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Diverging length scales in diffusion-limited aggregation
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Applying finite-size scaling analysis to diffusion-limited aggregation (DLA) clusters grown in

finite width strips on a square lattice we find that Iii and Ii, the cluster lengths along and perpen-

dicular, respectively, to the direction of growth, diverge as N " and N ', respectively, where N is

the number of particles in the cluster. %e find numerically that vii- —', and v&- —,'. From the

finite-size scaling analysis we derive the expression D 1+(I—vt)/vi for the fractal dimension D
of DLA clusters on a square lattice. The value D- 3 predicted from this relation agrees with the

expected result.

Diffusion-limited aggregation (DLA) introduced by
Witten and Sander' provides a simple model for a variety
of aggregation and growth phenomenaz'3 in which dif-
fusion is the rate-limiting step. Since the diffusion of the
particles is often the dominant mechanism in many pro-
cesses, ' the diffusion-limited aggregation has attracted
considerable interest recently.

One of the basic assumptions, ' which has provided the
impetus for a number of studies of DLA, has been that
DLA clusters are self-similar fractals. That is, there ex-
ists only a single fractal dimension D which describes the
divergence of any cluster length (such as the radius of
gyration, caliper diameter, x span, y span, etc.) with the
cluster size N. On the other hand, some recent studies
have indicated that DLA clusters on a square lattice have
a highly anisotropic structure, rather than a uniform
circular shape found in off-lattice simulations of DLA.
This implies that DLA clusters grow preferentially along
the four primary axes on a square lattice. Thus, there ex-
ists the possibility that DLA clusters are not self-similar
and lengths measured in different directions on the cluster
diverge with different powers of the cluster mass. Since
anisotropy plays an important role in diffusion-limited
processes associated with pattern formation9'0 in direc-
tional solidification and dendritic growth, the existence of
different diverging lengths in diffusion-limited aggregation
would be of considerable importance.

In this Rapid Communication we employ a finite-size
scaling method" to investigate the possibility that in DLA
clusters, lengths along the direction of anisotropy and per-
pendicular to it, diverge with different exponents. We ap-
ply finite-size scaling analysis" to Monte-Carlo simulation
data on DLA clusters in strips of finite width on a square
lattice. The results indicate that, in fact, two different ex-
ponents are needed to describe DLA clusters on a square
lattice, implying that DLA clusters are self-affine frac-
tals, rather than self-similar fractals.

Let us first recall that if there are two diverging lengths
in a cluster then the shape of a large cluster of size % can

On a finite strip of width L, the average height h of a clus-
ter of size N is expected to grow as"

h -I.""'""f(N/L"")

where f(x) is the scaling function. In the limit N
the cluster is essentially one dimensional and h must grow
linearly with N. Therefore, for x )& 1,f(x)~ x, and

h L"
In previous works on DLA clusters in strip geometry'2'3 it
was assumed that there exists only one exponent in the
problem and the large N limit of h was written as'2'3

h L' N

In comparing (3) and (4), we find

D 1+(1—vt)/vi .

(4)

(5)

In order to test the possibility that two exponents are
needed to describe the scaling behavior in DLA clusters we
have carried out Monte Carlo simulations of DLA clusters
on strips of width L 24-4096 on a square lattice. In our
simulations clusters can grow frotn any of the L initial sites
on the strip according to the usual DLA rule for the
growth of deposits in a strip geometry. '2'3

%'e have first determined the fractal dimension D, de-
fined in (4), from the dependence of the average density
on the strip width L. We defined the average density p by

p 1/L(dN/dh), where h is the average height in the
direction of the growth of the clusters. Figure 1 is a log-
log plot of p against L for I. 32, 64, 128, 256, and 512.
The values of p were measured after the deposit had grown

be described by two different exponnets vt and vi (instead
of one v 1/D) giving the behavior of the mean lengths lt
and l~ along and perpendicular to the direction of the an-

isotropy, respectively,

lt-N ', /i-N"
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FIG. 1. Log-log plot of the average density p against the strip
width L. The values of p frere measured ashen h & 20L The
slope of the line dragon through the data points is ——,', implying

that D -—,'.

FIG. 3. The data for g are shown to collapse to a single scal-

ing function according to Eq. (g) when (/L is plotted against
N/L'. This implies that v~

to a mean height of 20L or greater. By least-squares fit-
ting a straight line to the results we find

p-L with D 1.660+ 0.0019 .

The numerical value of D is consistent with the simulation
results for DLA clusters on a square lattices and with the
prediction D 5/3 1.666. . . of Turkevtch and Scher'
and Ball, Brady, Rossi, and Thompson's for DLA clusters
on a square lattice.

Another quantity which can be used to determine the
exponents in (2) is the width of the active zone g. 's'7

Since recent studies'7 have shown that g scales linearly
with the cluster radius in DLA, here we expect ( to scale
linearly with L for h )&L. We have numerically tested this
assumption by measuring g for different strip widths L in

the limit where the average deposition height h is 20L or
greater. Figure 2 shows the dependence of g on L From
least-squares fitting a straight line to the data we find

g-L" with v' 1.042+'0.0016, ('7)

in agreement with the expected behavior' that g grows
linearly with the system size L. For finite N, we assume a
finite-size scaling behavior of the form

g-Lg(N/L"" ), (8)

where g (x ) is a sealing function that goes to a constant for
x )) 1 and decays faster than any power of x for x ((1.

We have fitted our data for g for various L to the scaling
form (8) in order to determine the exponent v~. Our best
scaling plot, shown in Fig. 3, indicates that

(9)

Assuming v~ 2 and D 3, ' ' from relation (5) we

find

(10)

To make an independent test of the predictions (9) and

(10), we have used the scaling form (2) and have made

scaling plots of hL "" "' against N/L "' with various

values of vi and v~. We found that the best fit, shown in

Fig. 4, is obtained with vi —', and v~ —,', in agreement

with our independent calculations based on the decay of
the density p with L and the scaling of the screening length

g. The large x behavior of f(x ) is consistent with h -N
and gives vi 3 and v& —,'. The small x behavior of the

scaling function f(x ) in Fig. 4 is related to the growth of h

with N for diffusion-limited deposition, as discussed in

Refs. 13 and 18.
In the small x limit, h is expected to grow as'

h-(N/L) .

This implies that f(x )-x, as x 0. Using this scaling
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FIG. 2. Dependence of the width of the active zone g on the
strip width L The data indicate that g varies hnearly with L
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FIG. 4. The data for the average deposition height h are
sho~n to collapse to a single scaling function according to Eq.
(2) when h/L4~3 is plotted against %/L~. This result further sup-

ports the predicted values vl~
—', and v~
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form for f(x ) in (2), we find

vll/(&x 1 ) 3

The estimate a —', is in excellent agreement with the
value of the slope of the scaling plot in Fig. 4 for small x.
General scaling arguments' give a I/[D(2 —z)], where
z is the exponent describing the power-law decay of the
cluster size distribution in diffusion-limited deposition.
Using the best estimates, D —', and z 1.55+'0.05, '3 we

find a 1.33+'0.17, in excellent agreement with the scal-
ing prediction (12). In the earlier simulations' it was
found that e 1.36+'0.06 and 1.36+ 0.05 when h was fit-
ted to a function of the form A¹+8.A corrections-to-
scaling fit of the form h A¹(I+BN «) gave' a 1.33
for earlier simulations and 1.55 0.1 in simulations with
better statistics. In the light of the agreement between the
scaling result (12) and other estimates of a we can only
surmise that the previous larger estimate of a is due to an
inappropriate corrections-to-scaling form for h.

Further evidence for the breakdown of the single length
picture is provided by the fact that the Racz-Vicsek' pre-
diction a 1/(D —0+1), based on the additional assump-
tion of a single diverging length scale, gives a —', in

disagreement with (12) and the simulations data. Mea-
kin'3 has also studied the scaling relation hm, „-Xe,where
h~» is the average height of the "upper surface" in the
deposits. According to the two length scaling picture,
hm»-l~~-lV"" in a single DLA of size lV. Using general
scaling arguments, similar to those used to determine a, '

we find p vt/(2 —z) 1.48+ 0.15 for the growth ex-
ponent of the upper surface. This estimate of p is in excel-
lent agreement with the simulations, ' which gave

1.45 ~ 0.05, and lends further support to the two scal-
ing length picture.

The above results strongly support the existence of two
different diverging lengths in DLA clusters grown in a
strip geometry on a square lattice. The question of wheth-
er the two length scales arise from the anisotropy induced
by the underlying lattice or the boundaries of the strip
geometry is a subtle one. Since strong anisotropy has been
observed in ordinary DLA's grown on infinite lattices, s it
seems more plausible to ascribe the emergence of the two
diverging lengths to the geometry of the finite system
which enhances the anistropy induced by the underlying
lattice. Further studies of this phenomenon can be carried
out by studying the effects of reorienting the lattice with
respect to the preferred growth direction in the strip
geometry.

In conclusion, our finite-size scaling analysis of DLA
clusters on a strip geometry on a square lattice are con-
sistent with a two exponent scaling of the form (1). This
implies that lengths along and perpendicular to the direc-
tion of anisotropy diverge with different exponents.
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