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Wave-packet solution to the time-dependent arrangement-channel quantum-mechanics equations
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The time-dependent arrangement-channel quantum-mechanics (ACQM) equations are numerical-
ly solved for the collinear exchange reaction H+Hq. The method employs the fast-Fourier-
transform scheme of Kosloff and Kosloff and an efficient time propagator involving a Chebyshev
polynomial expansion due to Tal-Ezer and Kosloff. The time-dependent ACQM formalism, which
is based on the use of the time-dependent arrangement-channel-component states as introduced by
Kouri, Kruger, and Levin, involves a non-Hermitian matrix Hamiltonian in arrangement-channel
space. %e employ the channel-permuting array-coupling sequence of Sacr, Kouri, Levin, and To-
bocman. The remarkable property of the channel-component states that, below the dissociation
threshold, only the component in channel j gives rise to outgoing waves in that arrangement chan-
nel, is explicitly seen in this time-dependent calculation. The calculated reaction probability is in

reasonable agreement with the time-independent calculation result. The question of whether the nu-

merically generated time-dependent solutions contain spurious solutions (which can arise in princi-

ple, due to the matrix nature of the Hamiltonian in arrangement-channel space) is discussed. It is
found computationally that such spurious solutions do not create any difficulties in the calculation
of reactive probabilities within the time-dependent ACQM formalism.

I. INTRODUCTION

Reactive scattering theory mainly has been studied by
time-independent calculation methods. There are two
basic approaches for chemical systems. The most widely
used and familiar is the differential equation approach,
which basically propagates the wave function within the
various possible arrangements and matches it on certain
surfaces separating different arrangement channels. If
one uses some type of reaction coordinate, the integro-
differential equation approach, or the finite-element
method, then the matching step can be avoided. The
second general approach is to solve the coupled integral
equations for the various possible arrangement scattering
amplitudes directly. The integral equations explicitly in-
corporate all possible boundary conditions, and therefore
no matching is encountered. The so-called Baer-Kouri-
Levin-Tobocman (BKLT) equations have been success-
fully applied numerically to collinear reactive scattering
problems with smooth potential surfaces recently and ex-
tension to full three-dimensional problems is currently
under way. The general time-dependent formalism of
arrangement-channel quantum-mechanics (ACQM) equa-
tions has not yet been numerically applied to reactive
scattering. Chemical reactions are time-dependent phe-
nomena, so an interesting way of dealing with them is to
use time-dependent quantum. mechanics. There are com-
putational difficulties associated with the time-dependent
approach to dynamics which so far have in-
hibited the use of time-dependent QM as a general tool in
chemical reaction studies. On the other hand, the time-
dependent method has the virtue that it gives direct in-
sight to the solution, i.e., the results are easy to interpret,
it is in principle a powerful tool for studying intimate de-
tails of the collision processes (such as perhaps the time

delay to distinguish whether the reaction is direct or
complex). The time-dependent method can also be used to
study collision-induced dissociation (CID} (Ref. 10}where
the standard close-coupling method is very difficult be-
cause it involves a continuously infinite number of basis
functions.

In this study, a wave-packet approach is used to solve
the time-dependent ACQM equations for the H+ H2 sys-
tem and reaction probabilities are compared with those
obtained from other methods. " The arrangement-
channel-component wave-function magnitudes are plotted
at different time steps as well as the total physical wave-
function probability densities, to demonstrate the evolu-
tion of the wave-function components as time progresses.
These channel-component states satisfy the time-
dependent BKLT equations (collinear) '

a
&
—%,=H, %,+ V,%, ,
dt

~
—%,=8,%,+ V, %, ,

with the initial condition

%t, (t =0)=4(R)Xc(r),

%,(t =0)=0,
where @(R) is a Gaussian wave packet and Xo(r) is a di-
atomic vibrational eigenfunction in the initial arrange-
ment.

It will be evident later that +2 remains zero until %'l

moves into the interaction region. Then %2 gradually
picks up strength due to the coupling with 4& in the in-
teraction region.
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II. THEORY

A. AC@M equation and mass-scaled coordinates

The general time-dependent ACQM equations resemble
the ordinary Schrodinger equation except that the simple
Hamiltonian is replaced by a matrix Hamiltonian operator
in arrangement-channel space,

i —%(t)=HV(t),

Schrodinger equation. In a collinear exchange collision,
X =2 and the ACQM equation is simply the following:

&
——H2 %2 ——V~%'~,
8t

or in compact form

i—%'(t) =H+(t),

where

2
(12)

0] V2 0

0 H2

0

0 s ~ ~

0

V3 0

0 0„ i V„

0 0„
or more explicitly, with the BKLT coupling sequence

i H—) %)(t)=—V2+2(t),
Bt

i H—
2 %y(t) =—V3%'3(t),

i H„%„(t)—= V—, %,(t) .
Bt

i 4(t) =H4-,
Bt

with

The cyclic coupling is due to the introduction of the
channel-permuting array. Adding these equations to-
gether gives rise to the ordinary Schrodinger equations

H) V2
H p' + o

It is easy to see that

H] Vi
H=

V H &H
2 2

(14)

due to the off-diagonal elements in the potential matrix.
This means

i—& e'I e& = & e'I (H —H'
I
e&@0 .

and the norm is

&y
I
y&=&4,

I
4, &+&%, I

ey&+2Re(&e$
I
e'y&), (lg)

which is a conserved quantity, while &4
I
4& is not.

From (15), (16), and (18),

i—&e Ie&=i—&eIe& —2i—Re(&@, Ie, &)
B r . B B

Bt Bt Bt

It is expected that for nonorthogonal 4, and %z

i—& +
I
+&=—(& +i

I
+i &+ & +z

I
+2&)W0

B T B

Bt Bt

As a matter of fact, the physical wave function is the sum
of 4, and %2,

H =H;+ V, (i =1,2, . . . N) .

We note that if %=+,. , +; is nonzero, it must corre-
spond to a solution of the time-dependent Schrodinger
equation. However, it can in principle occur that the sum
over the components 4; vanishes everywhere. In that case
we refer to the solution as a spurious solution since it
corresponds to a nontrivial solution of the equations for
+; but to a trivial solution of the ordinary time-dependent

= —2i—Re( & ~l
I
+2 & )

Bt

= & %
'

I [H H']
I
I & . —

at
—Re(&q,

I
q, &)= —im(&q,

I
[V, —V, ] I

q, &) .

For a more detailed discussion, see Ref. 12 (Evans and
Hoffmann). The perturbation potential V~(R, r ) is de-
fined as
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V =V(R, r ) —lim V(R~, r~)
—+oo

(21)

and the arrangement-channel Hamiltonian H~ is

~2
H =—,+, +V(r ).

Br~ M~

Here V is the full interaction potential, and

V (r~)= lim V(R~, r~)
A~~ oo

(22)

(23)

is the diatomic potential in the a arrangement channel. u

is the system reduced mass, '
' 1/2

PPl )P?22PE3

fPl i +PPl 2 +Pl 3
(24)

R, r are the mass-scaled coordinates

R~ =A~R~, r~ =r~/A~, (25)

' 1/2
mttmr(m&+mi+m&)

m (mti+mr)~
a~P~y@a. (26)

Then the transformation between different arrangement-
channel coordinates becomes orthogonal,

R tt RcosX+——r sinX,

7 p
——R~ sl~ —&~ cos+,

where g is the skewing angle defined by

(27)

where R~ and r~ are the true distances (not mass scaled),
and

prove the accuracy of such an approach, it is generally
necessary to use very small time steps [this is equivalent
to expanding exp( —itH/NA), where N is very large so
that bt=t/N is small, and then raising the result to the
Nth power]. Alternatively, one may use the Pade, ap-
proximation (e.g. , see Kulander's work' ). This is unitary,
accurate to second order in ht, and is numerically stable.
However, the propagation typically takes a large number
of steps and the propagator requires computation of the
inverse operator (1+iHht/2A') '. Accurate results re-
quire use of a relatively small ht. The Chebyshev polyno-
mial expansion' ' has the following attractive features.

(a) The error decreases exponentially once enough terms
in the expansion are taken (due to the uniform distribu-
tion of the error over the domain of definition of the poly-
nomials).

(b) The step size in the method can be made as large as
desired so long as sufficient numbers of terms are includ-
ed (in fact, the calculations were all done with a single
time step).

(c) The propagation is stable and numerically easy to
apply and does not involve any matrix inversions.

(d) The method is unitary as discussed by Kosloff and
Kosloff. '

The second feature of the approach we employ concerns
the use of the fast-Fourier-transform (FFT) method of
evaluating the action of the Hamiltonian on the wave
packet. ' ' Other approaches have utilized finite differ-
ence methods for evaluating the second derivatives due to
kinetic energy operators in the Hamiltonian. The FFT
method' '6 allows a reduction in the number of spatial
grid points and reduces spurious numerical dispersion.

(28) B. Chebyshev method and fast-Fouriex transform

From Eq. (17) we have the formal solution

%(t) =exp( iHt)%(t =—0) . (29)

Denote the eigenvalues of H by E„, and the minimum
and maximum by E;„and E,„. Then rewrite the prop-
agator as follows:

Since the eigenstates of H form a complete set, '~ we can
formally expand the %'(t =0) as

exp( iHt) =—exp[ i (E,—„+E;„)t/2]exp(iRX),

(33)
4(t =0)=g A„%'„, (30)

where

(31)

%(t)=exp( —iHt)%(0) =g A„exp( —iE„t)%'„. (32)

(5.0,4.0)

Thus exp( —iHt) is a simple phase factor when acting on
an eigenstate 4„.

There are several alternatives' "' ' for evaluating
the action of the time propagator exp[ —i (Ht/A')] on the
wave packet. in general there are two aspects of concern.
First is the treatment of the exponential itself either as a
power series (Taylor series) or in the present instance, a
series of Chebyshev polynomials of matrices. Generally, a
simple Taylor expansion of the ex onential does not
preserve the time-reversal symmetry' and the truncated
power series is not exactly unitary. In addition, to im-

f5.0,0.2)

FIG. 1. Skewing angle +=60'. The dotted line is the sym-
metric stretch line.
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FIG. 2. Reaction probability vs time (unit of time is
6.5783 & 10 ' sec). Curve 1 is for E, =0.38 eV, 5=0.15 A,
R; =3.0 A; curve 2 has E, =0.38 eV, 5=0.5 A, 8;=3.0 A..

F(G. 3. «gMcomponent I0,
I

and the full I+I at time

t = 10. Packet parameters are E, =0.38 eV, 5=0.15 A,

R; =3.O A (not mass scaled).
I
4,

I

' is zero at this time.
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"&6 4. «&M components
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I
e I'at time r=2o
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where

R =(E,„E—;„)/2

and

To(X)=1, Ti(X)=X . (4O)

and

X=(E +E;„2H—)/(E .„E—;.) . (35)
The operation of the kinetic operator on 4 is done sym-
bolically as follows:

It is easy to see the eigenvalue X„ofX is within the range

X„G[—1„1].

The first factor exp[ —i(E,„+E;„)t/2] involves no
operator during the entire time propagation. Now, ex-

pand exp( iRX) in Chebyshev polynomials

exp(iRX) =g A„T„(X).

Here

F I V(r) I ~V'(k),
with

F '
I 4'(k) I ~%(r) .

Since

FIV' %(r))~—k %"(k)

we have

(41)

A„=(2 5„0—)i "J„(R), (38)
F 'I —k 4'(k) I ~b,2%(r) . (44)

where J„(R) is the Bessel function of the first kind of or-
der n.

Chebyshev polynomials satisfy the recurrence relation'

T„(X)=2XT„(X) T„2(X—)

We now discuss the numerical preparation of the initial
packet. We start the initial wave function with a Gauss-
ian wave packet multiplied by the ground-state vibrational
eigenfunction of the diatom in the initial arrangement,
1.e.,

H+ Hz Wava-Function ProbabNy

Attangecnent Channel component ( ql) ~ j
&

FIG. 5. Same as Fig. 4 except I; =30.



Z. H. ZHANG AND D. J. KOURI 34

4(R) = J A (k) exp( ikR—)dk
1

2m

(45)
(mhss scaled). The grid parameters are as follows:

~o ——0.5 A, a~=0.O7A

ro ——0.2 A, hr =0.06 A,

XXI,„=64, Xr,„=64 .

(49)

and

=(2~5 )
'

expI (R—Ro—) l45 I exp(ikoR),

(46)

The center of the wave packet is placed at R, =3.0 A
away from the origin. The system we calculated is a sym-
metric H+ H2, and the Porter-Karpius' potential surface
is used. The time unit is 6.5793)& 10 ' sec.

III. RESULTS AND CONCLUSIONS

~(k)=(8~5 )' expI —(k —ko) 52)exp(ikRO) . (47)

1
E,(k)= ko+

2u 45~
(48)

For the H3 system„

A' /2u =0.003 59 eV A

The average kinetic energy of the wave packet is equal to
r

The symmetric stretch line is chosen to divide the po-
tential into a reactant region and product region. ' A
reactive probability P„(t) obtained by integrating the
square of the wave function in the product region is thus
an average reactive probability over the energy range con-
tained in the initial wave packet, which varies with time.
Therefore if the initial wave packet is broad enough, such
that its distribution in momentum space is sharply cen-

H + Hz Wave-Function Probability Arrangement Channel Component ( qp, I
~

Arrangement Channel Component Iqp& I
~

FIG. 6. Same as Fig. 4 except t =40.
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tered around a central momentum ko, then P„(t) will be
very close to the reactive probability corresponding to sin-
gle energy Eo after enough time propagation. Different
width parameters 5 of the wave packet result in different
average probabilities P, (t) because of the different energy
distribution in initial wave packets.

Figure 1 shows the rectangular area on which our cal-
culation is performed. The reactive probability P, (t),
which depends on both time and 5, is plotted in Fig. 2,
showing the effect of varying the translational shape of
the initial packet. The average energies E, at which cal-
culations are done are 0.26, 0.38, 0.44, and 0.51 eV (all en-

ergies are below the first excited vibrational energy of H2).
Figures 3—8 depict the time evolution of the square
modulus of the arrangement-channel-component states
4&, %z and total wave function O'. In Fig. 3 4& propa-
gates freely and is the same as 4 while %2 remains zero.

After moving on to Fig. 4, part of 4& has entered the in-
teraction region and spread some into the region where
the coupling potential is significant which helps create 4'2
in the strong-interaction region. The total wave function
%' moves toward the product channel. As time progresses,
the coupling in the interaction region becomes very strong
while the reactive part of the wave function moves toward
the exit channel. The amazing thing is that the giant
jumps of 4', and %'2 seen in the strong-interaction region
are precisely out of phase and therefore cancel exactly in
that region. The most important feature of these dia-
grams is that 4't and %2 are strictly confined to each ar-
rangement channel except for overlapping in the strong-
interaction region. In other words, 4& and %2 fully
represent the total wave function away from interaction
region in arrangement-channel tubes I and 2, respectively.
This means that only the jth arrangement-channel-

H+ Hq Wave-Function Probabilty Arrangement Channel Component ~ ~, I
~

Arrangement Channel Component
~ ~z J

2

FIG. 7. Same as Fig. 4 except t =50.
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n of time. 'ive roba r i yb'1 t as a functionTABLE I. Reactiv p

Time ste

0.009 39710
0.069 12020
0.260 54830
0.533 18340
0.72209950
0.796 85860
0.81609670
0.819 12880

eter 8=0.5 A.'The width parame

E, =0.38 eV

0.016 131
0.157 572
0.534 316
0.856 157
0.964634
0.975 284
0.935 893

E, =0.44 eV

0.020218
0.213 507
0.648 010
0.889 175
0.948 537
0.952 305
0.950779

E, =0.51 eV

0.025 638
0.283 208
0.747 472
0.881 797
0.889 970
0.891 811
0.890 365

Wave-Function ProbabiNtyH+ H~ av Channel Component f~&I &Arranoement C',hanne

Channel Componen qp,AfranQement

i . 4 except t =60.FIG. 8. Same as Fig.
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H+ Hz Nave-Function Probabilty H+ Hz Wave-Function ProbabNty

FIG. 9. Total
~

4
~

' for packet with E, =0.38 eV, 5=0.5 A.
Time is t =10. FIG. 11. Same as Fig. 9 except at t =60.

component state contributes to outgoing waves in that ar-
rangement, which is a primary, fundamental feature of
the AC@M equations. The question then is whether or
not these jumps in ql, and 4z represent contributions of
spurious solutions. Certainly spurious 4i and ii't cancel
to zero and that is consistent with the behavior of these
oscillations. The initial conditions used for 4i and %2
correspond to a physical solution of the AC@M equations
at time t =0 (in the initial asymptotic region). However,
numerical roundoff can introduce contributions to %i and

%z coming from spurious solutions. The important point
to note is that even though such spurious solutions may be
present, they (a) cancel exactly when the full wave func-
tion is formed by adding %i and %2 and (b) do not extend

into the asymptotic regions so that 4'; asymptotically
equals the full wave function in asymptotic channel i.
Again, this reflects the fact that all scattering information
in arrangement i is contained solely in arrangement-
channel component ql;. Because of this, the occurrence of
spurious oscillations in the strong™interaction region does
not create difficulties in the analysis of the scattering.
Figures 9—ll are diagrams of the full wave-function
probability density at the same energy E, =O.38, but with
5=0.5 A. They show almost total reactivity P, —100%,
which is the same as the result from the stationary-state
calculations. Figure 12 compares the reactive probability
P„(tl ) with time-independent calculated results. " All the
P, (t) are obtained with 5=0.5 A for the initial packet.

H+ H2 Nave-Function Probabilty

1.0-

0.8-

0.4-

0.4 0.8 0.8
E (ev)

FIG. 10. Same as Fig. 9 except at I; =30.

FIG. 12. Reactive probability for V;=0 and Vf ——0 as a
function of total energy. Points are from D. J. Diestler, Ref. 11;
crosses are our results and the solid curve is from Y. Shima, D.
J. Kouri, and M. Baer, Ref. 7.
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Table I presents the reactive probability I'„(t) versus time
of propagation at translational energies E,=0.26, 0.38,
0.44, and 0.51 eV.

Finally, we note that although the solution of the time-
dependent ACQM equations is of great interest from the
standpoint of understanding the ACQM wave-function
components 4;, the computation effort in solving these
equations is greater than that required to solve the time-
independent ACQM or ordinary Schrodinger equations.
Thus, at least the present approach does not appear
promising for apphcation in general.
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