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Stability and dynamics of a noise-induced stationary state
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The dynamics of several model systems which display a noise-induced transition to bistability

are studied in detail, focusing in particular on the question of the stability of the noise-induced

stationary states. The examples exhibit a variety of phenomena in the high-noise limit deep in the
bistable regime. The noise-induced states can have an infinite lifetime, a finite lifetime, or a van-

ishingly small lifetime. Some general results concerning the high-noise limit are reported, most

notably the destablizing effect of small correlations in the noise.

The influence of external fluctuations on nonlinear sys-
tems has been a topic of growing interest in recent
years. ' 3 Among the new phenomena arising from the in-

terplay of nonlinearities and fluctuating nonequilibrium
constraints are noise-induced transitions (NITs) where
the qualitative state of a system changes from its deter-
ministic or low-noise behavior when it is subjected to rela-
tively strong broad-band perturbations. 4 In particular,
NIT's can consist of a transition to bistable behavior in a
deterministically monostable system, and these are the sys-
tems which will concern us here. It is of great interest to
determine the stability of these noise-induced states which
have no deterministic counterpart. Are they long lived?
And if so, on what time scale'? As shown below, the
answer depends not only on the details of the dynamics of
the system in question, but also on the detailed charac-
teristics of the noise and its coupling to the system. We
will discuss two systems which illustrate some general
features of the high-noise regime, but leave the full treat-
ment to a report to be published elsewhere. 5

To review briefly the concept of a NIT to bistability,
consider the one-variable dynamical system

dx/dt -f(x)+lsg(x),
where for each fixed value of the external constraint p
there is a unique stable stationary state. When the envi-
ronment fluctuates rapidly like a Gaussian white noise,
1.e., p ~0'((t ) wtth

(g(t)) 0, (g(t)g(s)) l$(t —s),
the dynamical equation becomes a stochastic differential
equation (SDE). The probability distribution of the state
variable, p(x, t), evolves according to a Fokker-Planck
equation (FPE) which is not unique. The FPE depends
on whether the SDE is a continuous-time version of a cer-
tain discrete-time problem (the Ito interpretation) or the
white-noise limit of a colored-noise problem (the Stratono-
vich interpretation). The FPE may be written

8,p L ppp tJ„[—f+ (U —2)(a'/2)gg'+ (ct'/2)8 ]p,
where U 2 is the Ito FPE and U 1 is the Stratonovich
FPE, and the stationary probability distribution of the sys-

tom is
le'X

p, (x) Ng(x) "exp (2/cr ) f/g2

where 1V is a normalization constant.
The qualitative shape of the distribution, i.e., the num-

ber and location of its extrema, can depend on the ampli-
tude cr of the noise when g is not constant. Of interest here
are the cases when p, is single peaked for small values of
cr, but double peaked above a critical intensity cr, of the
noise. Above tr, the system is most likely found at one of
the two peaks of the probability distribution, and these are
identified as the noise-induced stationary states. This peak
splitting arises from a competition between the drift (f)
which tends to drive the system toward the steady state
fixed by the average value of the noise, and the diffusion
(erg() which constantly kicks the system away from the
deterministically preferred state. Identifying the ampli-
tude of the external fluctuations with the control parame-
ter and the peak(s) of the distribution with the order pa-
rameter, this phenomenon is called a noise-induced phase
transition to bistability.

There are several techniques available to study the sta-
bility and dynamics of these noise-induced states. One is
the mean first-passage time (MFPT) from one state to the
other. This is a concept which has been thoroughly studied
in the context of tunneling in thermally activated multi-
stable systems, and for one-variable problems all the mo-
ments of the first-passage time are calculable (up to quad-
rature). If we denote by G(x,xo) the Green's function of
the Fokker-Planck operator

L, ppG (x,xo) - —b(x —xo)

with vanishing boundary conditions at a ~xo ~b then the
nth moment of the time it takes to diffuse from xo to the
exterior of [a,b 1 is

(T")-n!„dxi G(xi,xo) „dx2G(x2,xi). . .

x„dx„G(x.,x. ()

(all the integrals are over [a,b]). For systems with sym-
metric double-peaked distributions, the inverse of the

1986 The American Physical Society



STABILITY AND DYNAMICS OF A NOISE-INDUCED. . . 2565

MFPT between a maximum and the minimum is propor-
tional to the rate of switching between the most probable
states.

Another tool at our disposal is the analysis of the low-

lying spectrum of the FPE. Often the spectrum is discrete
and the eigenfunctions form a complete set with

The stationary state corresponds to ko 0, while the next
two eigenvalues yield information about the stability and
dynamics of a bistable system. The first eigenvalue (A, i)
controls the long-term "approach to equilibrium" and can
be identified with the rate at which the system switches
from one peak of the distribution to another. The second
eigenvalue (A,2) determines the time scale on which initial
distributions concentrated between the peaks decay to one
peak or the other. In general, the spectrum is not exactly
known, but it may be approximated by variational tech-
niques. Variational principles usually give only upper
bounds on the eigenvalues, but as has been recently point-
ed out, 9 %einstein's intermediate theorem' can be applied
to FPE's to obtain lower bounds. I have extended the re-
cently discovered supersymmetry in the FPE" to systems
with multiphcative noise and made great use of this to sim-

plify the calculation of bounds on the eigenvalues.
The first example system we consider, called the genetic

model, is given by the SDE

dx/dt —yx+(1 —x')a&, x e [-1,1] .

This equation is applicable as a dynamic model of genetic
selection and it can be related to a nonlinear chemical re-
action. 4 This system has a NIT to bistability at ct, y/2
(Ito) or cr2 y (Stratonovich), and as the amplitude of the
noise is increased all the probability becomes concentrated
at the end points of the state space (x + 1).

Figure 1 is a plot of the low-lying spectrum and inverse
MFPT from one peak of the probability distribution to the
center of the state space ((T) ') for the Ito interpretation
of the SDE. The first eigenvalue is exactly computable
(A, i y) and the inverse MFPT approaches y as a
diverges. Hence the noise-induced states have a finite life-
time in the large-noise limit. The full first passage time
distribution can be computed in the large-noise limit, and
we find an exponential probability density. The second
eigenvalue diverges so that the system falls immediately
into one of the noise-induced states when a oo. The
large-noise limit of this system, a two-level system with an
exponentially distributed waiting time in each state, is
known as a dichotomous Markov process. The finite and
exponentially distributed lifetime of the noise-induced
states clearly indicates that they are metastable states.

On the other hand, A, i for this model in the Stratonovich
interpretation has been computed in Ref. 9 and found to
increase monotonically as the noise is increased. The in-
verse of the MFPT diverges along with A, i in the high noise
limit indicating that the system degenerates into a two-
level white noise as the amplitude of the noise increases.
The distinction between the Ito and Stratonovich versions
of this model exhibit the general large-noise behavior of
systems which undergo a noise-induced transition to bista-
bility on a bounded state space with entrance boundaries:

0 I

2
g 2/y

FIG. 1. Spectrum for the Ito interpretation of the genetic
model. Upper and lower bounds are given for A.2, and the dashed
line is (T)

The inverse MFPT decreases from oo at cr 2 to 1.11@as
cz diverges. Since A, i and (T) are finite in the large-
noise hmit, this model displays a metastability as in the ge-
netic model in the Ito interpretation.

Honlger's model behaves quite differently as an Ito

The Ito process always goes to a dichotomous Markov pro-
cess with

» ~ [f(xi) —f(x.)]/(x. —xt)

where x„and xI are the end points so the dynamics are
governed by the local deterministic time scales at the end
points of the state space, where all the probability is con-
centrated. In the Stratonovich interpretation of such an
SDE however, the MFPT always vanishes in the high-
noise limit so that the white-noise behavior is generic.

This result does not hold for systems on an unbounded
state space. For example, we consider Hongler's model'2

dx/dt —ytanh(x)+a&/cosh(x), x c [—~,~] .

A noise-induced transition to bistability occurs at
cr2 2X y (Stratonovich) or oz y (Ito). The peaks of the
bistable distribution are uniformly exponentially locahzed
and move away from each other proportionally to log(o).
As a Stratonovich equation this model is exactly soluble. A
change of variables to y sinh(x) yields a linear equation
for y, i.e., y is a Gaussian Ornstein-Uhlenbeck process.
Since the spectrum is unaffected by such a change in vari-
ables, the eigenvalues are simply
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equation. Figure 2 is a plot of the low-lying spectrum and
inverse MFPT as a function of the (log~o of the) noise am-

plitude. Both X~ and &T& vanish in the large noise limit
indicating that the noise-induced states become absolutely
stable T. he second eigenvalue remains finite so that it still
takes a finite amount of time for the system to diffuse into
one of the two degenerate "ground states" in the large
noise limit.

These examples illustrate the general behavior in the
large-noise limit: Identical systems will evolve faster in
the Stratonovich interpretation. Noise-induced states
which are absolutely stable or metastable for Ito equations
may be merely metastable or completely unstable as Stra-
tonovich equations, so the question of modeling is crucial.
This is hinted at by the presence of the noise-induced drift
[the coefficient of (U —2)] in the Stratonovich FPE. The
deterministic evolution time scales controlled by f(x ) can
be overwhelmed by the large term (a /2)g(x)g'(x).

Since the Stratonovich FPE results from a white-noise
limit of a colored noise problem, this suggests that even
vanishingly small correlations in the driving noise have a
severe destabilizing effect on the noise-induced states.
This is in contrast to the situation for a deterministically
bistable system subjected to a small amount of additive
noise where small correlations increase the lifetime of the
metastable states. '3 It is straightforward to use a recently
developed effective FPE for colored noise problems' to
verify the destablizing effect of small correlations directly
in Hongler's model in the Stratonovich interpretation.
This destablization should be kept in mind in the numeri-
cal simulation of Ito equations with multiplicative noise in

the large-noise limit. If there are small correlations in a
discrete time simulation, the continuous time limit is a
Stratonovich equation and this fact will be reflected in the
faster large noise dynamics.

The important physical point of this result is that the
small correlations can enhance the noise absorption of a
nonlinear system when it is considered as a filter. The ge-
netic model degenerates into a bounded white noise in the
Stratonovich interpretation so the system's fluctuations
contain no power. The limit for the Ito equation, the di-
chotomous Markov process, has a nonvanishing power
spectrum and can strongly influence other systems to
which it is coupled. '5

It is worthwhile to compare the spectra obtained above
to that of a system exhibiting a deterministic transition to
bistability. Since the NIT's are inherently nonlinear and
stochastic, we consider the stochastic Landau-Ginsberg
(SLG) model

dx/dt -px —x'+ o&,
where the amplitude of the noise is kept fixed and p is the
control parameter. This model has a transition to bistabil-
ity as p is increased through p 0. Figure 3 is a plot of
&T&

' and upper bounds for X~ and A,z computed according
to the techniques of Ref. 11 for this model with cr 1.
Lower bounds are also computed in Ref. 9 and these en-
sure that our plots give the qualitative behavior of the
eigenvalues. Both A, t and &T) ' vanish as the control pa-
rameter p diverges. The two states at +' p'i2 become ab-
solutely stable deep in the bistable regime. Note that the
spectrum displays no anomolous behavior near the transi-
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FIG. 2. Spectrum for the Ito interpretation of Hongler's
model. Upper and lower bounds are given for A, I and A, 2, and the
dashed line is (T)

FIG. 3. Upper bounds for X.I and k2 for the stochastic
Landau-Ginsberg model, indicating their qualitative behavior.
The dashed line is (T)
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tion point: Using the supersymmetry of the FPE it is easy
to show that when p 0,

0.56a ~A, ) ~0.98o .

Hence there is no critical slowing down in terms of the
spectra t'n the SJ6 model. The usual concept of critical
slowing down in this model comes from considering either
a linearized or deterministic system. The NIT and bi-
stable region in the Ito version of Hongler's model behave
just like the SLG model (up to the divergence of A, 2 deep in
the bistable regime for the SLG model9). There is even a
minimum of )i,2 just above the transition as for the SLG
model indicating a relative sluggishness of the decay into
one of the bistable states. As pointed out in Ref. 4, the
correct quantity to consider when looking for a critical

slowing down in a stochastic transition to bistability (in
few variables) is the time it takes to develop a double-
peaked probability distribution starting from a single-
peaked one. The result above shows that NIT's to bistabil-
ity can be completely analogous to a deterministic transi-
tion subjected to external fluctuations.
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Ref. 11. This work benefited greatly from discussions with
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