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A study is made of the X+„and Xg+ autodetaching states of H2 from the viewpoint of H +H,
rather than the usual viewpoint of e +H2. The model proposed in this work is a Feshbach-type for-
malism with two differences from previous studies. Guided by the structure of H +H states at
larger internuclear separations, Q space is defined by taking the singlet spin pair to be the pair of
electrons on one center, rather than the pair of electrons in the lowest molecular orbital. These two

specifications are the same at large separations, but depart from one another in the autodetaching

region. It is suggested that such a Q space is more appropriate to the consideration of collisions of
H on H than are the conventional H2 states obtained from the e+H2 reaction. A second depar-
ture from previous works is the strengthening of the asymptotic condition on the Feshbach Q opera-
tor to require that (p, + V(r)) is less than zero for the diffuse electron, where V(r) is the full

Hartree-Fock potential produced by the core, including the Hartree-Fock parts of the 1lr;, terms.
This condition makes the diffuse electron unable to escape from the system unless it absorbs energy
from the core or converts centrifugal motion into radial motion. Finally, it is shown that differen-
tial charge-exchange experiments for H on H can provide an experimental measurement of the en-

ergy difference between the 2X+ and ~Xg+ states and perhaps give some indication of their lifetimes

as well.

I.. IN'Ta, ODUCTION

The hypothesis that Hz in one of its two energetically
lowest resonance states is formed as an intermediate prod-
uct during certain collision processes has been very fruit-
ful. ' lt has permitted qualitative understanding of the
essential aspects of three quite different collision reac-
tions. In the first, a beam of low-energy electrons
(& 12 eV) is incident on a gas of Hz molecules. The ex-
perimental results qualitatively explained in terms of Hz
formation are (a) a sharp threshold peak in the dissocia-
tive attachment total cross sections at approximately 3.75
eV, ' and a broader peak at approximately 10 eV, ' (b)
the angular distributions in dissociative attachment cross
sections, ' (c) the isotopic effect (when HD and D2 are
substituted for the Hz targets) on the dissociative attach-
ment total cross-sections, (d) the noticeable effect on
the dissociative attachment cross sections when the H2
molecules are vibrationally and/or rotationally excited be-
fore the collision, ' and (e) cross sections, total and dif-
ferential in angle, for vibrational and rotational excitation
of the H2 target moiecuies. 7'o

In the second reaction, a beam of H or D ions is in-
cident on H or 0 target atoms in the energy range
0.01—2000 eV (100—10 K). The qualitative agreement
between experimental and theoretical results is in the rate

constant for the associative detachment reaction at ordi-
nary temperatures' ' and in the total cross sections for
electron detachment and for associative detachment. '

Finally, in the third reaction, a beam of D2 is incident
on cesium vapor at low keV energies. In this case, the
theory has been able to predict a universal curve for the
angular distribution of D dissociation fragments plotted
in terms of reduced variables.

Common to almost all the theoretical analyses which
have led to understanding of the essential aspects of the
experimental results has been the idea of the transient for-
mation of one of the two lowest autodetaching states of
Hz . This central idea of H2 formation as an intermedi-
ate complex during the collision has provided a satisfying
physical picture of the phenomena involved in the three
reactions. However, despite the successes, there are still
serious problems that lead one to question this hypothesis.
In general, quantitative agreement between theory and ex-
periment has yet to be achieved. In particular, in the
cross sections for vibrational and rotational excitation by
electron impact, it appears that the nonresonant, or direct,
contribution is as important as the resonant contribu-
tion. There are, moreover, very different, sometimes
even contradictory results from different reports of the ef-
fect on dissociative attachment of the initial vibrorota-
tional excitation of the H2 target molecule * ' ' and in
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FIG. 1. Energy of the L'X+ state of H2 . The results of the
present calculation are given by the heavy solid line, labeled 10.
The legend for the energy curves is as follows: 1, Taylor and
Harris (Ref. 30); 2, Bardsley, Herzenberg, and Mandl (Ref. 27);
3, Eliezer, Taylor, and Williams (Ref. 31); 4, Ostrovskii (Ref.
43); 5, Demiov and Ostrovskii (Ref. 41); 6, McCurdy and
Mowrey (Ref. 29); 7, Senekowitsch et al. (Ref. 54); 8, Gauyacq
(Ref. 52); 9, Gauyacq (Ref. 52); 10, present work; 12, Bardsley
and W'adehra (Ref. 12); 13, Chen and Peacher (Ref. 3); 14, Mun-

del, Berman, and 13omcke (Ref. 56). The H2 ground-state ener-

gy, taken from Kolos and Wolniewicz (Ref. 55), is shown for
comparison as the light solid line.
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FIG. 2. Energy of the 8 'X~+ state of H2 . The results of the
present calculation are given by the heavy solid line labeled 20.
The legend for the energy curves is as follows: 15, Bardsley,
Herzenberg, and Mandl (Ref. 27); 16, Eliezer, Taylor, and Willi-
ams (Ref. 31); 18, Ostrovskii (Ref. 43); 19, Ostrovskii (Ref. 43);
20, present work; 22, Bardsley and Wadehra (Ref. 12); 23, Chen
and Peacher (Ref. 3). The two lowest energy states of H2, taken
from Kolos and Wolniewicz (Ref. 55) are shown for comparison
by the light solid lines.

dissociative attachment at collision energies less than l

keV. ' ' ' Most important, the calculated energy
curves for the ground state of Hq obtained by different
~orkers are spread over a wide energy range, as is shown
in Figs. 1 and 2. The large discrepancies do not represent
computational inaccuracies; rather, they represent differ-
ences in concept of what is the ground resonance state of
H2 . Finally, there is still the question of the validity of
thinking about a molecular complex (as opposed to an
atomic state) that lives only 10 ' s. ' There is thus no
question about the need for further research on the lowest
resonance states of H2 from both experimental and
theoretical points of view.

Resonance states of negative ions have been classified
into two categories, I and II. Resonance states of type I
are characterized by being near to but below the energy of
an excited state of the neutral system. On the other hand,
resonance states of type II are characterized by being near
to but above the energy of the ground or an excited state
of the neutral system. The lowest resonant state of H2
the 2X„, is of type II, since Taylor and Harris clearly es-
tablished that it is in the continuum of the H2 ground
state. For the Xz excites state of Hz, the situation is
not so clear. Most of the theoretical results characterize it

as a type-II resonance, but the results of Chen and Peach-
er, Bardsley and %adehra, ' and Eliezer et al. ' charac-
terize it as a type-I resonance state.

The initial studies in H2 did not take into account that
these resonance states are not eigenstates of the electronic
Hamiltonian, and used variational techniques designed for
the calculation of true eigenstates. ' The difficulty with
that approach is twofold. First, there are an infinite num-
ber of states of lower energy with the same symmetry, and
they are not known. Second, the true continuum eigen-
state of the Hamiltonian is the detached state; to obtain
the resonance state, the Hamiltonian must be modified by
means of projection operators, in order to obtain the local-
ized transient state before autodetachment. These con-
siderations are not merely in-principle arguments which
can be ignored. In the initial studies, the basis sets used in
the calculations grew in size and flexibility as time pro-
gressed, as did the number of configurations. As a conse-
quence, the ground state of H2 decreased in energy as
time progressed, approaching the energy of and resem-
bling the wave function of the H2 ground state more and
more. Finally, in the most elaborate calculation, both
curves converged for distances less than 3ao, while the
wave function of the loosely bound electron essentially
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described a free particle with zero kinetic energy. Clearly

the lowest eigenstate of the electronic Hamiltonian for the
three-electron system at interproton separations less than

3QO is the Hz ground state plus an electron at rest at infin-

ity. In order to obtain the autodetaching states, the usual

variational methods must be modified. The basic idea has

been that these resonance states are very similar to some
eigenstate for the neutral system to which a third electron
is quasibound. Guided by this idea, the search has been

limited to a region of Hilbert space. Additionally, some

subsidiary condition is imposed on the wave function for
the autodetaching electron. Three such approaches to au-

todetaching states of negative ions will be briefly
described.

(1) Feshbach proposed a very general theory of reso-

nances, in which Hilbert space is divided into two sub-

spaces by means of projection operators. The P subspace
contains all the states energetically accessible to the sys-

tem, known as open channels. It is possible to represent
the resonances by means of linear superpositions of these
states. The problem is reduced to solving a Schrodinger
equation with an effective Haniiltonian in this subspace
constructed by suppressing the closed channels. In favor-
able cases, the resonances are close to the eigenfunctions
of gHQ, where Q denotes the projection operator comple-
mentary to P: Q space is complementary to P space. In
practice, constructing the projection operators has become
equated with the choice of a basic molecular structure to-
gether with a finite set of basis functions. A finite set of
functions which behave as r"exp( Ar) s—atis, fy the Fesh-
bach asymptotic condition for Q subspace. However, as
will be seen below, the use of such a projection operator
does not automatically assure that the state thus found is
the autodetaching state, rather than a poor approximation
to the detached state. In general, the subspace must be
carefully selected, since the basic physical assumptions of
the model are incorporated into the definition of P and Q
s'obsp aces.

(2) Taylor and collaborators proposed the so-called
"stabilization method, "which employs three fundamental
criteria to determine the autodetaching state: (a) Election
of some type of electronic structure as the most adequate
to describe the state under study. Based on this structure,
a function VscF is found by a self-consistent-field calcula-
tion. In the process, an entire set of unoccupied orbitals is
also produced. (b) Stabilization of the configuration-
interaction wave function, %ci, with respect to the addi-
tion of more configurations. (c) Maximum localization of
the wave packet that represents the autodetaching electron
state by the selection of the function 4'ci that has max-
imum overlap with the function +scF.

(3) Herzenberg and collaborators have developed a
different definition of the compound resonant state, based
on the ideas of Kapur and Peierls and Siegert. This
approach studies the singularities of the cross section
which occur at certain complex values of the energy,
when appropriate boundary conditions are imposed on the
wave function over a surface which encloses the interac-
tion region. Herzenberg and collaborators generalized this
point of view to many-body and to atomic problems. In
particular, they eliminate the unphysical 5-matrix depen-

dence on the radius ro defining the internal region. Ac-
cording to this group, a resonance is a solution to the
Schrodinger equation for which the energy eigenvalue is
complex and whose solution asymptotically approaches an
outgoing wave. The imaginary part of the energy gives
the lifetime of the compound state. They also propose a
variational procedure to determine this solution.

It should also be mentioned that there exists yet another
approach to autodetaching states which is not based on
variational calculations. The basic approximation
consists of replacing the interaction between the diffuse
electron and the core by a 5-function interaction with
each core atom as a point object and assuming that the
diffuse electron does not disturb the electronic structure
of the core atoms. As a consequence, the action of the
core atoms on the diffuse electron wave function is re-

placed by boundary conditions on the wave function at
the locations of the core nuclei. Elsewhere, the diffuse
electron is treated as a particle in a field-free region.

II. THE MODEL

In this paper, we focus our attention on the Hi reso-
nance state from the viewpoint of a quasimolecular state
in a collision between H and H. In the autodetaching
region of internuclear separations, this is a linear com-
bination of the X„ground resonance state and the 'Xs
excited resonance state. It is well known that for internu-
clear separations greater than a critical value Ro, which is
very nearly 3ao, ground-state H + H energy is below
that of that for H+ H. The respective energy curves
cross at Ro. The H + H system is thus stable at large
internuclear separations and changes adiabatically as R
decreases. We propose that there exists a diabatic
H + H state that continues into the autodetaching re-
gion. Demkov s differs from us in this latter considera-
tion. He pictures the collision state in this internuclear re-
gion in terms of an electron instantly emitted into the
continuum, the wave function of which is described by an
expanding wave packet. As the two nuclei separate in the
second half of the trajectory, the possibility of a bound
state is reestablished, along with a finite probability of re-
capture of the outgoing electron. Our approach more
resembles that of Herzenberg, ' except that the uses po-
tential curves obtained from the reaction e+Hz in his
analysis of the nuclear motion in the collision of H on
H. Indeed, alinost all the potential curves found in the
literature for the two lowest states of H2 were tailored
for the collision of e on Hq. The basic molecular struc-
ture looks like a somewhat distorted Hz molecule to which
is added a third, diffuse electron. We start from a dif-
ferent hypothesis. As the diffuse electron remains bound
to the system, the basic structure is similar to that which
the system has at large internuclear separations: an H
ion and an H atom, both somewhat distorted by their mu-
tual proximity. We are, therefore, seeking the autodetach-
ing resonance states in a different region of Hilbert space.

Moreover, we demand that each of the orbitals, includ-
ing that of the diffuse electron, shall be individually
bound (i.e., have an orbital energy less than zero). More
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precisely, we demand that the expectation value of
p„+V(r) shall be less than zero. The rationale for such a
restriction is that any electron which has a sum of radial
kinetic energy plus potential energy greater than zero mill

directly escape in a time less than its orbital period. Such
an electron has a radial speed which exceeds the escape
velocity. Conversely, when this energy is less than zero,
the diffuse electron is quasibound. It is unable to escape
on its own; it will detach only if in an interaction with the
core electrons it acquires sufficient additional energy at
their expense. This is the hallmark of a Feshbach-type
resonance.

The above definition does not exclude the possibility
that the diffuse electron might also be trapped in part by a
centrifugal barrier, L /2mr2. Indeed, several previous
studies have considered the diffuse electron to be p states
trapped by the centrifugal barrier. However, in the
present instance of a basis set consisting entirely of s
states, the "radia1 energy" is the entire kinetic energy.
The present approach allows the diffuse electron to be
trapped even though it is entirely s wave in character. In
this initial study, we limit ourselves to this possibility.

For the state under considerations, the orbital energy of
the diffuse electron is less than zero if the energy of the
"frozen two-electron core" of the Hz ion is greater than
the energy of the full H2 ion. This "frozen core" is the

H2 with the diffuse electron removed, while conserving
the electronic wave function the core electrons had in the
full Hz ion. The resonance condition is, therefore,

E(g roudn- t st aHep) (E(H2 ) CE(frozen core H2) .
(1)

The condition (1) permits autodetachment only if there is
a rearrangement of the core, with a redistribution of ener-

gy between all three electrons. It is more general than the
requirement that all three electrons shall be individually
bound. It permits correlation (i.e., configurations mixing)
between the core electrons, so long as the diffuse electron
is described by a single-particle state. On physical
grounds, the more tightly bound and therefore faster elec-
trons can exhibit a correlated motion, which the slowly
moving diffuse electron sees as generating a time-averaged
potential. The diffuse electron moves too slowly to
respond to any instantaneous details of core motion.
However, a small amount of correlation between the dif-
fuse electron and the core electrons is included in that the
state is initially calculated with the diffuse electron on one
of the two protons; a true H + H state. At this stage of
the calculation, the state has not yet been made an eigen-
function of the parity operator, and the singlet pair of the
triad is the pair on the H center. It is at this point that
the condition on the energy of the frozen core is intro-
duced. Only afterward, in the calculation of the X„and
X energies is the appropriate parity rendered to the un-

symmetric state by the operation of 1 —m. and 1++ on the
unsymmetric state. The physical intuition guiding the
construction of the state just described is that the H2
system consists of two distorted H atoms, with the diffuse
electron traveling back and forth between the two centers,
entering a temporary singlet state with the electron on the
center it is on at the moment.

III. THE VfAVE FUNCTION

The goal of the present study is the formulation of reso-
nance states of the Hi system tailored for collisions of
H on H. As a Feshbach-type formulation, it is accom-
plished by the construction of a Q subspace of Hilbert
space which contains the resonance states as discrete lev-
els. In the autodetaching region of internuclear separa-
tions (R &3ao), these levels should resemble the H +H
states which obtain for internuclear separations for which
the H + H states are true bound eigenstates of the com-
plete electronic Hamiltonian. In the present case, Q sub-
space is the space constructed from the three lowest occu-
pied orbitals of the H + H system calculated at separa-
tion 8 =5.5ao, an internuclear separation at which the
ion and atom are just beginning to significantly interact.
The exponent of the diffuse Gaussian in the set of Gauss-
ian functions is optimized, however, in order to verify
that the resonance binding of the diffuse electron to the
remainder of the system is not an artifact of the calcula-
tion.

The wave function of the H2 system is written in the
form~

f=A 4, (1)@b(2)4, (3)X, (2)

X = (2) '~ [u(1)P(2)—P( 1 )a(2)]a(3) . (3)

Here A is the antisymmetrization operator, a and P
denote spin-up and spin-down states. The single-particle
states 4, and 4~ are the two states on the H, while 4,
is the single electronic state on the H. At this stage, P is
not an eigenstate of the parity operator. That will come
later. All three spatial states are constructed from the Q
subspaee described above. The two electrons on the H
are taken to be in a singlet state, as is the case in H on H
at large separations. The state given by Eqs. (2) and (3)
can be alternatively written in the form

/=A(2} '~ [4,(l)+i, (2)

+c'b(1)@.(2)]@,(3)&(1)P(2)&(3) (4)

Both forms yield the same result when the antisymmetri-
zation, denoted by A, is carried out. At each internuclear
separation, the states f are obtained by the generalized
valence-band (GVB) variational method. ' In this approx-
imation, the usual double occupancy of a molecular orbi-
tal is replaced by shared occupancy of a pair of orbitals.
Hence, @, and 4& in the square brackets of Eq. (4) de-
scribes the state of a singlet pair (the two electrons on the
H ), which constitutes a "closed shell. " The unpaired 4,
(the single electron on the H} is called an "open shell. "
The orbitals of the closed-shell singlet pair are not mutu-
ally orthogonal, but each is orthogonal to the open-shell
state. As is usual in the GV8 procedure, the state in the
square bracket of Eq. (4) is rewritten in the completely
equivalent form of a pair of natural orbitals,

(2) ' '[@,(1)@i,(2)+@i,(1)@,(2)]

= &i(i(1)gi(2)+C2$2(1)(2(2), (5)

where C& and Cz are variational parameters. The molec-
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TABLE I. Specification of the Gaussian functions and Iun-

normalized) basis functions. The basis function u; is of the
form u;=+1&~exp[ —a~(r —r;) ], where r; give the location of
the proton. The exponents and coefficients are listed in the last
two columns. The Gaussians and basis functions used here are
all s type. The exponent o,q of the diffuse function was varia-
tionally determined for each of the three ranges of internuclear
separation. The variationally obtained values for aq are also
given. -0.5

R= 2 5ao

Basis
function Component Exponent Coefficient

837.220000
123.524000
27.704 200
7.825 990
2.565 040
0.938 258
0.372 145
0.155 838
0.066 180

aq ——0.013 for R g5. 5ao
=0.020 for 3.0«R «5. 5

=0.027 for R «3.0

0.0 004 490
0.0 035 879
0.0 189896
0.0 782 433
0.2 640 259
0.7 135940
1

1

1

1

ular orbitals from which Q subspace was constructed are
linear combinations of s type Gaussian functions in this
first effort. Nine such s type Gaussian functions are
needed for a good description of the hydrogen-atom wave
function. The linear parameters were taken from Sieg-
bahn and Liu, who found this set to be comparable in

flexibility to the four s type Slater functions which the
second author used in a very precise calculation of the en-

ergy surface of a linear H3 molecule. Six of the nine
Gaussian functions centered on a given proton are con-
tracted to form a single basis function. Each of the three
remaining Gaussians is taken as a basis function in its
own right. Finally, because it is common to negative ions
that one of the electrons is very loosely bound, with a very
diffuse wave function, a tenth, diffuse Gaussian s-type
function was added to the above basis set as a fifth basis
function. Thus, the basis set here employed consists of 10

-06
O.OOI

I I I ~ a a I

O.OI0

EX&ONE;NT
O.IOO

FIG. 3. Optimization of the exponent of the diffuse basis
function at internuclear separation 8 =2.5ao. The ordinate
shows the binding energy in eV of the diffuse electron to the Q-

space structure of the H2 core. The abscissa gives the exponent
in units of ao

basis functions, five about each center. They are listed in
Table I. For internuclear separations greater than 5.5ao,
this full basis set was used. For internuclear separations
less than 5.5ao, the three lowest molecular orbitals calcu-
lated at 5.5ao were used as Q space, but with two pro-
visos. First, for internuclear separations R &3ao, the 10
coefficients multiplying the Gaussian functions of the
open shell (the H-atom wave function) were frozen at the
values they had at R =3. And second, the values used for
the exponent of the diffuse function were obtained from a
preliminary optimization of the state with respect to vari-
ation of this exponent. The purpose of this optimization
was not so much to improve the state as to demonstrate
that this bound negative-ion orbital is not an artifact of
the computation. In that optimization, the two orbitals
for the H GVB pair were constructed only from Gauss-
ian functions centered on that nucleus. These H orbitals
were not permitted to have any component on the H
center, a restriction which in retrospect we now think un-
necessary. The optimization is illustrated in Fig. 3 and
the values of the exponents listed in Table I. As shown in
Table I, this optimization was carried out at one internu-

TABLE II. Molecular orbitals at sample internuclear distances. The last ten columns give the coefficients which multiply the ten
basis functions described in Table I. These coefficients were obtained by the GVB variational procedure.

Orbital
number R(ao)

Coefficients of the 10 basis functions
Basis functions on H center Basis functions on H center

20
6
2

20
6
2

20
6
2

0.25
0.25
0.30
0
0.01

—0.07
0
0
0.03

0.35
0.35
0.43

0
0.02

—0.11

0
0
0.06

0.39
0.39
0.46

0
0.02

—0.11

0
0
0.03

0.13
0.15
0.22

0
0.02

—0.04
0
0.09
0.16

0.00
0.02
0.04
0
0

—0.01
—0.02

0.13
0.09

0
—0.01
—0.07

0.27
0.27
0.30

—0.03
—0.03
—0.04

0
—0.02
—0.08

0.39
0.39
0.43

0
0

—0.04

0
0

—0.11

0.35
0.35
0.38

—0.02
—0.02
—0.13

0
—0.07
—0.17

0.11
0.11
0.14

—0.42
—0.46
—0.31

0
—0.06
—0.31

0.02
0.02
0.08

—0.66
—0.75
—0.88
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TABLE III. Optimization of the exponent of the diffuse
function. All energies are in atomic units. The energies shown
below have been calculated with the H orbitals permitted to
have components on both centers. %ithout the restriction that
the H have no component on the H center, the changes in the
energy Eo from the values listed in Table IV are also shown
below.

Value of
exponent R =2.0ao

Calculated energy
R =2.5ao R =3 Oao

0.0001
0.0005
0.0010
0.0030
0.0050
0.0080
0.0100
0.0130
0.0150
0.0180
0.0200
0.0230
0.0250
0.0270
0.0300

—0.8685
—0.8709
—0.8725
—0.8755
—0.8762
—0.8757
—0.8748

—0.9426

—0.9480

—0.9491
—0.9489
—0.9487

—0.8692 —0.9479

—0.8666
—0.8656 —0.9468

—0.9464

—0.9821
—0.9827

—0.9829
—0.9829
—0.9828
—0.9827

2.0ao
2 5ao
3.0ao

Change in energy

0.0106 a. u. =0.29 eV
0.0023 a.u. =0.01 eV
0.0004 a.u. =0.01 eV

clear separation in each of the three regions indicated, and
the exponent obtained at that internuclear separation used
for the entire region. For example, the exponent used for
internuclear separations 8 ~ 3ao was obtained by optimiz-
ing at R=2.5ao. Table II gives the coefficients of the
basis functions obtained by the GVB variational pro-
cedure for the molecular orbitals defined in Eq. (2).

As a test for sensitivity of the model to changes in de-

tail, optimization of the exponent of the diffuse wave
function was also carried out with the above restriction on
the H wave functions relaxed. In this second attempt,
the wave functions were permitted to have components on
both centers, with the results shown in Table III. It can
there be seen that this change in model causes the ex-
ponent to change significantly. At 8=2.5ao, the diffuse
exponent changes from 0.027 (see Fig. 1) to 0.01 (see
Table III). However, as Table III shows, the energies are
quite insensitive to this change in the diffuse exponent.
The change in energy, only 0.06 eV, is insignificant.

The wave function described above is not an eigenstate
of the parity operator. Proper molecular states are con-
structed as

Qs N+ (g——+n.g),
Q„=N (g ng), —

where

N+ —1/[2(1+S)]'",
N = 1/[2(1 —S)]'

m is the parity operator and

The labels g and u stand for the entire set of quantum
numbers describing the states. Thus, the function Ps de-
scribes the parity symmetric state Xs, while P„describes
the antisymmetric state X„. Defining Eo as the energy
of the original (unsymmetric) H + H state 1(, Eo is given
by

With M defined as the matrix element

(10)

then the energies associated with the actual molecular res-
onances Ps and f„are given by

TABLE IV. Some variationally calculated quantities for the H + H system needed for the H2 res-
onances.

R (ao) M (a.u. ) Eo (a.u. )

Resonance energy (frozen Hq core}
E ('H2 core} E ('H2 core)

20.0
8.0
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.7
2.5
2.25
2.0

—0.1576
—0.1875
—0.2066
—0.2298
—0.2588
—0.3149
—0.3766
—0.4420
—0.4990
—0.4734
—0.4385
—0.4126
—0.3811
—0.3524

0.1655
0.1980
0.2187
0.2438
0.2752
0.3348
0.3992
0.4664
0.5223
0.4977
0.4585
0.4271
0.3844
0.3367

—1.0136
—1.0126
—1.0119
—1.0114
—1.0106
—1.0096
—1.0077
—1.0054
—1.0019
—0.9964
—0.9825
—0.9653
—0.9468
—0.9141
—0.8656

—0.9935

—0.9876

—0.9689
—0.9518
—0.9258
—0.8874
—0.8903
—0.8899
—0.8832
—0.8643
—0.8283

—0.9979

—0.9920
—0.9871
—0.9783
—0.9617
—0.9490
—0.9332
—0.9172
—0.8896
—0.8492
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Eg ——Eo(1+M/Eo )/(1+S),
E„=E (1 M—/E )/(1 —S) .

(1 la)

(1 lb)

The energy Eg lies above Eo, while the energy E„ lies
below Eo. Table IV hsts the value calculated for Eo, M,
and S at various internuclear separations, from which the
values for E„ in Fig. 1 and Eg is Fig. 2 were obtained. FIG. 4. Geometry of the straight-line trajectory.

IV. CHARGE EXCHANGE

The simplest charge-exchange process involving nega-
tive ions is the one which occurs in the collision under
study,

H +H~H+H (12)

The differential cross section for charge exchange is ob-
tained by the same method used for H+ on H. It involves
the relative phase between the gerade and ungerade dia-
tomic molecular states, which are degenerate at infinite
internuclear separation (i.e., both before and after the col-
lision interaction). In the case of H on H, gg and P„are
the states of H2 which have been the subject of this
study, given by Eqs. (6) and (7).

Denoting projectile and target by subscripts A and 8,
respectively, the projectile A is taken to be H before the
collision interaction, with the H atom as the target 8.
With

—2
I fg I If„ I

cos(yg —y„)] (19)

H states, using the convention adopted in Eq. (13a),

0.= 2it~(lf, le "g+ If. Ie "u)e""/R

+ —,'gg(
I fg Ie '

g —
I f„ I

e 'ru)e'" /R . (17)

The differential cross section for charge exchange is the
square of the absolute value of the coefficient of gg in the
scattering amplitude given by Eq. (17). Thus

d~-/d~=4 I Ifgle "g If.—Ie '"u I'

Factoring the unitary factor exp[ i (yg+y—„)/2] from
the quantity inside the vertical bars, the differential cross
section can be rewritten in the form

d~-/d~= '[ I fg I

'+-l f. I

'

t(g(R = oo)=(2) '~ [gg(R = oo)+P„(R = oo)],

the initial state for the scattering process is given by

(13a) + 0

Pg P~ T Eg I' Eg t dt (20)

g(r, R)=e'" itg .

The fina scattered state is given by

it'. =(2) '"( lfg Ii}'g& "+ If. I @.e

(13b)

(14)

Here,
I fg I

and
I f„ I

denote the magnitudes of the
respective scattering amplitudes, given by

I f„ I
=(do„/dc')'~ =[(b/sin8„)/I d8„/db

I

]'~',

(15)

where 8„(b) is the classical deflection function for a tra-
jectory calculated with potential energy E„(R) + 1/R.
The subscript n stands for g or u, and Eg and E„are de-
fined by Eqs. (1 la) and (1 lb), respectively. The phases are
approximated by

+TO + T0
y„(b)= I E„(t)dt=(1/U) I E„}/b +z dZ,

0

where the integral is taken over the classical trajectory,
R(t), here approximated by a straight line. In this
straight-line approximation (see Fig. 4), used to calculate
the y's, y~ and y„are functions of impact parameter,
which must be reexpressed in terms of 8 via the respective
deflection functions 8g(b) and 8„(b) Expressing the . g
and u molecular states at time + To in terms of H and

At this point, the limits on the integral can be extended,
letting To go to infinity.

Equations (19) and (20) show that the differential cross
section for charge exchange depends on the energy differ-
ence between the Xg and X„states of H2 . This result
is particularly important, because it suggests that experi-
mental measurements of the differential cross section for
charge exchange can experimentally determine this energy
difference. As shown in Figs. 1 and 2, there is an enor-
mous uncertainty in the energies of these two states.
Moreover, experimental measurements on the differential
cross section for charge exchange can also shed some light
on the lifetimes of these two resonances. If the lifetimes
are as long as 10 ' s, a clear oscillatory structure should
be observed in the differential cross section for charge ex-
change. At the other extreme, if, as Demkov suggests,
there effectively are no resonance states, then no oscillato-
ry structure will be observed. Unfortunately, there are as
yet no differential cross-section ineasurements for this
charge-exchange cross section; it is an extremely difficult
experiment. Hopefully, the importance of these results to
the theory of resonance states of H2 will encourage the
undertaking of this experiment.

V. SUMMARY, RESULTS, AND CONCLUSION

In order to place the present work in proper context,
this section will begin with a brief outline of the existing
literature. There have been essentially two alternative ap-
proaches to collisions of e on H2 and H on H, and in
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each of these two competing approaches, several different
formalisms have been advanced. Feshbach projection
operator theory can be considered to provide the frame-
work for one of the approaches. Because Feshbach pro-
jection operators are not unique, the several formalisms
define (implicitly or explicitly) different projection opera-
tors and, consequently, somewhat different definitions of
the resonance states. It is not surprising, therefore, that
they produce different energy curves for the H2 auto-
detaching states. This is the approach of Taylor and col-
laborators, " the Siegert state method of Herzenberg and
collaborators, the O' Malley formalism, the projection
operator techniques of Chen, and Hot tcher, and
Domcke and collaborators. ' There exist other examples
of the Feshbach operator approach which are not included
in this summary, because they have not been applied to
the Hz system (see additional references contained in
Refs. 34 and 51).

In the second general approach, the intermediate nega-
tive ion is not introduced explicitly. The collision reaction
is interpreted as a direct transition between a bound
H + H state, and the continuum of e+H2 induced by
nonadiabatic couplings. Examples of this approach are
the zero- and effective-range approximations, '3 ' the
Fadeev equation treatment, the r- and 8-matrix formu-
lations, close-coupling calculations and a recent work
of Gauyacq, which describes the dissociative attachment
process by the principle of detailed balance from the asso-
ciative detachment process, without invoking the forma-
tion of intermediate H2 . Finally, Herman et al. claim
to have found an unambiguous definition of the resonance
states and their corresponding energy curves.

The present work fits into the category of a Feshbach
projection operator formalism. It differs from previous
works in that the basis set which defines Q subspace more
resembles H + H states than ordinary bound molecular
states. The main difference is that the singlet pair shall be
on one center, rather than the customary requirement that
the singlet pair shall be the two electrons in the lowest en-

ergy state. For large separations, the iwo requirements
are identical. It is only in the autodetaching region of in-
ternuclear separations that the two requirements become
different.

A second departure from previous works is the refine-
ment of the asymptotic condition on the Feshbach projec-
tion operators by the condition that the loosely bound
electron in a negative ion shall indeed be bound. Not only
must the radial parts of all wave functions in Q space
vanish as r tends to infinity, but also the expectation value

(p„+V(r)) must be negative, where V(r) contains the
full Hartree-Fock contributions of the I /rJ terms linking
the loosely bound electron with the core. This has been
accomplished by considering the energy of the frozen
core. The method requires that the loosely bound electron
shall be described by a single-particle state. Although the
present work is limited to single-particle states for all
three electrons, it was pointed out that the model allows
configuration mixing in the core.

The energy curves of the X„+ and Xs+ states of H2
here obtained are shown as the heavy solid lines in Figs. 1

and 2. Curve 10 for the ungerade ground state in Fig. 1

hardly shows that it has a minimum of 0.11 eV at 5.Sao.
This is most likely an artifact. For smaller internuclear
separations, its slope is similar to that obtained by Os-
trovskii, but displaced to higher energy. This curve
crosses that of the neutral H2 system at 3.95ao. The
gerade excited-state energy curve is completely repulsive.
It crosses that of the excited b X„+ state of neutral H2 at
6.6ao. At internuclear separations below 3.5ao, it is very
similar to that calculated by Bardsley and Cohen.
Wadhera and Bardsley find that the energy curve associ-
ated with the Xz+ state is very nearly parallel to that
found for the b X+ state of Hz, with an energy difference
of the order of tenths of an meV between the two T.his
means that for all practical purposes, the emitted energy
spectrum will be at zero energy. However, the experimen-
tal value of Esaulov has a peak at 0.8 eV. Our energy
curve and that of Bardsley and Cohen are in better agree-
ment with the Esaulov results.

%'ith the model described in the present work, together
with the calculational limitations imposed by the GVB
variational method, it has been possible to obtain reso-
nance states only for R p2ao. For R &2ao, the diffuse
electron remains unbound. It is possible that some lower-
ing of this cutoff internuclear separation might be ob-
tained by allowing configuration mixing in the core, but
not much is to be expected. A critical internuclear separa-
tion for resonance states of the type H + H appears to
be a property of the model itself. When the two protons
are close together, the diffuse electron almost equally
overlaps both centers. The entire concept of the diffuse
electron entering into a singlet spin state with the electron
on the "nearer" H atom breaks down. Such a conse-
quence is not necessarily a shortcoming of the model. It
may very well be that there does exist a critical internu-
clear separation below which the diffuse electron is truly
squeezed out, as Demkov suggests. Resonances below
that critical separation could, then, only be of the e+Hi
type, approaching the e+He resonances.

Finally, it has been shown that the differential cross
section for charge transfer in H on H collisions depends
on the difference between the energy curves associated
with the gerade and ungerade states. If this differential
cross section can be experimentally measured, these mea-
surements will greatly reduce the uncertainty in the ener-

gy curves seen in Figs. 1 and 2, and may perhaps shed
some light on the possibility and location of a critical in-
ternuclear separation. Additionally, the measurements
may also shed some light on the lifetimes of these as yet
not well understood resonance states.
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