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The %ei-Norman algebraic techniques for time-ordering problems are applied to the study of the
evolution of quantum states ruled by a harmonic-oscillator Hamiltonian with a time-dependent fre-

quency. The slowly varying frequency case is studied; the adiabatic theorem is rederived together
with higher-order corrections. The analogy with the propagation of a paraxial beam through a
self-focusing fiber is also pointed out.

I. INTRODUCTION

Algebraic procedures to deal with time-ordering prob-
lems' have proved a powerful tool for studying the evolu-
tion of dynamical systems whose Hamiltonian can be cast
in a time-dependent combination of the generators of a
Lie algebra. Renewed interest in these techniques has
been recently prompted by the study of the evolution of
the SU(2) and SU(1,1) Perelomov coherent states.

From the quantum-mechanical point of view, the prob-
lem posed by the evolution of a system consists in finding
a suitable representation of the evolution operator. This
leads one to exploit suitable disentanglement theorems of
the Baker-Hausdorff (BH) type. Several formulas of the
BH type have been established for time-independent Ham-
iltonians, while more general theorems are needed for the
time-dependent case. In Refs. 4 and S some of the present
authors have shown that the most convenient approach to
this problem is the Wei-Norman (WN) algebraic method. '

This approach owes its power to the recourse to group-
theoretical concepts, which allows one to recast the gener-
ic element of a Lie group as an ordered product of ex-
ponentials containing single generators of the group. The
WN method implies the solutions of a system of differen-
tial equations, whose order depends on the dimension of
the I.ie algebra.

The time evolution of a harmonic oscillator has been
analyzed by Dykhne who has calculated the transition
probabilities from an initial state to a final one in the case
of an adiabatic variation of co(t) In Ref. 7 th. e evolution
for either a prescribed or a random variation of co has
been studied by using the Feynman-Dyson expansion of
the evolution operator. More recently, Gerry has con-
sidered the evolution of a degenerate parametric oscillator

by using Perelomov coherent states.
Here we will reconsider the above problem within a

more general framework, by obtaining closed expressions
for the matrix elements of the evolution operator. In par-
ticular, we will dwell on the solution of the characteristic
differential equation (CDE) generated by the WN method,
by considering the case of both periodic and slow varia-
tions of to. The use of the realization of the SU(1,1) alge-
bra in terms of the q and P operators, as suggested by
Dirac, will allow us to establish a useful analogy of the
oscillator evolution with the propagation of optical beams
through a suitable lens combination. Exploiting this anal-
ogy, we will obtain the matrix elements for the evolution
operator of a two-dimensional oscillator with simple phys-
ical considerations. In this context, the possibility of
describing a nonuniform optical fiber with a quadratic
profile of the refractive index (self-focusing) in terms of
an appropriate lens combination will also be pointed out.

The paper is organized into six sections. In Sec. II we
discuss the relevance of the SU(1,1) group to the time-
dependent harmonic oscillator. In Sec. III we give a sim-

pie interpretation of the operators exp(aE+ ), exp(PE&)—
Eo,E+ being the SU(1,1) algebra generators relevant to
the already quoted realization —in terms of the propaga-
tion of a TEN„ two-dimensional beam through an optical
system composed of a cylindrical lens and a beam ex-
pander. Furthermore, this analogy is used for obtaining,
with little mathematical effort, the evolution operator for
a degenerate two-dimensional oscillator. In Sec. IV we
use a time-dependent basis, coincident with the eigenfunc-
tions of an oscillator with constant frequency co(t) A.
closed expression of the matrix elements of the evolution
operator is obtained in terms of the associated Legendre
functions, whose argument is a solution of the CDE. Sec-
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tion V is devoted to deriving the asymptotic expansion of
the matrix elements of the evolution operator in terms of
a smallness parameter e measuring the slowness of the
frequency variation. In this context, the evolution of a
Glauber coherent state is studied up to the second order in
e. Finally, Sec. VI contains some conclusive remarks.

II. HARMONIC OSCILLATOR
%'ITH TIME-DEPENDENT FREQUENCY

AND SU{1,1) GROUP

Let us consider a qu'mtum-mechanical harmonic oscil-
lator with a prescribed time-dependent frequency tu(t),
whose Hamiltonian reads

H(t)= zp + iso (t)qi .

We will use dimensionless quantities and, in particular,
we will assume fi= l. For much of the following discus-
sion, it is sufficient to require that the frequency evolution
be such that co(t) is an analytic function.

The operator U(t, to) transforming the state of the sys-
tem at the generic initial time to into the state at the time
t can be represented as a time-ordered exponential func-

tion of H,

U(t, to) = Texp i f H—(t')dt'
0

T being the Feynman-Dyson time-ordering operator.
Since H(t) does not commute in general with H(t'), ex-
cept for the trivial case of constant frequency, the right-
hand side of Eq. (2) is represented by a nonterminating
series of commutators. To get around this difficulty, Wei
and Norman have developed a method involving the alge-
braic structure of the Hamiitonian operator. We will il-
lustrate the WN method in the following for the algebra
realized by embedding the q and p operators appearing in
(1) as follows:

K+ ———qi, E =—P2, Eo —— (pq+qp) . —
2

'
2

'
4

(3)

The relevant algebraic structure, displayed by the com-
mutators

[EO,E+ ]=+K+, [K+,K ]= 2KO, —(4)

is immediately recognized as that of the SU(1,1) group.
The realization (3) of the SU(l, l) algebra is not unique;

the more widespread realization involves the harmonic-
oscillator annihilation and creation operators, namely,

K'+ ———,'(a ), K' = —,'a, Eo———,'(aa +a a) .

Expressing a and a in terms of q and P,

0
l

2l

2

C= ——,6I =k(k —1)I .

The states with even n span the space of the irreducible
unitary representation with k =

4 and the corresponding
states with odd n realize the representation with k = —,.
In particular, with the notation

~
n, —,

'
& =

~

2n & and

( n, —, &= ~2n+1&, wehave

K;(n, k&=(n+k) ~n, k&,

K+ I
n k & =[(n +1)(n +2k)]'"

~

n + l, k &,

~
n, k & = [n (n +2k —1)]'~'

~
n —l, k & .

(9)

The corresponding relations for Eo, K+, and E can be
obtained by using Eqs. (6).

Once having identified the group structure of the Ham-
iltonian (1), we can deal with the time-ordered exponential
(2) by using the already quoted algebraic-ordering tech-
nique, according to which we can express the evolution
operator as the ordered product of three uncoupled ex-

ponentials,

U(t, to) =exp(2uEO)exp(uE+ )exp( wE ), —(10)

where u, u, w satisfy the system of nonlinear differential
equations

u = —u exp(2u),

u = —iiu —tu exp( —2u),

w=exp(2u),

with the initial conditions u(to)=u(tu)=w(to)=0, a dot
denoting a time derivative.

The system (11)can be transformed into a Riccati equa-
tion for the function s =u

s(t) —s (t) —co (t) =0, s (to) =0 . (12)

This is the standard CDE of the WN procedure, relevant
to the split three-dimensional Lie algebra. It turns out,
however, to be more convenient to introduce the auxiliary
functions +=exp( —u) and M=w exp( —u), which are
two independent integrals of the equation

The wave functions of the harmonic oscillator realize
two irreducible unitary representations of the SU(1,1)
algebra, generated by the operators (3) or (5), in correspon-
dence with the two possible values of the Bargman index
k, k =—„,—„', as deduced from the expression of the
Casimir invariant relevant to the realizations (3) and (5),
1.e.,

a = (q+iP), a = (q iP)„—
&2 v'2 y(t)+~ (t)y(t)=0, (13)

we can easily show that the two realizations (3) and (5) are
connected by the linear transformation

satisfying the initial conditions k(to)=P"(to)=1,
+ (to) = M(to) =0. In particular, we have
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u= —!nk, to=, U= k k.
+ and M are related by the %ronskian relation

k~—k M=1 .

(14)
5 = 2 ((co —1 ) iiin' —+ t i 0—+ eo

= A —8 cos6+C sin6,

8 ( t) ~ sin(co+ t +(!)),1

t~ oo +~co+
(16)

X I exp[i (co+t +((})]

+p exp[ i (co+t—+P)][,

Although both Eqs. (12) and (13) cannot be solved
analytically for a generic function co(t), we can, however,
investigate the asymptotic behavior of the functions +(t)
and M(t) in the hypothesis that co tends to constant
values co+ for t~+ao and to~ —00. It follows indeed
from (13) and (15) that

k(t) ~ k„cos(co+t+P),

r
2—= —8 sin5 —C cos5,

r

where

3 =((co —1)), ,

8 = ((co —1)cos[2(t —to+80)] ), ,

C = ((co —1) sin[2(t to+8—0)] ), ,

(22)

(23)

5=2arctanIexp[8(t —to)]j ——.
2

'

Accordingly, we obtain for + and 8

the symbol ( ), denoting the average over an interval,
during which 8 and r remain almost constant. When 3,
8, and C are independent of t, the above system can be in-
tegrated by quadrature. In particular, for A =C =0

r'(5) cos5= 1,

plays the role of a reflection coefficient. Accordingly, we
have

1= cosh'~ [8(t —to)] cos(t to+5/—2),

M= cosh'~ [8(t —to)] sin(t to+—5/2),

+'+ M'= cosh[8 (t —t, )],
that for taboo reduce to

(25)

to(t} ~ tan(co+t+P),
1 —p

t —+ ao 1+p

U(t) ~—1+p sin[2(co+t +4)] .
m 2(1—p)

(18)
exp[ —,

~

8
~

(t —to)] cos t —to ——sgn(8)
1

V2 4

(26)

Another interesting case, encountered in several prob-
lems of quantum mechanics, involves a frequency co(t) un-

dergoing small variations with respect to an average value.
In order to tackle this specific problem, we rehandle con-
veniently Eq. (13) by means of the Priifer substitution

y =r sin8, y'=r cos0,

where r and 8 satisfy the equations of motion

8= (co —1) sin 8+ 1,

r = ——(co —1') sin28
2

0(t}=OO+t to+—5(t)
2

we can replace Eqs. (20) with

{21)

with the initial conditions r(to)=1, 80=8(to)=n./2 for
k and r(to)=1, Ho ——0 for M. Then, assuming without

loss of generality co -=1 and introducing the function 5(t),
according to

exp[ —, ~8
~

{t—to)]sin t —tp — sgn(8)
1

v2

The above analysis shows that the problem of the time-
dependent quantum harmonic oscillator can be treated
within the framework of an algebraic approach. The
above solutions of the CDE, even though limited to par-
ticular cases, show that useful information about the
dynamical behavior of the system can be inferred quite
straightforwardly.

III. ANALOGY %ITH THE PROPAGATION
OF OPTICAL BEAMS

In dealing with the time evolution of quantum states,
the search for a suitable representation of the evolution
operator is only the first step. The second one involves
the study of the transformation induced by the evolution
operator on the initial state, represented in the case we are
interested in by the eigenfunctions u„of the harmonic os-
cillator with constant frequency co = 1,

u„(q) =(n!2"~m) 'i H„(q)exp( ——,q ),
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H„being the Hermite polynomial of degree n . To this
end, it is convenient to introduce the function

( 1+ 2)1/4 (1+ 2)1/2

Xexp i(n + —,
' )arctanz —— .—, (28)

2 2+k
BEAM EXPANDER M = exp (-u)

with z real. Now, it can be shown that u„(q;z) satisfies
the parabolic wave equation with wave number equal to
unity, "that is,

FIG. 1. Optical system equivalent to the evolution operator
for a one-dimensional {10)harmonic oscillator. The free-space

section corresponds to the operator exp{ —coE ), the lens

represents exp( uk+ ), while exp(2uko) corresponds to the beam

expander. For the 20 problem, the cylindrical optical elements

are replaced by the spherical ones.
1 8 8

2 + u„(q;z) =0,
z

(29}

so that we have

exp( —1vK )u„(q)=exp( —1vK )u„(q;0)

ug(q It)= up), tv exp
1

=exp —w u„(q;z) i,z

( ~2+ ~2)—1/4

( 12n~ )1/2 "
( @2+~2)1/2

=u„(q; —1v) . (30)

2

&(exp
2( +'+ P"') (32)

By interpreting u„(q;z) as the field associated to a
TEM„Gaussian beam, Eq. (30) states the equivalence of
the operator exp( —1vE ) with the propagation of the
beam over a distance —w. Analogously, it may be im-

mediately shown that exp(vK+ ) is equivalent to a lens of
focal length f= 1/v. For what concerns Ko, the relation

8(t)= (n + —,
' )arct—ance(z) . (33)

The above-stated analogy allows us to easily define the
evolution of a two-dimensional oscillator, ruled by the
Hamiltonian

exp(2uKo)f (q)=exp —exp uq f (q)
2 Bq

1 ~2 ~2 I g ~2 ~2H(t)= T(P1+P2)+To) (t)(q1+q2) . (34)

I'

=exp —f [q exp(u)]
2

(31)

shows that exp(2uKo) is equivalent to a beam expander
with a transverse magnification I=exp( —u) = k.
Thus, we can assimilate the operator U to the optical sys-
tem of Fig. 1. Correspondingly, the oscillator wave func-
tion u„(q;t) at time t is given by

Indeed, the time evolution of the simultaneous eigenfunc-
tions of the Hamiltonian (34) and of the angular momen-

turn J=p1q2 —p2q1 is equivalent to the propagation of
Gauss-Laguerre modes through the system of Fig. 1, in
which the cylindrical lens and beam expander used for the
one-dimensional problem have been replaced by the spher-
ical ones. Therefore, for a two-dimensional oscillator the
wave function at time t can be immediately derived from
the expression (32), by replacing the Hermite polynomial
with the Laguerre one L„and modifying slightly 8,

u„(q cosP, q sing;t) = 2n)
(n +m)!. ( ~2+ ~2)—1/2

m/2

exp(im P)L„ +2+ ~2

2
exp'i ++ 2 2 +(2n+m+1)arctan~(z)
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where iI =g i +iIi.2 2 2

Finally, in the context of the discussed analogy, we
want to stress the equivalence of a longitudinally nonuni-
form optical fiber with a parabolic profile of the refrac-
tive index with the optical system of Fig. 1, whose param-
eters are defined by the law of variation of the refractive
index of the fiber.

IV. EVOLUTION OPERATOR FOR AN
ADIABATICALLY VARYING BASIS

H(t)
~
n, t ) =E„(t)

~
n, t) . (36)

In this section we want to approach the problem from
another point of view, which will allow us to insert the
problem of the time evolution of the harmanic oscillator
into the more general context of nonlinear quantum op-
tics. To this end, let us introduce the eigenstate

~
n, t) of

the Hamiltonian (1)

The group structure underlying Eqs. (39) can be im-
mediately found by introducing the auxiliary Hamiltonian

0

H(t)=i [exp(2ig)K '+ —exp( 2—ig}K ' ],
263

(40)

and as basis the set of states
~

n, k ), which diagonalize the
compact generator Kp, i.e., K p ~

n, k) =(n+k)
~
n, k).

Thus, from the Schrodinger equation and the properties
of the raising and lowering operators K'+, one easily ob-
tains the system (39}. Consequently, the algebraic struc-
ture underlying the RN equation (39) is that of the
SU(1,1) group, which can be recognized as a dynamical
group for the parametric amplifier' for the laser-
light —plasma interaction, ' and for the particle motion in
a rapidly oscillating field, just to mention a few impor-
tant cases.

The system (39}can be salved by the intermediary of an

evolution operator U obeying the equation of motion

Consequently, by expanding the state
~ P) at the time t in

the series dt 2ci)

—U= [exp(2ig)K'+ —exp( 2ig)K'—]U, (41)

with

~
g) = g a„(t}exp[—i (n + ,

'
)P(t, t—p)]

~
n, t), (37) with the initial condition U(tp, tp) =I.

Equation (41) can be integrated by following the WN
procedure illustrated in Sec. II, which gives

P(t, tp)= I, tp(t')dt', (38)

the Schrodinger equation turns into the set of differential
difference equations

a„(t)= [v'n (n —1)exp(2i P}a„

U(t tp) =exp(2hK p)exp(gK '+ )exp( fK ' ), —

where

h = —Qg exp(2h),

g =Q'exp( —2h) —gh,

f=Qexp(2h),
(43)

v'(n +—1)(n +2)exp( 2ig)a„+—i], (39)

whose initial conditions are specified by the initial state of
the oscillator.

Equations of the type (39) have come into widespread
use in physics since the late thirties, when Raman and
Nath proposed a similar system for describing the ampli-
tudes of the diffracted beams produced by the scattering
of light by ultrasound. " A comprehensive analysis of the
Raman-Nath (RN)-type equations together with their
relevance to physical problems has been put forward in
Refs 4, 5, and. 12. For the interested reader we recall that
the RN equations can be classified in accordance with the
algebraic structure of the Hamiltonian (if any} from
which they can be derived. For example, a free-electron
laser, ' a one-dimensional random chain diffusion, ' or
multiphoton processes' are ruled by a Hamiltonian asso-
ciated with the "shift group. " Similarly, the time evolu-
tion of Glauber states' or the interaction of a multilevel
system with electromagnetic radiation' can be associated
with the %eyl-Heisenberg group structure, which in turn
characterizes the harmonic RN equation' governing the
evolution of the eigenstate amplitudes. Finally, the evolu-
tion of two-level systems' ' can be associated with Ham-
iltonians with SU(2) symmetry and the equations of
motion of the eigenstate amplitudes for these systems are
accordingly called spherical RN equations.

P=QA',
AW —wA =Q,

from which it follows the integral of motion

(46)

Q( t) =— exp( 2i P), —CO

2'
with the initial conditions h (tp) =g(tp) =f(tp) =0.

Next, by introducing the auxiliary functions
A =exp( —h) and W=f exp( —h), from Eqs. (43) we
derive that, A and W are independent integrals of the dif-
ferential equation

y+p(t)y —e =o,
with

p(t)= ——,00'
(45)

q(t)=
i
Q(t) i',

satisfying the initial conditions 4 (tp) =a (tp) =0,
A (tp)=1, and P (tp)=Q(tp). Next, let us introduce the
function 9' =g exp(h), which can be shown to satisfy Eq.
(44) with p replaced by p' and the initial conditions

8(tp) =0, 9'(tp) =Q'(tp) Consequent. ly, 9 coincides
with P ' and the system (43) is superseded by

A =QW*,
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(47) Eq. (42) yields

y (1/4)
0

y (1/4)
1

az(t)
b( i /4)(t)

a2„(t)

b(3/4)(t )

If we define the two vectors

ao(t) ai(t)
a&(t)

(~)
&2n+1

y (3/4)

g (3/4)

y (3/4)

b'"'(t)=U'"'(t t )b'"'(t ) (49)

where the elements of the matrix U'"'(t, tp) are defined by

U„' ' (t, tp)=(n, k
i U(t, to) im, k) . (SO)

From Eq. (9), with the help of the relation (47), we obtain

I

1

U'"~(t tp) =(n'!m'!)' 4 '" + +" ' ' exp[+i (n —m)X]
I~i

2

l)t ~ 2l

X [sgn(m —n)]"
p 2 '1!(n' —2l)!(

~

n —m
~

+l)!
n')! I (n') +2k)

[2sgn(m —n)]'" ! expI i [(—m —n)X+(n+m+2k)arg(A )]In'(! I (n'( +2k)

~ —
I

m' —n'
~
/2

1/2
~ (m'+ n') /2 (Sl)

where p'=2@+2(k ——,'), X=arg(P ), n =max(m, n),
and n &

——min(m, n), while I'"„ is the associated Legendre
function and I is the gamma function.

e being the slowness parameter and ri(t) a time-dependent
nonsingular function.

We can express the integral of Eq. (52) as an asymptotic
series in the smallness parameter e,

V. THE SLOWLY VARYING CASE
AND THE ADIABATIC APPROXIMATION y(7r, e') g Eyg(&) p'

n=0
(54)

The technique we have developed so far leads to an ex-
act treatment of the problem. The possibility of a "glo-
bal" exact solution depends on whether Eq. (44) may be
solved exactly or not. Albeit that exact solutions can be
found in a limited number of cases only, asymptotic
analysis inay give useful information.

In this section we will discuss the case in which the fre-
quency is a slowly varying function of the time. In this
hypothesis an asymptotically small term naturally arises
in Eq. (44) rewritten as

y "(r)+ — +2icp(r)bt y'(r) —e ri (r)y(r)=0, (S2)
rt(r)

~here the prime means derivative with respect to the di-
mensionless time r=t/b, t, b, t being a typical time. Ac-
cording to the assumption of slowly varying frequency,
we have defined

which once inserted in Eq. (52) yields the set of recurrence

relations

y„(r)+ — +2itp(r)ht y„'(r) rt (r)y„2(r)—=0,II ri'(~) 2

rt(r)
(55)

y „(r)=0.
The initial conditions for A „and P „,specified by those
relevant to 4 and W, read

~.(&o}=Sn, o ~„(ro)=0
(56)

W„(rp) =0, W„(rp) =rt(rp)5„, .

Accordingly, Eq. (S4} specializes into

A (r}- g e "A 2„(r),
n=0

W(r)- g e "+'~ i„+i(&) .
n=0

=@i)(v),2' (53)
In particular, A o 2(r) and P i(r) read

mo(~) = I,
7'

~z(r)= f d7' f i)(r")exp 2ibt f tp(r"')dr'" dr" i)(r')exp 2ibt f oi(7")dr"—
'r

Mi(v)= f i)(~')exp 2iht f pi(r")d—v" dr'.
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The above expressions specify the asymptotic expression of the matrix elements (51) up to the second order in e as

2

1 ——(1+2n')A z
——n'(n' —1)

~

P
~ ~

5„~
2

U„'"~(r,ro)= '

+ [(—n'+1)(n'+2)]'/ P &5„~ &+ [—(n'+1) . (n'+4)]' (~
& ) 5„~ z, n (m

(59)

1 ——(1+2n')A t ——n'(n' —1)
~

a
& ~

5„

2~1
+

2 [ ]1/2 " +~ 8 [ ( 1). . . ( 3)]l/2 " +~'

It is evident from Eq. (59) that, in accordance with the adiabatic theorem, at the lowest order in e no transitions are
induced.

For an initially coherent state (in the Glauber sense), driven by the Hamiltonian (1), a direct application of the above

results yields after some algebra

ao ~lf
~

tz;t ) =exp( ——,
'

~

a
~

) g„o
2 62

1 ——'(1+2n)~, (r) ——'n(n —1)
~
~,

~

'
2

2—2 c Q+—n (n —l)a
2 (n +1)(n +2)

2 4~2
+—n(n —1) (n —3)a exp[ i (n+——,

'
)P]

~
n;t) .

8 (n +1) . (n +4)

(60)

The expression (60) indicates that, in the adiabatic ap-
proximation the state remains coherent at any time, while
higher-order corrections destroy the initial coherence.

VI. CONCLUSIONS

In this paper we have established the importance of the
WN algebraic method for understanding the dynamics of
a time-dependent frequency harmonic oscillator. In par-
ticular, we have obtained an expression of the evolution
operator which, once specialized to the case of a slowly
varying frequency, has allowed us to go beyond the Born

and Fock adiabatic theorem and to analyze the evolution
of an initially coherent state.

In addition, we have discussed a number of optical
problems by establishing some results concerning the
propagation through a nonuniform self-focusing fiber. In
particular, we have shown that a self-focusing fiber,
whose quadratic transverse profile of the refractive index
is a function of the longitudinal coordinate, is equivalent
to a combination of a lens and a beam expander. The uni-

fying element of these seemingly unrelated problems is
provided by the underlying group structure, which has
been recognized to be SU(1,1).
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