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We present a theoretical treatment for the two-electron interaction in the alkaline-earth atoms.
The most important element in this procedure is the introduction of a nonlocal interaction potential
for states of fixed total spin S and total orbital angular momentum L. The orbital wave function
generated in this potential is capable of prediagonalizing the N-particle Hamiltonian matrix with
respect to a given two-electron configuration series (i.e., a series of configurations with one valence
electron in fixed orbital n/ and the other one with fixed orbital angular momentum [/’ but variable
principal quantum number n’). With this procedure, we will show that the wave function for each
state is well represented by a simple superposition of a few neighboring configurations. The effec-
tiveness of this approach to include higher excited states in a simple calculation is demonstrated in

its application to the 'P states of the Mg atom.

I. INTRODUCTION

One of the most interesting features in the spectra of
the alkaline-earth atoms is the autoionization structure
dominated by the doubly excited states at energy above
the first ionization threshold. The use of various
configuration-interaction methods' ~* and the more ela-
borate scattering technique,” with the dominating doubly
excited configurations explicitly included, is capable of
leading to agreement between the theoretical estimation
and the experimental measurement in the quantitative
determination of the energy positions and in the qualita-
tive interpretation of the overall shape of the first few au-
toionization states above the ionization threshold. Despite
their success, without further modification, a straightfor-
ward extension of these existing methods to include higher
states in the autoionization series would require enormous
numerical efforts and consequently reduce its effective-
ness.

It is the purpose of this paper to introduce a set of orbi-
tal wave functions generated in a nonlocal interaction po-
tential which minimizes analytically the mixing between
the two-particle orbital wave functions representing dif-
ferent excited configurations. This nonlocal potential is
determined by its ability to prediagonalize the nonrela-
tivistic N-particle Hamiltonian matrix with respect to a
given configuration series (nl,n’l’) with one orbit n! fixed
and the value of /' of the other orbit n'l’ fixed. In other
words, the interaction between members (including the
continuum) of a configuration series is represented by this
potential without approximation. Therefore, the numeri-
cal accuracy of the calculated energy eigenvalues for the
higher Rydberg states in this configuration series remains
the same. With the two-electron interaction included in
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this interaction potential, we are able to show that the
configuration mixing is usually limited to few neighboring
states (normally two to three configurations) from other
configuration series of the same L and S symmetry. Con-
sequently, only a small number of configurations are
needed to reach the desirable numerical convergence.
Moreover, as the wave function for each state is dominat-
ed by a single configuration with minor contribution from
two to three neighboring states, the state can be identified
by this configuration with little ambiguity.

II. THEORY

In the present theoretical procedure, the N-particle non-
relativistic Hamiltonian is given by
A N N 1
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where Z is the nuclear charge and L is the orbital angular
momentum operator. The energy eigenvalues of the
atomic states in the LS coupling with given S and L can
be evaluated by diagonalizing the Hamiltonian matrix
constructed with the N-particle configuration wave func-
tion \P;,qf‘,i,,,j I corresponding to the electronic configuration

(n;l;,n;l;) for the two valence electrons. This configura-
tion wave function W is given by the sum of N-particle
Slater determinant wave functions over the magnetic
quantum numbers m and m; with each Slater deter-
minant consisting of N one-particle electronic orbital
wave functions, i.e.,
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and
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where the orbital wave function u, is given by the product of its spatial and the spin part, i.e.,
ua(r ) =X, 1 (r )Y m (Qu)om . (5)

The first N —2 of the u, in ¢ represent the orbital wave functions for the N —2 core orbits ranging from 1s> to np®
(e.g., n=2 for Mg, n=3 for Ca, etc.). The last two orbital wave functions are given by ay_;=(n;l;m;m,) and
ay =(n;l;m;m, ) which correspond to the orbit of the two valence electrons. If n;l;=n;l;, a factor of 2~ 172 should be in-
cluded in Eq. (3) to ensure the normalization. With V¥ given by Eq. (3), a straightforward derivation will lead to a general
expression for the matrix element in the Hamiltonian matrix,
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where EFF. is the total Hartree-Fock energy for the N —2 core electrons calculated with the orbital wave function gen-
erated by the one-electron radial Hartree-Fock Hamiltonian
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for the N —2 core orbitals and the matrix element {ab||V*||cd ) is the two-particle Coulomb matrix. (We refer to Ref. 6
for a detailed description for the notation employed in this paper.)

To derive the nonlocal potential, we apply the condition that the Hamiltonian matrix with respect to a single configu-
ration series (e.g., n;l; =n;l; and [;=1;) is diagonal, i.e.,

<\PSL1,,1 'H'wil‘ln1> 5 Ecore+€n1+€,,1) (8)

This condition is satisfied if the one-particle radial wave functions X for the fixed orbit n;l; and the variable orbit n;/;
are defined by

R (P 1 () =€ X 1 (7) 9)
and
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respectively, with the nonlocal interaction potential V' /(r) given by
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The radial wave functions Xn,-l,- defined by Eq. (10) are

orthogonal to all the Hartree-Fock core radial wave func-
tions with the help of the projection operator P,j which

projects out all core orbitals.

With the sub-Hamiltonian matrix prediagonalized with
respect to a given configuration series, the total Hamil-
tonian matrix is greatly simplified and the only nonzero
off-diagonal matrix elements are those between configura-
tions from different configuration series. To calculate the
energy eigenvalue of each state, we simply diagonalize the
total Hamiltonian matrix. And at the same time, we ob-
tain the corresponding N-particle multiconfiguration state
wave function

b= 3 Cnl;,n;l; )wfﬁi,njlj(rh o
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where | CSE(nyl;,n;l;) | % is the probability density for the
configuration (n;l;,n;l;) for the given state.

III. RESULTS AND DISCUSSION

To demonstrate the effectiveness of this theoretical pro-
cedure, we present the result of its application to the
(3pns)'P and (3pnd)'P doubly excited configuration
series of the Mg atom. The first step of our numerical
calculation is to solve Eq. (9) for the 3p orbit and Eq. (10)
for the ns and nd orbits. By setting the energy level of
the ground state of the Mg III ion equal to zero, following
Eq. (8), the energy of the 3pnl state is simply the sum of
the orbital energy eigenvalues €3, and €,. Table I com-
pares the energy of the 3pnl state from this single-
configuration calculation (column C) with the experimen-
tal data compiled by Martin and Zalubas.” Although it
appears that the result of this “zeroth-order” calculation
is noticeably different from that of the experimental data,
a closer examination indicates that the energy separation

THEORETICAL STUDY OF THE TWO-ELECTRON . ..

2611

between adjacent states in these two overlapping configu-
ration series is actually in good agreement with the ob-
served value. And this discrepancy in energy can be attri-
buted to the difference between the calculated 3p thresh-
old (i.e., €;,) and that of the actual experimental 3p
threshold. Since this difference is primarily due to the
core polarization effect, a more appropriate comparison of
the theoretical estimation with the experimental data
should include the contribution from this effect.

To estimate the contribution from the core dipole polar-
ization, we evaluate its energy correction with a simple
model potential similar to that used by other earlier calcu-
lations, >’ i.e.,

e —(r/ry)®

) (13)

where @ =0.489 a.u. is the core dipole polarizability® and
the cutoff radius ro=1.096qa, is fitted so that the energy
correction is equal to the difference (i.e., A=0.01192 Ry)
between the calculated €3, and the experimental threshold.
By using this parametrized potential, the energy contribu-
tion due to the core polarization effect is given by

AE,(nl)={W3p | V, | Wips) (14)

Column B in Table I shows that the resulting single-
configuration calculation including the core polarization
effect agrees very well with the experimental data for all
higher Rydberg states in the 3pns and 3pnd configuration
series.

The interaction between the 3pns and 3pnd configura-
tion series is taken into account in the second step of our
calculation by diagonalizing the Hamiltonian matrix with
both series included. The energy corrections due to the
core dipole polarization and the dielectronic potential in-
troduced by Bottcher and Dalgarno®>° are also included
in the Hamiltonian matrix with the same set of parame-

TABLE I. Comparison of the experimental energy levels with the results of various theoretical calcu-
lations. All energy values are given in Rydberg units. Energy is set to zero at the ground state of
MgIIl. The experimental data are taken from Ref. 7. In column A4, only 3pn(4—11)s and 3pn (3—10)d
are included in the diagonalization; in column B, the single configuration result is given; and in column
C, the single configuration result without the core polarization is given.

State Expt. Theory
Present A B C HF

3p4s —0.9503 —0.9590 —0.9508 —0.9462 —0.9330 —0.9640
3p3d —0.8841 —0.8865 —0.8783 —0.8789 —0.8669 —0.8908
3pSs —0.8646 —0.8656 —0.8625 —0.8628 —0.8504 —0.8673
3p4d —0.8399 —0.8401 —0.8368 —0.8371 —0.8251 —0.8424
3p6s —0.8302 —0.8306 —0.8290 —0.8295 —0.8174 —0.8314
3p5d —0.8183 —0.8185 —0.8168 —0.8170 —0.8050 —0.8198
3pTs —0.8134 —0.8134 —0.8124 —0.8129 —0.8008 —0.8139
3p6d —0.8067 —0.8067 —0.8056 —0.8058 —0.7939 —0.8075
3p8s —0.8035 —0.8036 —0.8030 —0.8033 —0.7913 —0.8039
3p7d —0.7994 —0.7995 —0.7988 —0.7990 —0.7871 —0.7999
3p9s —0.7974 —0.7975 —-0.7971 —0.7974 —0.7854 —0.7967
3p8d —0.7947 —0.7948 —0.7944 —0.7945 —0.7826 —0.7910
3p10s —0.7933 —0.7935 —0.7932 —0.7934 —0.7814 —0.7810
3p9d —0.7915 —0.7916 —0.7913 —0.7914 —0.7795 —0.7594
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TABLE II. Breakdown of the probability density in percentage (%) for the doubly excited 3pns('P)
and 3pnd ('P) states of Mg obtained in the present calculation. The main contribution (over 96%) to
the probability density for each state is dominated by two to three neighboring configurations.

Configuration

3p4s 3pSs 3pé6s

State

3p7s 3p3d 3p4d 3p5d 3p6d

3pas 93.7

3p3d 3.1 5.9

3p5s 90.7

3p4d 1.6 5.7
3pés 91.7
3p5d 1.2
3pTs

3p6d

3p8s

3d4p 1.6

3daf

3.9
88.0 1.0
4.4 3.1
89.0 1.0
4.2 24
5.1 90.3
92.7 3.8 2.0
1.0 91.5
3.4

1.2

ters a and rq given earlier. As shown by the column 4 in
Table I, the configuration mixing between these two over-
lapping configuration series only introduces a small ener-
gy correction. This is mainly due to the cancellation be-
tween the energy corrections from two neighboring con-
figurations on the opposite sides of each state except for
the 3p4s state where only one neighboring configuration
3p3d is present. This accounts for the relatively large
correction seen for the 3p4s state.

The effect due to other higher doubly excited states can
also be examined by including their corresponding config-
urations in the diagonalization of the Hamiltonian matrix.
The converged energy eigenvalue to four effective figures
for the 3pns and 3pnd series are reached when approxi-
mately 20 additional configurations are included. The fi-
nal result, including the core polarization contribution
(column “Present” in Table I), is in excellent agreement
with the experimental data. We should point out that one
of the most important advantages of the present pro-
cedure is its ability to obtain very accurate energy values
for the higher Rydberg states which is often found diffi-
cult in other methods.

The interaction between the doubly excited states and
the singly excited 3snp and its corresponding 3sep contin-
uum, which are responsible for the width and a small en-
ergy shift of the doubly excited state, is not included in
the result of the present calculation. This is due to the
difficulty in achieving converged energy value when only
finite number of the bound configurations 3snp can be in-
cluded in the Hamiltonian matrix. For lower states, this
interaction accounts for the small discrepancy between
theory and experiment shown in Table I. A more satisfac-
tory theoretical treatment of the autoionization widths
and shifts can be included by combining the present pro-
cedure with the method developed by Fano'® and Bates
and Altick.! A complete study of the autoionization state
will be presented in a separate paper.

We have also carried out a similar calculation with all

radial orbital wave functions generated by the one-particle
Hartree-Fock Hamiltonian, i.e., Egs. (7) and (9). To
achieve the desired convergence, approximately 60 config-
urations are included. Table I shows that the Hartree-
Fock result is generally satisfactory except for the higher
states (e.g., the relatively poor energy values for the 3p10s
and 4p9d states) where an accurate energy calculation
would require many additional configurations. The re-
sults of the present calculation for lower excited states are
also in good agreement with other earlier calculations."?>

Finally, in Table II, we list the probability density (i.e.,
| CSE|2) calculated from the state wave function @ for
some of the states in the 3pns and 3pnd series. The main
contribution (over 96%) to the probability density for
each state is dominated by two to three neighboring con-
figurations which is consistent with the experimentally
observed spectrum.!! As we indicated earlier, the state
wave function ® is dominated by a single configuration
and the state can be readily characterized by its corre-
sponding wave function with little ambiguity.

In addition to the application to the doubly excited
states, we have found that with a minor modification, the
present procedure is also effective when applied to the en-
ergy estimation of the ground and the singly excited
bound states. With the state wave function well charac-
terized by a simple superposition of few neighboring con-
figuration wave functions, we can readily extend our
study to other dynamical processes for the alkaline-earth
atoms. The result of these studies will be reported else-
where.
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