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Anomalonsly slow trapping of nonidentical interacting particles by random sinks
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We find an anomalously slow trapping rate Q for trapping of nonidentical interacting particles
in topologically linear systems with randomly distributed sinks which are selective for particles
below a critical radius rg. The particles have an arbitrary size distribution and interact by a
hard-core repulsion. Our quantitative result, Q-exp(-At'~5), is general, and the amplitude A

can be tuned since it depends on the concentration of the nontrappable particles.

How fast can randomly diffusmg particles be released
by random holes in a topologically linear structure under
the conditions that the particles interact, and are charac-
terized by a wide range of sizes—some of which can be
released (smaller than the hole's radius rs) and others of
which cannot (larger than rg). Basically, this problem of
particle release belongs to a more general class of "trap-
ping" problems. ' 3 So far, trapping models have been suc-
cessfully used in studying several physical phenomena such
as dielectric relaxation, self-attracting polymer chains,
and excitation relaxation in crystals. With the exception
of very recent work on Levy fhght walks, 7 9 all ef-
forts s'n ' have arrived at the same equation for the
dependence of the flow rate Q on time t and dimension

13

Q(t)-exp( —At~i(~+ ') (la)

Here we shall argue that generally particle release prob-
lems cannot be understood by the theory for identical
noninteracting particles, since (i) the particles may occur
in many sizes, and (ii) they interact with each other —and
clearly excluded volume interactions are relevant.

These two effect: are particularly important for topolog-
ically linear chains where two molecules cannot even "pass
by" each other. Fick's law 1-t'tz for the rms displace-
ment of a single tagged molecule becomes'

l (c,t )-ff(1 c)/cl'tlt'" . — (lb)

Here I denotes the "chemical" distance along the chain,
and c is the total particle concentration. ' Both T and F
particles have excluded volume interactions and cannot
cross each other. Only T particles are trapped. Equation
(lb) shows that the motion of a tagged hard-core particle
is dramatically slowed down compared with the motion of
nonintcracting particles. Correspondingly, we shall see
that the trapping rate for linear chains will also be strongly
slowed down due to the hard-core interaction.

In this paper, wc consider a topologically linear chain of
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FIG. 1. Schematic dra~ing of a topologically linear system
(e.g. , a linear polymer), containing particles of random sizes, and
a random distribution of sinks with constant size rg. Those parti-
cles with r & rs are called F particles (fat) and those with r & rs
are called T particles (thin). Both T and F particles have ex-
cluded volume interactions and cannot cross each other. Only T
particles are trapped.

hard-sphere molecules with a broad distribution of all pos-
sible radii r, and a set of sinks all with the same radius rg
(Fig. 1). Since the physics of particle release is the same
for all molecules with r «rq ("thin" molecules) and is also
the same for all molecules with r «rg ("fat" molecules),
we treat only two kinds of diffusing particles: T=thin and
F—=fat. 's The release rate Q is defined as the mean num-

ber of T molecules that leave the chain per unit of time. In
the infinite chain with a single sink the release rate is
changed from Q -t ' z for noninteracting molecules to
Q-t 3t4, where now the proportionality factor depends
on the ratio of concentrations cF/cT(0) of fat and thin par-
ticles. ' On the chain with a nonzero concentration of
sinks cs, the asymptotic rate Q will not depend on the ini-
tial concentration of T molecules. Thus the physics ques-
tion we address is how the asymptotic release rate Q de-
pends on t, cs, and cF.

To answer this question, consider first a finite sink-free
segment of length L with traps at both ends. The probabil-
ity Pc(L ) of finding such a sink-free region of length L in
an infinite chain with randomly positioned sinks is given

by the Poisson distribution

Po(L)-exp( Lcs) . —

Consider now the probability P(L,t ) that a given T mole-
cule survives time t in a segment of length L. For random-
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ly distributed sinks, the probability to survive PT(t) is
dominated by the large but rare sink-free regimes. '0

Hence, for t

P,(t )-max, [P(l.,t )P,(I.)j .

I. CASE (1): NONINTERACTING IDENTICAL
MOLECULES

Asymptotically,

P (L,t ) -exp[ —const t/z(L )], (4a) 1000 1500 2000 2500

where A depends on the concentration of sinks

W-e ". (Sb)

where

z(L, )-L,'
is the average time a molecule diffuses before it gets
trapped at the ends of the finite chain. Maximizing (2)
yields"

PT(t )-exp( —At't3),

FIG. 2. Test of Eq. (4a},P (L,t }-e '~'; shown in a semiloga-
rithmic plot of Q=——P as a function of time for cF 0.1,
cr(0} 0.2, with L 10 (&},15 (~ },20 (0},and 30 (&}. The
results are based on 2000 runs (or more} for each L value.

3(b), cF is varied with L 2S fixed, while in Fig. 3(a) L is
varied and cF is held fixed. In both figures, we observe a
crossover from the noninteracting limit to the interacting
case at roughly cF 1/L. For cF fixed and L varying we
have

This result is confirmed by exact analysis. " '3 L for cF((1/L

L for cF» 1/L, (Sa)

II. CASE (ii): INTERACTING NONIDENTICAL
MOLECULES (OUR MODEL)

Note that the trapping rate and the probability of sur-
vival for identical hard-core particles are the same as for
identical noninteracting particles because they are not la-
beled. '9 20 For our model, (4b) is replaced by2'

z(L)- CF

1 —eF

which follows from (Ib). If (4a) still holds, then we can
combine (6) and (4) to obtain the new result that (Sa) is
replaced by

PT(t)-exp( —At'i ) . (7a)

L4 (6)

The amplitude A of (Sb) now depends on cF as well as cs,

W -cs4"(I —c )"' (7b)

The decay in (7a) is much slower than for noninteracting
particles. Moreover, the amplitude A can be selectively
tuned by varying either cF or cs.

We have checked our predictions (4a) and (6) by exten-
sive Monte Carlo simulations. In order to achieve reason-
able statistics when calculating P(L, t ), we consider large
chains with equidistant traps at sites 1, L+1, 2L+1, . . . .
We varied L and the concentrations cp and cT(0). To
determine the asymptotic behavior of P (L,t ), we have cal-
culated the corresponding release rate Q(L,t) —P(L,
t ), where Q is the total outgoing flux of released particles.
Our results (Fig. 2) clearly confirm the vahdity of (4a) for
the case of interacting particles. For testing our prediction
(6) for z(L ), we changed cF and L systematically. In Fig.

while for L fixed and cF varying we find

const for cF«1/L
cd'/(I —cF) for cF»1/L . (Sb)

Therefore, (6) is valid for cFL »1, as predicted, and ac-
cordingly relations (7a) and (7b) are valid for cF/cs»1.

Finally, we checked our prediction (7) by direct com-
puter simulation. We calculated the number of surviving
particles for the case cs 0.20, cT(0) 0.20, and (a)
cF 0.2 and (b) cF 0. In the latter case the T particles
are not labeled and we expect the result for noninteracting
particles, Eq. (4). In Fig. 4 we have plotted log~o
x[log~oPT(t)] vs log~ot for both cases. For cF 0 the
curve bends down and nearly reaches the predicted slope
of —, at t 1000. For cF 0.2 the curve is more flat; the
slope reaches a value of 0.2S at about 10000 time steps.
We have calculated successive slopes as a function of 1/t
and it seems likely that asymptotically our predicted value
—,
' will be reached.

In summary, then, we have discovered that trapping of
nonidentical interacting particles by randomly distributed
sinks is anomalously slow in that the trapping rate Q is
slower than exponential, and even slower than the
"anomalous" slow result of Ref. 13. Moreover, we have
obtained a quantitative expression for Q, lnQ ——t'~5,

which shows that the excluded volume changes the univer-
sality class of trapping for topologically one-dimensional
structures. The physical origin of our new result resides in
the fact that hard-core particles diffuse anomalously slow-
ly in one dimension, with an rms displacement varying as
t with d 4, not d 2. For d 2,3 we know that&/d.

d„2,so we expect that lnQ- Bt"~~ + } with the a—m-
plitude 8 being dependent upon cF, the concentration of
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FIG. 4. Dependence on log~or of Iog~olog~oPr, where Pr is the

probability of survival of T particles. In (a) identical hard-core

particles fcF O,cr(0) 0.2] are considered and the slope ap-

proaches the predicted value —', for large times. In (b) nonident

icai hard-core particles [cF 0.2,cr(0) 0.2] are considered.

Although the asymptotic regime has not been reached, the ex-

trapolation of the successive slopes appears to be approaching

0.2.
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FIG. 3. Test of Eq. (6), r-L cP/(I CF), for eF —&1/L In
(a) r is plotted vs L for fixed cF 0.1, while in (b) r(l —cF) /cj
is plotted vs cF for fixed L 25. The results are based on 2000
runs (or more) for each set of parameters.

fat particles.
Our results are thus applicable to particle release in real

systems (e.g., in drug release devices)222s if they can be
made effectively topologically one-dimensional over some
length range. There are many examples from colloid
structures, such as a linear polymer (which is topologically

one dimensional), or the backbone of a percolation cluster
(which is topologically one-dimensional for length scales
shorter than the spacing of the blobs). Since the differ-
ence between the Ref. 13 result Ing ——t '/3 and our result
lng- —t'/s is so striking on large time scales, experi-
ments might be able to demonstrate this anomaly.
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