uniquely all

the free parameters A, B, and C in (2.2).
Proof. A multiplication of (2.2) with k =t+1 by (u

i

from the left is compatible with (2.6) if and only if

Indeed, Eq. (2.3) represents an algebraic identity since (u it) A, +(u it —1)C,—(u iE it)=0. (2.8)

te

I
0& =(1—E)(

I
0&Fo+

I
1 &FiBoFo

+ I
2)FpBiF/BoFo+

This specifies A, =A, (C, ) [C, =O in the light of (2.7)]
and the vector

i
t+1). Similarly, the k=t+2 item of

(2.2) gives

0=
i
0)( —1+Fo—AoFo —C/FiBoFo)

+ i
1 )(FiBoFo—BoFo—A iFiBoFo —CiF2B/FiBoFo)

+ 0 ~ ~

(2.9)

and defines a unique value of C, +, .
The remaining items of (2.2) convert the condition (2.6)

into a new requirement

E it+1+i&=0, I=1,2 (2.10)

Thus, we may replace (u
i
k~(u i, t+l~t, l~j in

(2.10) and return precisely to (2.6) again. A repetition of
the above construction defines now A, + i

——A, + i ( C, + i ),
i t+2), and C, +2. Obviously, the rest of the proof

proceeds by the mathematical induction. Q.E.D.
From the above construction, we obtain an iterative al-

gorithm implementable easily on the computer. The cor-
responding formulas

C, + +) ——((it iE it+m)) '(it iE +'it+m+1),
(2.11)

A, + =((u iE it+m))

X((t/ iE +'
i
t+m )

—(u iE it+m —1)C, ), m=01, . . .

are of course compatible with the general theory of mo-
ments.

The overlaps (u
i

E"+'
i
m ) will be zero for n & 0 and

m ~ t+n +1. In our non-orthogonal "basis" set of vec-
tors

i
m) and dual vectors (u iE", m, n =0, 1, . . . , the

operator E will be represented by a partitioned Heisenberg
matrix. In general, a formal inverse of such a matrix may
be constructed by means of the so-called extended. contin-
ued fractions. ' A simphfication —reduction of the ex-
tended to the ordinary analytic continued fractions—
necessitates an additional information about the kernel E
or, alternatively, a rearrangement of the dual basis states.
This will be discussed in the next section.

C. An algebraic termination requirement

In the light of (1.2) one of the most natural specifica-
tions of the rearrangement [free parameters in (2.2)]
should be based on a termination requirement

(u iP&=(u io&Fo

+. . . +(u it)F,B, iF, iB, i. . . Fo (2.5)

which is satisfied as a consequence of (2.4). Thus, Eq.
(2.3) may be employed and interpreted as a general rear-
rangement of the t = ao Born series (1.3), induced by the
reparametrization (2.2).

It is rather puzzling to notice that in (2.3) and (2.4), an
initial value of fo may be arbitrary. An explanation lies
in the infinite dimensionality of the rearrangement (2.2).
In practice, a unique specification of Fo may be related,
e.g., to the normalization of

i P). The corresponding
variational specification of the quantities Fk enables one
to put F/v

' —0 in the limit N~—oo and to call Fo Fo"'——
simply an analytic continued fraction. In Ref. 12, a non-
continued-fractional counterexample may be also found,
with a nonvariational interpretation of F/, 's.

In place of (2.2), we may start also from the more-term
rearrangement of the Born states E"

i
U ). Then, it is pos-

sible to partition the set of parameters and to generalize
the formulas (2.2)—(2.4) in a rather straightforward way.
We recall Ref. 13 for further details.

A rearrangement of (1.5) of any type is always designed
to diminish the remainder. In principle, the formulas like
(2.2)—(2.4) enable us to accelerate the convergence or even
to convert the divergent Born series into its convergent
continued-fractional equivalent.



M. ZNOJIL

III. ANALYTIC CONTINUED FRACTIONAL
RESUMMATIQN OF BORN SERIES

A. t =0 and a construction of Lanczos bi-orthogonal basis

&w, ~+ ~
w, & &w, )+1 1

lu 1 U0 W2 Ul

(3.6)

In accord with our theorem, we may interpret relations
(2.2) and their more-term generalizations' ' as a rear-
rangement of the Born st'ates J "+'

~

u ), n =0, 1, . . . . We
could start also from an arbitrary bra vector
(0'

~

= (u
~

K» and generate an alternative set of its rear-
ranged descendants

(k'
~
=, [((k —1)' ~E —Ak )((k —1)'

~

~k —t

—Ck i((k —2)'
i ], k =1,2, . . . . (3.1)

we get

UG ~w, )= ~w, )a0+ ~w, ),
(3.7)

UG
I N~+2& I wna+l&C~+)+ I w~+2»~+)+ I

w +3&

m Oy 1p ~ ~ ~

where

1
(wl i

G
i
iui )

wl
~

U0)

In analogy with (2.2), they are defined by means of the
free parameters.

Both recurrences (2.2) and (3.1) are independent, but in
accord with Lanczos, ' we may relate them by a demand
of the mutual bi-orthogonality of the resulting two se-

quences of vectors,

(m'~n)=l, m=n

1
, ( .„iGi .„&

s~+2
~

6
~ ~m+~ s

Ci —— (wi i
G

i N3),
1

Wi
I

uo

1

s~ +, ~G~~ +, s

(3.8)

(3.9)

=0, m&n .

Such a prescription fixes also all the parameters. Hence,
it may be interpreted as a special case of a termination re-
quirement with t =0. Vice versa, the terminations of the
type (2.6) must follow from (1.7) and from the Lanczos
method in principle.

As a method of inversion of an arbitrary operator, the
Lanczos procedure appears and reappears in the various
contexts and applications. ' In the present physical
setting, we may prove also the following.

Lemma. With the particular kernel E =GU such that
both 6 and U are Hermitian, the t =0 Lanczos construc-
tion of a basis reproduces the interative quasiparticle algo-
rithm of Ref. 3.

Proof. Let us summarize first the essence of the contin-
ued fractional technique of Ref. 3. Defining
KM+1 ——GO+1 where U=U0

l

U&=
I

Uo& and

U~+)=U~-U~ Iu~&(&u~ IU~ Iu~&)-'(u~
I U. ,

(3.3)

we may denote
~

N0) =0,
~ NM+1) = U3e

~
UM ),

M =0, 1, . . . and compute the matrix 80 ——(wl ~p) (1.2)
from the easily derived recurrences

&I= & N~ I UM &+ & N3»+) I U~ &D~ & NM+) I UM &

(3.4)
D =((,

i ) 8,) ', M=0,—1, . . . .

Now, it is sufficient to notice that, due to the Hermiticity,
the overlaps of the ~ectors

~
u ) and

~
w„) are sym-

metric,

(w iu)=(w iG iw)=(w iu ) .

For
~

m n~ ~ 1, they —are equal to zero. Since

Thus, the vectors
~

wl ),
~
N2), . . . satisfy the three-term

recurrences of the type (2.2).
Next, we may construct a set of the bra vectors

B. Continued fractional expansion of the tth Born remainder

The physical quantity Al0) ——(u
~
U/(1 —GU)

~
u) in

the alternating arrangements

Rl0) ——(U'
~
(1 —G') '

~

U') =(U"
(

U'(1 —U') '
~

U"),

f

U') =
[
~U

~
U &,

~

U"
& =G

G'=v/UGv U, U'=v GUv'G

(3.10)

may be treated algebraically as a Lanczos inversion with

q =0 or 1, respectively. In both cases, the operator square
roots need not be unique' and we invert 1 —GU without
any preliininary iterations (1.7).

From the purely formal point of view, our termination
algorithm of Sec. II C will be fully equivalent to the Lanc-

bi-orthogonal to
~

w )'s. In accord with (3.2), we get

~0 =&1'I UG Iwl&/&1" Iwl&=~0,

i.e., (2'
~

U=(N2 ~, etc. We may conclude that the set
w 1 )

~
N2 )

~
N3 ), . . . coincides precisely with the r =0

Lanczos ket basis. The proof of equivalence of the two
methods is completed. It remains for us only to notice
that a use of (3.7) and of the Lan czos bra states
(1*~, (2' ~, (3' ~, . . . would make the explicit construc-
tion of the full "weakened" kernels K3r+, or U~+)
(motivated' by the physical quasiparticle interpretation
of the algorithm) redundant. Q.E.D.
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zos continued-fractional inversion prescription (or Pade
techniques' ' ), applied directly to the remainders

R~, ~
——(u i

U(GU)'/(1 —GU)
i
u), t &0 . (3.11)

A priori, a preference of t&0 may prove to be useful at
least because of the following two reasons.

(1) It is well known that the Lanczos algorithm suffers
from a loss of precision causing a need to compute a
square root of a negative number. Such a possibility
appears during the renormalizations ( 8 =const)
~((m

~
m) =const). In the present termination con-

structions, it occurs also for t =0 but it is absent for t & 1

(cf. once more the proof of theorem in Sec. II C).
(2) Trivially, assuming that an amount of information

about the kernel E is restricted to a finite number
M =2N+t —1 of the available moments (1.6), we must
use at least t = 1 for any even M.

An a posteriori support of a nonzero parameter t will
stem from the numerical tests in Sec. IV below.

etc. Then, we may employ the standard summation con-
ventions and omit the explicit channel indices again. Up
to a necessity to preserve the ordering of the noncommu-
tative matrices, all the formulas will preserve the same
form as above.

On a less forrnal level, Eq. (3.12) represents in general
the 3s-term recurrences now. As a definition of the new
states

~

m )", it is slightly ambiguous and necessitates an
(s &(s}-dimensional inversion of 8 i. Hence, unless we
decide to choose 8~ ~

——j. again, we may generate re-
currently the s Xs matrices (n

~

m )8, and factorize
thetn into the products of the respective "canonical" lower
and upper triangular matrices (n

~

m ) and 8 i. In this
way, when working with the manifestly Hermitian ma-
trices [e.g. , in the notation of Eq. (3.10)j, our termination
condition (2.6) [+ a choice (2.7) of 8'sj inay be replaced
by a more specific and two-sided "partial-orthogonality"
requirement

C. Transition to the coupled channels
=0, m —n=t, i ~j
=0, —m+Pl =t, l' Q J' (3.13}

A coupled-channel extension of the present formalism
is straightforward and a use of the partitioning 's's en-
ables us to preserve even the notation (formulas). In brief,
we may extend easily the validity of all the above con-
siderations with the channel-indexed vectors

[ ~

u )(1)
~

u )(2)
~

u )(s)~

recurrences of a partitioned three-term form

i =1,2, . . . ,s, detB i~0, (3.12)

Such a renormalization (8 i+1) shortens (3.12) to mere
(2s+1)-term re:urrences and modifies only slightly the
corresponding recurrent algorithm.

Another specific feature of the s & 1 case is a difficulty
to keep the norm of the higher states

~

m )'" under con-
trol. Hence, it is useful to complement (3.13) by

"(n
~
m) '=1,

~

m n~ =t, i =j .— (3.14)

This "partial normalization" converts the family of over-
laps into a (2st + 1)-diagonal band matrix with a pair of
the unit outer diagonals.

Of course, the coupled-channel continued fractions
remain still (s Xs) dimensional. With s & 1, their formal
properties are less understood from the purely mathemati-
cal point of view. These details ' are omitted here.

TABLE II. Born remainder as a continued fraction (E =It ' ', t =3).

Indices

4.209
2.083
1.446
1.089
0.882

Coefficients
&.Cn+ ~

2.222
0.379
0.124
0.045
0.015

Approximants
F(N)

—0.18
—0.096
-0.0691
—0.070 159
—0.070 139

4.729
1.869
1.283
1.013
0.841

0.827
0.267
0.096
0.036
0.012

—0.289
—0.2740
—0.271 51
—0.271 719
—0.271 722

4.817
2.154
0.400
0.123
0.034

0.517
0.047
0.003
0.000
0.002

—0.2967
—0.294287
—0.294 271 362
—0.294 271 347
—0.294 271 347
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TABLE III. Estimated number Xz, ———logio
~
Fo '/Fo" ' —1

~

of significant digits in the ¹hcontin-
ued fractional approximation of the Born remainder 8 = ( u

~

It'/( I —K)
~

u ), K =it'6

3

+N, f

14.374
—9.624

—39.958
—156.621
—681.857

—3252.945

0.1

—0.5
1.0
2.1

3.1

4.2

0.7
1.3
2.8
4.3
5.9
7.3

2.7
3.7
5.5
7.3

&9
&9

5.9
7.0

&9
&9

IV. NUMERICAL TESTS

Let us use the termination algorithm of Sec. IIC and
denote R~, i

——limN „R~ti', Ri, ~' ——(u
~

U(GU)'~ u &F'o '

where

10
g( 5» gp 2» f +2» F~ )» Pl +2» 1 —6

3@i +2
10

q~ ——1 25, r&3, c =, m&2, i =45
3m +5

(4.2)

Fk =(I /Ik &—k~a+—)Ck+i)(N) (N)

(4.1)

with fewer symmetries and very small eigenvalues in the
latter i =6 case. Also, we have omitted now the distor-
tions and simplified the overlaps

are the finite continued-fractional approximants. ' Their
good N~ao convergence is well known. Moreover, for
the finite-dimensional kernels (2.1) (with tu & ao ) they will
even provide an exact answer at a finite N =Nq
=tu+r+1. With No ——7, this is illustrated in Table II.
The "X= ao" item is also added to illustrate a complete
absence of the N pNc instabihties, which is compatible
with our remark (1) made in Sec. III 8 above.

In the testing models E4 Ks, we have p—reserved the
simplicity of Ki —Kq and used the modified spectra

n
I
u&=n, n =2,3,4

(m ~u&=m+3, m&2, t=4
(n iu&=&m iu&=2, t =5,6.

(4.3)

concentrating our attention on the relevance of the spec-
tra.

When we vary the parameter t, the overall convergence
pattern may be read out of Table III. The precision of
Fo increases with the increasing t, due to the relative

TABLE IV. Variation of an optimal t =t Relativ. e errors
~

(R'~' —II'"'
~

/R'"'
~

are tabulated for the variable M =2%+t —1

and K =Et' '". T marks a need for the double precision arithmetic.

1.8[—3]

0.50[—1]

2.4[ —5]

3.1[—8]

0.94[—9]

0.56[1]

1.9[—4]

4.7[—4]

2.8[—6]

2.0[ —9]

4.0[ —3]

1.2[ —4]'

3.3[—6]

1.1[—8]*

0.72[ —11]*

0.74[ —4]

1.2[ —3]

4.8[ —5]

2.3[—8]

1.1[—2]

1.9[—4]

1.3[—6]

1.7[ —9]

0.79[—1]

4.1[—5]

1.3[—7]

0.66[0]

0.92[ —5)

1.9[—8]

0.53[—5 j

1.3[—8]*

4.8[—10]

4.8[—10]

3.0[—2]

0.59[—6]

0.95[—9]

1.4[ —11]

1.4[ —11]

1.4[—3]

0.53[—7]

0.58[—10]*

0.62[ —12]

1.3[—4]

4.0[—9]

3.0[ —12]

053[—13]

2.2[ —5)

2.6[ —10]

1.7[—13]

4.7[—6]

1.5[—1]

1.1[—15]

1.1[—6]

3.0[ —14]
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TABLE V. Patterns of convergence of the various resummed divergent Born series. f denotes the

nondecreasing errors.

3
4
5

6
7
8

10
11
12

1.9[—4]

1.0[—2]t

0.60[—4]

3.4[ —6]

1.4[ —8]

4.9[—10]

1.5[—2]

1.8[—5]

1.6[—5]

4.3[—s]t

3.9[—7]

1.3[—9]

1.5[—11)

(3) @=X"2)

3.5[—4]

3.2[ —4]

4.5[—5]

0.56[ —5]

3.4[ —8]

0.93[—11]

1.1[—4]

3.1[—5]

0.73[—4]t

0.74[ —6]

2.1[—9)

1.9[—10]

1.0[—3]

3.7[—5]

0.82[ —5]

0.67[ —7]

2.7[—10]

1.2[ —2]

1.9[—4]

1.9[—6]

0.80[—8]

3.2[ —9]

(b) g g [9,4)

0
1

2
3
4
5
6
7
8
9

10
11
12
13
14

1.7[—4]

3 7[ 4]t

2.6[—4]»

3.6[—5]

3.7[—6]

1.5[ —8]

0.98[—9]

1.5[ —2]

3.9[—5]

2.2[ —6]

2.4[ —s]t

0.S3[—4]t

4.2[—7]

1.4[ —9]

1.5[—11]

3.5[ —4]

4.9[—2]t

4.0[-3]t

0.82[-3]t

1.9[—4]

1.1[—6]

2.9[—8]

4.5[ —3]

1.4[ —5]

4.2[ —5]

0.93[—4]t

0.64[ —6]

2.3[—9]

4.2[ —10]

2.0[—3]

0.99[—4]

2.2[ —5]

0.91[—5]

0.72[ —7]

4.1[—8]

(c} E =SC'3' '

0
1

2
3
4
5

6
7
8
9

10
11
12
13

15
16
17
18
19
20

22
23
24

1.2[ —1]

1.4[ —3)

0.87[—2]

3.1[—3]t

0.99[—3]

2.3[—3)t

1.2[ —4]

2.4[ —6]

0.87[—7)

2.5[—7]t

1.1[—8)

3.8[ —1]

3.0[—2]

0.57[—2)

3.3[—3]

0.91[—2]t

2.6[—4]

2.5[—3]t

0.61[—4]

1.3[—6]

0.57[—7]

1.8[—9]

1.1[—10]

1.5[ —1]

1.0[ —2)

1.6[—2]»

0.76[—3]

1.6[—2]t

3.3[—4]

1.1[—3]t

3.1[—5]

1.1[—7]

1.9[—7]t

1.6[ —9]

1.3[—12]

0.57[—1]

2.9[—3]

1.1[—1 ]t

1.3[—3]

3.7[—3]t

1.1[—3]

4.8[—4]

0.84[ —5]

2.7[—7]

4.9[—8]

0.65[—8]

1.9[—10]

1.9[—2]

2.1[—3]

1.1[—2]t

4.1[—3]t

1.5[ —3]

3.5[ —3]t

2.4[ —4]

1.1[—5]

1.6[ —6]

2.3[—8]

0.80[—8]
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suIipression of the small eigenvalues in E. In the example
E6' ', this is paralleled by a loss of precision caused by
the t~ ao divergence of R~ti. Hence, a choice of the op-
timal t* is far from being obvious or unique for a fixed
input M =2%+1—1.

A possible variation in such a choice of t* is illustrated
here in Table IV. In the first part of the table, the
remainder R~t) itself diverges, and we find an optimal
value of t=t'=2 for E=E2' '. In the second part
of Table IV, R~ti (i.e., Born series) converges in the limit
t~ao, and an optimal t =t' seems to grow with M. A
loss of precision (marked by a dagger) appears at some
critical truncation N =N of the continued fractions rath-
er than at the "natural" truncation M =Mo of the input
information. Hence, the fixed precision of our computers
represents a reason for the iterative evaluations of RIo~
with the large values of t =t ' =M —const.

Once we choose a fixed order t of iterations (1.7) or
(2.5), an improvement of precision becomes a purely alge-
braic matter. The corresponding continued-fractional al-
gorithm is easily implemented on the computer and
Tables II—IV may be read also as a representative sample
of its N~ ao convergence.

A priori, one of the main characteristics of the N~ ao

convergence is a number r of the large eigenvalues in

K ~'"' (2.l). Indeed, for r =0 we return to the convergent
Born series and have N=const (cf. Table IV). In the
methodically more interesting case r & 0, the vectors
K"

i
u) become roughly r dimensional for the sufficiently

large n Then. , the smooth algebraic continued-fractional
convergence at N & r is a well-known feature of all the
t =0 algorithms. A similar phenomenon finds its confir-
mation also for t & 0 in Table V here.

Empirically, the restriction N&No(t, r) may be re-

placed by the rule M &Mo(r). In the first two parts of
Table V, an oscillation of errors (marked by f) disappears
for M &Mo-6 (K=K'2' ') and for M &Mo-8
(E=E2 ' ). The third, tougli example K =E3 ' witll
a relatively slow convergence, necessitates Mo-13 and
exhibits also a reappearance of the small oscillations at
M & MQ or a more complex dependence of Mo on the
parity of t Neverthe. less, even this example leads to the
quick overall increase of precision for M & 13.

All the present tests have an emphasized methodical
character. Obviously, new features may emerge in a study
of the physical systems. This is beyond the scope of the
present paper —some particular realistic tests of this type
are already under preparation. '

V. SUMMARY

%e have described a new iterative method of solving
the scattering equations. It combines the tth Born ap-
proximation with the Xth continued-fractional approxi-
mant of its remainder. Since, separately, the correspond-
ing exact t~ao (von Neumann) and N~co (Lanczos)
limiting transitions are often used in practice, we were in-

terested in their improvement and analysis in the whole
two-dimensional I;-Splane.

Let us summarize our present conclusions.
(1) The decisive difference has been found between the

divergent and convergent behavior in taboo. The former
case seems to admit a variation of the optimal t =t in an
interval since the /~cd divergence and E~ao conver-
gence compensate each other. The X~ oo convergence
proves to be very good for N &No, in accord with the
other continued fractional techniques.

(2) The latter (t~ oa)- conver gent group of examples
supports a preference of an optimal N =N' and growing
t =t' in practice. The tests indicate a premature comput-
er loss of precision for the smaller t's.

(3) In both cases, a continued-fractional estimate of
Born remainder makes the results reliable. An indepen-
dent variation of t and N may enable one to extract the
physical information from the computer input (i.e., from
the computed moments of K) in an optimal way.

(4) In a broader methodical context, an analysis of in-
terference between the simple iterations and sophisticated
algebraic manipulations proved useful. Their "com-
plementarity" may be expected to manifest itself also in
the coupled-channel case described here by means of the
matrix continued fractions.

(5) In both the realistic one-channel and coupled-
channel calculations, the continued-fractional approach
finds its natural extension in a use of the general (possibly,
matrix) Pade approximants' [Ni'N+s], s an inte er.
Indeed, the present continued-fractional remainder R It)

' is
in fact' '" a special Pade approximant with s =0. This is
a nontrivial relationship since the Pade approximant may
also be interpreted as a Schwinger variational expres-
sion. ' Thus, our Born series with analytic continued-
fractional remainder R I,~' is in fact identical to the varia-
tional functional Mzt+ i 2, + i discussed in Ref. 20 (with no
initial basis set). This opens a way towards the further
analysis: the role of s&0 represents an exciting challenge
for the further methodical development.
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